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Abstract: The Marchenko method is a data-driven way that makes it possible to calculate Green’s
functions from virtual points in the subsurface using the reflection data at the surface and requiring
only a macro velocity model. This method requires collocated sources and receivers. However, in
practice, irregular sampling of sources or receivers will cause gaps and distortions in the obtained
focusing functions and Green’s functions. To solve this problem, this paper proposes to integrate a
sparse inversion into the iterative Marchenko scheme. Specifically, we add sparsity constraints to
the Marchenko equations and apply the sparse inversion during the iterative process. To reduce the
strict requirements on acquisition geometries, our work deals with the situation in which the sources
are subsampled where the integrations are carried out over the receivers, while the existing point
spread function method solves the situation where the receivers are subsampled. We make a step
to handle both situations at the same time by integrating this method with our work because of the
same iterative framework. Our new method is applied to a two-dimensional numerical example with
irregularly sampled data. The result shows that it can effectively fill gaps in the obtained focusing
functions and Green’s functions in the Marchenko method.

Keywords: Marchenko method; irregular sampling; focusing function; Green’s function; sparse inversion

1. Introduction

The Marchenko method is a data-driven method. It can bring Green’s functions from
focal points from the subsurface to the surface, requiring only the reflection response
measured at the surface and direct arrivals from focal points to the surface [1–3]. Green’s
functions are the waves that reach a receiver position due to the firing of an impulsive
source [4]. The obtained response does not have any internal multiples related to the
overburden. The term “Marchenko” comes from the name of Vladimir Alexandrovich
Marchenko, who studied the inverse scattering theory and deduced an equation to estimate
Green’s functions in one-dimensional quantum mechanics. Marchenko equations have long
been used by mathematical physicists as the basis of one-dimensional inverse scattering
theory [5–10]. In 2012, Broggini and Snieder introduced the Marchenko equation to the
field of geophysics [11].

Similarly, Bakulin and Calvert proposed the virtual source method based on seismic
interferometry [12]. This method can also retrieve Green’s function. However, there should
be a physical receiver as the virtual source in the medium that requires illumination from
both above and below [13]. However, in practice, illumination generally appears only from
the top, which means that the retrieved Green’s function contains false multiples [14]. In
contrast, the Marchenko method does not require a physical receiver inside the medium,
and illuminating from one side is sufficient. In a one-dimensional medium, Green’s
functions between the virtual source in the medium and the receiver at the surface can be
retrieved from the reflection response at the surface. Wapenaar et al. extended their work to
2D and 3D media [15]. Wapenaar and da Costa Filho et al. extended the method to elastic
media [16,17]. Singh et al. discussed free surface multiples in this method [18]. Slob made
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this method applicable to dissipative acoustic media [19]. The Marchenko method has
been used for subsurface imaging without internal multiples [20–22] and internal multiple
elimination [23,24].

However, there are some challenges related to the Marchenko method. This method
requires collocated sources and receivers, low noise, no attenuation effect, and prior knowl-
edge of the source signal. These requirements limit the wide application of the Marchenko
method. This paper discusses the problem of strict acquisition geometry. For now, various
ways are being sought to relax this limitation. Ravasi deduced the Rayleigh Marchenko
equation so that the source could be placed at any position relative to the receiver [25]. Peng
and Vasconcelos studied the subsampling and aperture-limiting effects in the Marchenko
method [26]. Wapenaar and IJsseldijk rewrote the Marchenko equations considering the
case of imperfect receiver sampling where the integrations were over receivers. They used
a point spread function and multi-dimensional deconvolution for inversion to restore the
distorted focusing functions and Green’s functions [27]. Then this new representation
of Marchenko equations was integrated into the iterative Marchenko scheme [28]. On
the other side, Haindl et al. considered the case in which the sources are subsampled,
proposing a sparse inversion method to compensate for the irregularity of the source [29].

In this paper, we focus on the situation where irregular sampling and integrating are
over different dimensions, as Haindl et al. did. However, we propose integrating a sparse
inversion into the iterative Marchenko scheme rather than Haindl’s direct inversion method.
The iterative framework was also applied to IJsseldijk and Wapenaar’s work, which deals
with the other situation [28]. As a result of this, our paper works towards a methodology
to take care of the data that are subsampled in both source and receiver dimensions in
the Marchenko method. This paper is organized as follows. First, we introduce the
discrete representations for the Marchenko method and the problem of this method caused
by irregular sampling. Subsequently, we integrate sparse inversion into the iterative
Marchenko scheme and give the workflow of our method. Finally, numerical examples
verify the performance of our method. The results show that this method effectively
reconstructs obtained focusing functions and Green’s functions in the Marchenko method
under imperfect sampling.

2. Methods
2.1. Discrete Representations for the Marchenko Method

We assume an inhomogeneous lossless acoustic medium. The reflection response of
the surface of this medium is given by R(xR, xS, t), where xS is the position of the source,
xR is the position of the receiver, and t is the time. A focal point xA is defined inside
the medium. The downgoing and upgoing Green’s functions from the surface S0 to this
focal point are, respectively, expressed as G+(xA, xR, t) and G−(xA, xR, t). The coupled
Marchenko equation and Green’s functions can be connected using focusing functions as
follows [16]:

G±(xA, xR, t)∓ f±1 (xR, xA,∓t) = ∓
∫
S0

R(xR, xS, t) ∗ f∓1 (xS, xA,∓t)dxS. (1)

where f±1 (xR, xA,∓t) is the defined focusing functions, and ± denotes downgoing (+)
and upgoing (−) propagation. The asterisk indicates a temporal convolution. In practical
application, the infinite integral on the right side of Equation (1) is approximated by the
finite sum of available sources [27]:

Ĝ±(xA, xR, t)∓ f̂±1 (xR, xA,∓t) = ∓∑
i

R
(

xR, x(i)S , t
)
∗ f∓1

(
x(i)S , xA,∓t

)
∗ S(t), (2)
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where i is the source position, and S(t) is the source wavelet. The integration in Equation (1)
is performed under the source dimension. Through the source-receiver reciprocity theorem,
the equation can be rewritten into the form of integrating under the receiver dimension:

G±(xA, xS, t)∓ f±1 (xS, xA,∓t) = ∓
∫
S0

R(xR, xS, t) ∗ f∓1 (xR, xA,∓t)dxR. (3)

Therefore, Equation (2) is correspondingly modified as follows:

Ĝ±(xA, xS, t)∓ f̂±1 (xS, xA,∓t) = ∓∑
i

R
(

x(i)R , xS, t
)
∗ f∓1

(
x(i)R , xA,∓t

)
∗ S(t). (4)

Next, we consider the influence of incomplete acquisition geometry. For the sake of
simplicity, here we only discuss the case of integrating under the receiver dimension (as
mentioned above, this can be reciprocated with the case of integrating under the source
dimension). Now, we rewrite Equation (4) as follows:

Ĝ±(xA, xS, t)∓ f̂±1 (xS, xA,∓t) =
∓ΦS(xS)∑

i
ΦR

(
x(i)R

)
R
(

x(i)R , xS, t
)
∗ f∓1

(
x(i)R , xA,∓t

)
∗ S(t). (5)

where ΦS and ΦR are the sampling matrices on the source and receiver sides, respectively.
If the receiver sampling is irregular (with ΦS = 1) when acquiring reflection data, the
sum on the right side will introduce waveform distortions to the focusing functions and
Green’s functions on the left side. On the other hand, if the source sampling is irregular
(with ΦR = 1), there will be both waveform distortions and spatial gaps left in the obtained
focusing functions and Green’s functions [26]. More details about both situations are in the
next section.

2.2. The Standard Marchenko Method with Irregular Sampling

Let us look at the velocity model shown in Figure 1. The reflection response is obtained
using 201 co-located sources and receivers with 10 m spacing. The time sampling interval
is 4 ms. The seismic wavelet is a Ricker wavelet at 20 Hz. The focal point is located at
(x = 0 m, z = 950 m). Figure 2a,b show the sampling matrices ΦS and ΦR, representing
sampling masks for the source and receiver dimensions, respectively, with 40% of them
randomly removed.
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Figure 2. The sampling matrices. (a) is ΦS (under the source dimension), and (b) is ΦR (under the
receiver dimension).

The standard Marchenko method is processed according to Equation (4). Figure 3a
shows the focusing function with an irregular sampling of the sources and regular sampling
of the receivers (i.e., ΦS 6= 1, ΦR = 1). Figure 4a is the corresponding Green’s function.
Figure 3b shows the focusing function with an irregular sampling of the receivers and
regular sampling of the sources (i.e., ΦS = 1, ΦR 6= 1), and Figure 4b is the corresponding
Green’s function. As references, Figure 3c is the focusing function under regular sampling
(i.e., with ΦS&ΦR = 1), and Figure 4c is the subsequent Green’s function. It should be
noted that all the figures of focusing functions and Green’s functions we show in this paper
are the superposition of the upgoing and downgoing ones.
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Figure 4. The Green’s functions obtained using the standard Marchenko method integrated under
the receiver dimension. They are sampled (a) under the source dimension; (b) under the receiver
dimension; (c) regularly. Red arrows point out partial artifacts.

In Figures 3a and 4a, we can see that the focusing function and Green’s function
obtained by sampling and integrating under the different dimensions have clear space
gaps and artifacts (partially pointed by red arrows). Furthermore, in Figures 3b and 4b, the
focusing function and Green’s function obtained using sampling and integrating under
the same dimension have no gap in space, but artifacts do appear (partially pointed by
red arrows).

This is because when the sampling is carried out under the source dimension, all the
obtained reflection data R during acquisition have spatial gaps, which affect the spatial
gaps in obtained focusing functions. In the subsequent iterations, the gaps in focusing
functions enter the summation process [26]. On the other hand, when the sampling is
under the receiver dimension, a part of R is missing due to ΦR. In the summation process,
the missing parts will cause artifacts. However, the non-zero elements still maintain
good spatial sampling, which will not lead to spatial gaps. After the end of the iteration,
the obtained focusing functions are substituted into Equation (4) to estimate Green’s
functions. So, the inaccuracy of focusing functions leads to the inaccuracy of the subsequent
Green’s functions.

2.3. Sparse Reconstruction of Focusing Functions

Our work focuses on the case of source subsampling, so we only consider the situation
where ΦS 6= 1 and ΦR = 1 in Equation (5). In the rest of this paper, we replace ΦS with Φ to
represent irregular sampling for convenience. We now introduce sparse inversion theory.

In Compressive Sensing, wavefield reconstruction is achieved through sparse transfor-
mation and/or the inversion calculator with sparsity constraints [30]. Focusing functions
are composed of mostly continuous events and can be traced in a time-offset plot, so they
have many common features with other seismic wavefields. Haindl et al. showed that
sparse transformation used for the wavefield reconstruction could also be used for the
reconstruction of focusing functions [29]. Since our goal is to solve a redatuming problem
with irregularly sampled input data (i.e., reflection response), we now turn to deal with the
sparse reconstruction of focusing functions using reflection data with random gaps. Here,
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we give only the formula derivation; please refer to the work of Haindl et al. for a detailed
numerical demonstration.

We record the vector forms of the complete reflection response and the focusing
function as r and f, respectively, then the vector form of the missing reflection response is

^
r = Φr, (6)

where r ∈ RN ,
^
r ∈ RM, N > M. Φ ∈ RM×N is the sampling matrix.

^
r will also cause gaps

in the follow-up focusing function, which is expressed as
^
f. It follows

^
f = Φf. (7)

Assuming that f can be represented sparsely in the transform domain, the transform
domain is called the sparse domain. Then we have

a = Ψf, (8)

where Ψ is the sparse basis, and a is the sparse coefficient of f in the sparse domain.
Substitute Equation (8) into Equation (7), and we get

^
f = Θa, (9)

where Θ = ΦΨ−1. Ψ−1 is the inverse of Ψ. Θ is usually called recovery matrix. Since
N > M, Equation (9) is underdetermined and has infinitely many solutions, so it is
impossible to reconstruct the complete focusing function. However, we can obtain a unique
solution if the recovery matrix Θ satisfies the Restricted Isometry Property (RIP) [31,32].
When the sampling matrix Φ is incoherent with the sparse basis Ψ, this property can be
satisfied. Therefore, to reconstruct the complete focusing function, the direct way is to solve
the L0-norm through continuous optimization:

~
a = argmin

a
‖a‖0 s.t.

∥∥∥∥Θa−
^
f
∥∥∥∥

2
≤ σ, (10)

where
~
a is the optimal sparse coefficient, σ is the reconstruction error, and the constraint con-

dition
∥∥∥∥Θa−

^
f
∥∥∥∥

2
≤ σ ensures that the solution converges to the true value. Equation (10)

is an underdetermined ill-posed problem. It is difficult to obtain an accurate solution.
However, L0-norm and L1-norm can get the same approximate solution under a certain
condition [33], so Equation (10) is transformed into a convex optimization problem:

~
a = argmin

a
‖a‖1 s.t.

∥∥∥∥Θa−
^
f
∥∥∥∥

2
≤ σ, (11)

Then the reconstructed focusing function can be obtained by

~
f = Ψ−1 ~

a. (12)

2.4. Sparse Inversion in Iterative Marchenko Scheme

We propose the workflow (Figure 5) referring to the frame of IJsseldijk and Wapenaar’s
work [28]. Our method reconstructs focusing functions in each iteration. The first step is
to estimate the initial downgoing focusing function f+1,0 to start the iteration. To facilitate
calculation, it is usually approximated by the time reversal of the direct arrival of Green’s
function Gd [34]:

f+1,0(xR, xA, t) ≈ Gd(xR, xA,−t). (13)
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This approximation mainly means that the transmission losses at the interfaces are
ignored. Equation (13) corresponds to step 1 in Figure 5.
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functions are recovered by Steps 3, 4, 6, and 7. S is the source signal, k is the number of iterations, the
superscript asterisk is the time reversal, the internal asterisk is the convolution or correlation, Φ is the
sampling matrix, and θ is the time window operator.

Next, the focusing functions are calculated according to Equation (4). The downgoing
focusing function is retrieved from the initial condition of the first iteration or from the
upgoing focusing function that is cross-correlated with the reflection response in the last
iteration; the upgoing focusing function is the convolution of the downgoing focusing
function and the reflection response. We use a time windowing operator θ to separate
focusing functions from Green’s functions. θ removes all energy whose arrival time is
greater than or equal to the direct arrival time. This paragraph corresponds to step 2 in
Figure 5.
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In steps 3 and 4, we reconstruct
^
f
±

1,k in Equation (5) by introducing sparse inver-
sion. According to Equations (11) and (12), the reconstruction problem can be expressed
as follows:

~
a f± = argmin

a f±

∥∥∥a f±
∥∥∥

1
s.t.

∥∥∥∥∥Θa f± −
^
f
±

1,k

∥∥∥∥∥
2

≤ σ, (14)

and
~
f
±
1,k = Ψ−1 ~

a f± . (15)

Now we have the convergent and reconstructed focusing functions
~
f
±
1,k. In step 5, we

substitute
~
f
±
1,k into Equation (5) as follows:

Ĝ±(xA, xS, t) =
± f̃±1,k(xS, xA,∓t)∓Φ∑

i
R
(

x(i)R , xS, t
)
∗ f̃∓1,k

(
x(i)R , xA,∓t

)
∗ S(t). (16)

Steps 6 and 7 are similar to steps 4 and 5. We reconstruct Green’s functions through
the following two equations:

~
aG± = argmin

aG±
‖aG±‖1 s.t.

∥∥∥∥∥ΘaG± −
^
G
±∥∥∥∥∥

2

≤ σ, (17)

and
G̃
±
= Ψ−1 ~

aG± , (18)

where G̃
±

are the recovered Green’s functions. Equations (14)–(18) are the iterative
Marchenko scheme with sparse inversion proposed in this paper.

3. Numeral Examples

The performance of our method is tested on the synthetic data. This test uses the
same two-dimensional model as above (Figure 1), and the model parameters are also
consistent with Section 2.2. For irregular sampling, 40% of the sources are randomly
removed; the sampling mask is shown in Figure 2a. The direct arrival of Green’s function
between the depth of the source and the surface is estimated in the smooth model. As
previously mentioned, the time reversal of direct arrival is used for the initial estimation of
the downgoing focusing function. The reflection response and the initial estimate are the
inputs required for the iterative Marchenko scheme. For the third and sixth steps of our
method, we need to know the locations of the missing sources.

We use the SPGL1 solver [35,36] to invert Equations (15) and (18) in the Fourier
transform, wavelet transform, and curvelet transform. Figure 6 compares the convergence
in these domains. It can be seen that the results of sparse reconstruction using the wavelet
transform (red line), which converges after 50 iterations, are the worst, while the Fourier
transform (blue line) converges gradually after 30 iterations. From the overall results and
convergence, the best effect is with the curvelet transform (yellow line), which starts to
converge after 100 iterations. This shows that the focusing function is particularly sparse in
the curvelet domain because the SPGL1 solver gradually loosens the sparsity constraint to
facilitate smaller mismatches. Figure 7 shows the reconstructed focusing functions of the
100th iteration obtained by these three transforms. It can be clearly seen that the focusing
function reconstructed with the curvelet transform (Figure 7d) is the most similar to the
reference figure (Figure 7e). Figure 8 is the corresponding Green’s functions. We can
see that the curvelet domain (Figure 8d) makes the best reconstruction compared to the
other domains.
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Figure 6. Comparison of convergence of SPGL1 algorithm in the sparse reconstruction of focusing
functions, in which the red line is wavelet transform, the blue line is Fourier transform, and the
yellow line is curvelet transform.
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receiver dimension; (b) Reconstruction in wavelet domain; (c) Reconstruction in Fourier domain; 
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Figure 7. Comparison of focusing functions of the 100th iteration. (a) The focusing function without
reconstruction, calculated by irregular sampling over the source dimension and integrating over
the receiver dimension; (b) The reconstructed focusing function for sparse reconstruction in the
wavelet domain; (c) The reconstructed focusing function for sparse reconstruction in Fourier domain;
(d) The reconstructed focusing function for sparse reconstruction in curvelet domain; (e) The focusing
function for reference.

After determining that the curvelet domain is the best transform domain in our
method, we use the FISTA sparse solver [37] to invert Equations (14) and (17) as well.
Figure 9 shows the convergence of the SPGL1 solver and the FISTA solver with curvelet
transform. It can be seen that the FISTA solver (purple line) becomes flat after nearly
50 iterations, and the result of the 50th iteration is very close to that of the 100th itera-
tion of the SPGL1 solver (yellow line). It means that the SPGL1 solver needs more than
100 iterations to achieve better results than the FISTA solver. We compare the focusing
functions and final Green’s functions obtained by the standard Marchenko method and
our method in Figures 10 and 11. Figures 10b and 11b are reconstructed using our method
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with the SPGL1 solver, and Figures 10c and 11c are with the FISTA solver. Compared
with the reference Figures 10d and 11d, it can be seen that the gaps caused in the standard
Marchenko method (Figures 10a and 11a) are effectively filled in our method with both
solvers. To facilitate observation, in Figure 12, we enlarge the single traces of the four
Green’s functions in Figure 10, which are represented by blue, red, yellow, and purple lines,
respectively. We can see that at x = 10 m (Figure 12a), the yellow line (FISTA solver) and
purple line (reference) are well matched. At x = −960 m (Figure 12b), both red (SPGL1
solver) and yellow lines are matched with the purple line. Hence, this result proves the
effectiveness of our reconstruction method, and our method with the FISTA solver is better
than that with the SPGL1 solver at the near offset.
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Figure 8. Comparison of Green’s functions according to Figure 7. (a) Green’s function without
reconstruction calculated by irregular sampling over the source dimension and integrating over the
receiver dimension; (b) Reconstruction in wavelet domain; (c) Reconstruction in Fourier domain;
(d) Reconstruction in curvelet domain; (e) Green’s function for reference.
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line) in curvelet transform for focusing function reconstruction.



Remote Sens. 2023, 15, 322 11 of 14

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 15 
 

 

10 20 30 40 50 60 70 80 90 100
Iterations

10

12

14

16

18

20

22

S
N

R
[d

B
]

curvelet with SPGL1
curvelet with FISTA

 
Figure 9. Comparison of convergence of the SPGL1 solver (yellow line) and the FISTA solver (purple 
line) in curvelet transform for focusing function reconstruction. 

(a)

−1000 0 1000
Offset [m]

−1

−0.5

0

0.5

1

Ti
m

e 
[s

]

(b)

−1000 0 1000
Offset [m]

−1

−0.5

0

0.5

1

Ti
m

e 
[s

]

(c)

−1000 0 1000
Offset [m]

−1

−0.5

0

0.5

1
Ti

m
e 

[s
]

(d)

−1000 0 1000
Offset [m]

−1

−0.5

0

0.5

1

Ti
m

e 
[s

]

 
Figure 10. Comparison of the focusing functions. (a) is obtained using the standard Marchenko 
method with irregular sampling; (b) is obtained using sparse reconstruction with SPGL1 solver; (c) 
is obtained using sparse reconstruction with FISTA solver; and (d) is the reference focusing function. 

Figure 10. Comparison of the focusing functions. (a) is obtained using the standard Marchenko
method with irregular sampling; (b) is obtained using sparse reconstruction with SPGL1 solver; (c) is
obtained using sparse reconstruction with FISTA solver; and (d) is the reference focusing function.
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4. Discussion 
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process. Haindl’s work [29] points out that the results obtained by taking sparse wavefield 
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Figure 11. Comparison of Green’s functions. (a) is obtained using the standard Marchenko method
with irregular sampling; (b) is obtained using sparse reconstruction with SPGL1 solver; (c) is obtained
using sparse reconstruction with FISTA solver, and (d) is the reference Green’s function.
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4. Discussion

When the Marchenko method is used for seismic data sets with gaps in the acquisition
geometry, sparse reconstruction for wavefields can also be used as a preprocessing pro-
cess. Haindl’s work [29] points out that the results obtained by taking sparse wavefield
reconstruction as a preprocessing step are better than those obtained by combining sparse
inversion with direct inversion of the Marchenko equations. However, preprocessing
requires sparse reconstruction of all shots, which has a higher computational cost.

Some papers have already combined the Marchenko method with sparse inversion
to deal with irregular sampling and integration in different dimensions [29,38,39]. For
example, as mentioned in the Introduction section, Haindl et al. dealt with matrix ΦS

(with ΦR = 1) in a case where the focusing functions
^
f
±

1 were directly inverted from the
Marchenko equation. However, their methods needed to directly invert the Marchenko
equations. This means that when the amount of data is large, the inverse of the matrix
in the inversion is difficult to solve. Our work also aims to handle this situation but is in
the iterative Marchenko framework. Van IJsseldijk and Wapenaar’s work also used the
iterative scheme [28], but what they dealt with was ΦR (with ΦS = 1). In our work, we

show that ΦS can also be dealt with in a case where
^
f
±

1 are found by the iterative scheme. A
logical next step may be to combine this with the work of IJsseldijk and Wapenaar to deal
with both ΦS and ΦR.

5. Conclusions

One limitation of the standard Marchenko method is the need for well-sampled and
collocated sources and receivers. This paper broadens this requirement and proves that the
obtained focusing functions and Green’s functions can be improved by sparse inversion
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when there are randomly distributed gaps in the input of the Marchenko method. We solve
the problem of gaps and artifacts between the focusing functions and Green’s function
caused by irregular source sampling. For this method, we need to know the locations of
the missing sources. We extend four steps (Steps 3, 4, 6, and 7) in each iteration of the
standard Marchenko method. Our work casts the ideas of Haindl et al. into the framework
of IJsseldijk and Wapenaar’s work. We pose a step to simultaneously deal with two cases
of sampling and integration in the same and different dimensions.
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