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Abstract: As an active microwave coherent imaging technology, synthetic aperture radar (SAR)
images suffer from severe speckle noise and low-resolution problems due to the limitations of the
imaging system, which cause difficulties in image interpretation and target detection. However,
the existing SAR super-resolution (SR) methods usually reconstruct the images by a determined
degradation model and hardly consider multiplicative speckle noise, meanwhile, most SR models
are trained with synthetic datasets in which the low-resolution (LR) images are down-sampled from
their high-resolution (HR) counterparts. These constraints cause a serious domain gap between the
synthetic and real SAR images. To solve the above problems, this paper proposes an unsupervised
blind SR method for SAR images by introducing SAR priors in a cycle-GAN framework. First,
a learnable probabilistic degradation model combined with SAR noise priors was presented to
satisfy various SAR images produced from different platforms. Then, a degradation model and
a SR model in a unified cycle-GAN framework were trained simultaneously to learn the intrinsic
relationship between HR–LR domains. The model was trained with real LR and HR SAR images
instead of synthetic paired images to conquer the domain gap. Finally, experimental results on
both synthetic and real SAR images demonstrated the high performance of the proposed method
in terms of image quality and visual perception. Additionally, we found the proposed SR method
demonstrates the tremendous potential for target detection tasks by reducing missed detection and
false alarms significantly.

Keywords: synthetic aperture radar (SAR); blind super-resolution (SR); cycle-GAN; generative
adversarial networks (GAN); probabilistic degradation model

1. Introduction

Synthetic aperture radar (SAR) is an active microwave coherent imaging technology,
which can produce high-resolution (HR) images regardless of adverse light and weather
conditions. Hence, SAR plays an extremely important role in target detection and recogni-
tion, which is widely used for military and civilian purposes. Therefore, high-quality SAR
images with more details and accurate information are required. However, the resolution
is related to the signal bandwidth, the center frequency and imaging modes, and improv-
ing these system configurations costs a lot. Moreover, SAR images often suffer from the
interference of speckle noise and lack high-frequency information due to their coherence
imaging mechanism, which causes difficulty in scene interpretation and analysis. There-
fore, the development of an SAR image super-resolution (SR) reconstruction algorithm
that can provide more details without additional hardware cost remains an attractive but
challenging problem.

In recent years, various methods of SR and noise despeckling have been extensively
studied in the literature, respectively, and a comprehensive review of SR was provided in [1].
Nevertheless, noise must be taken into account, otherwise, the SR process will amplify the
noise and will not give the image any more useful information due to the heavier noise.
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However, little SR research about SAR images has been proposed. Additionally, most
SAR SR methods merely consider classical additive Gaussian noise models rather than
multiplicative and nonwhite speckle noise. Therefore, those methods are incompatible
with the real image degradation model and only few addressed this problem.

In recent years, SR reconstruction algorithms for various images have been developing
rapidly, and single-image SR (SISR) has gained more attention than multi-image super-
resolution (MISR) due to its high efficiency (no need for extra images) [2]. It is hard to obtain
SAR images with a series of corresponding images, so we mainly focus on SISR. Image
SR methods can mainly be classified into traditional methods and deep-learning-based
ones [3]. Traditional ones contain interpolation, pansharpening [4] and some other digital
image processing methods [5–9]; Interpolation algorithms [10], such as bilinear and bicubic
interpolation, have become the most popular methods to render SR images because of
their low complexity and high computing speed, but interpolation does not allow for the
obtaining of more details due to its simplicity. Meanwhile, pansharpening also requires
LR-HR paired images. With the emergence of compressive sensing technology, sparse
representation-based algorithms [11–15] have been used for SR reconstruction, but these
algorithms remain complicated. Over the past decades, we have witnessed significant
development in deep learning algorithms, and these methods have produced state-of-the-
art results in image restoration [16,17] and image SR [18]. Deep-learning-based methods
can be divided into two groups, one utilizes convolutional neural networks (CNN) and
the other is based on generative adversarial networks [19] (GAN). SRCNN [18] is the first
CNN-based method, which can learn an end-to-end LR-HR model for image SR. Following
this work, various architectures with powerful techniques (residual blocks and recursive
supervision) [20,21] based on SRCNN have been proposed, and more complex and deeper
models are emerging. Enhanced deep SR [22] (EDSR) employs several residual blocks
to extract image features, deconvolution layers are introduced in FSRCNN [23] and the
feedback network employed in SRFBN [24] also performs well. Moreover, GAN shows
great potential in SR tasks due to its powerful ability to generate indistinguishable images,
which improves visual effects in terms of visual metrics. The SRGAN [25] algorithm is the
first one to apply GAN to SISR; meanwhile, ESRGAN [26] improves this method by replac-
ing the basic block with a residual-in-residual dense block (RRDB) and removing batch
normalization (BN) layers. For blind SR, several methods show great performance in the
real-world images by designing degradation models elaborately, such as real-ESRGAN [27],
real-SR [28] and PDM-SR [29].

However, most deep-learning-based SR methods aimed at SAR images just migrate
the methods used in optical images, which may not take full account of the SAR imaging
characteristics (such as complicated background and multiplicative speckle noise) and
cause undesirable effects. One of them [30] adopted a non-local means denoising combined
BP network to achieve HR SAR images. SRGAN [31] proposed a GAN with a percep-
tual loss function, which made remarkable progress in both reconstruction accuracy and
computational efficiency. SNGAN [32] followed the ESRGAN to reduce the computa-
tional requirement and model oscillation by canceling the BN layers. A novel model [33]
with deconvolution and PReLU activation function was designed for PolSAR SR tasks.
OGSRN [34] obtained comprehensive information from co-registered High-Resolution
(HR) optical images to guide the SAR image reconstruction. Ref. [35] employed GAN and
solved the domain gap between synthetic and real-world LR DEMs for InSAR HR DEMs
estimation. Nevertheless, these SAR SR methods hardly take the multiplicative speckle
noise into account.

SAR denoising and deblurring problem has been studied extensively due to their
significance. SAR speckle noise has been analyzed in several models [36–38] with differ-
ent statistical properties, and plenty of methods [39,40] have been designed to alleviate
that. Adaptive spatial filters such as the Frost filter [41] and Gamma MAP filter [42],
wavelet-domain methods such as block-matching 3D [43] (BM3D) algorithm and total
variation [44,45] (TV) methods have been developed in the literature. Thus far, several
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deep-learning-based denoising methods such as SAR-CNN [46] and ID-CNN [47] have
been applied and achieve a great restoration. Deep-learning-based methods have the
advantage of adapting to complicated data without estimating obscure model parameters,
and incorporating SAR priors can accelerate training and enhance performance effectively.

Although the SAR SR and denoising algorithms have excellent performance in HR
image restoration, they still have some shortcomings in three aspects. First, deep-learning-
based SAR images SR and denoising methods are separated, and these SR methods hardly
consider multiplicative speckle noise and blur since they may pay more attention to SR
process instead of noise. SAR noise is so complicated that it is hard to introduce SAR noise
model priors into deep learning architectures. Most SAR SR methods only consider the
classical additive Gaussian noise model, which may cause bad results in real SAR images
with speckle noise. N. Karimi’s work [48] is one of the first works to combine an SAR image
SR model and multiplicative speckle noise model, even so, it is still not a deep-learning-
based method. Second, the degradation models are determined in most methods. Actually,
it is not appropriate to regard SAR degradation as a specific model due to its complex and
uncertain SAR imaging systems. Meanwhile, the degradation model and the estimation
parameters vary from different data sources, which requires strong adaptability of the
method. Third, the training data sources severely limit the performance of the method.
Most existing SAR SR models are trained with synthetic datasets in which the LR images are
bicubic down-sampled from their HR counterparts. Additionally, most existing learning-
based methods adopt a simple degradation model when formulating the SR datasets.
However, these models become less effective when applied to real-world scenarios due to
the domain gap between the synthetic and real LR SAR images. Some methods even adopt
the grayscale optical images and superimposed noise artificially to simulate the realistic
scenes, which may only learn the degradation processes they defined instead of various
practical relationships between LR and HR images with implicit information.

In this paper, we proposed a cycle-GAN-based blind SR method for SAR images with
speckle noise by learning the degradation model and introducing SAR priors to solve the
above problems. The contributions of this paper are listed as follows:

(1) SAR priors. To the best of our knowledge, our method was one of the first SAR
image SR methods based on deep learning which introduced statistical properties of speckle
noise such as Gamma distribution initialization.

(2) A learnable probabilistic degradation model. Inspired by PDM-SR [29], we intro-
duced a learnable probabilistic degradation model instead of a determined degradation
model for blind SAR SR tasks, and we modified the architecture in terms of SAR noise prior
criterion, which is conducive to satisfy various SAR images.

(3) Unified cycle GAN framework. We trained the degradation model and SR model
simultaneously in a unified cycle GAN framework to learn the intrinsic relationship be-
tween the HR-LR domains. Additionally, we trained the model with different resolution
real SAR images completely, instead of using synthetic images, to conquer the domain gap.

(4) Experimental results. Results of both synthetic and realistic SAR images with
various levels of speckle noise demonstrated the high performance of the proposed method
in terms of both image quality and visual perception. The results also showed that SR and
denoise tasks can be well realized simultaneously. We found tremendous potential for
target detection tasks due to its powerful capabilities for exposing targets by generating
the details and eliminating the noise, which can reduce missed detection and false alarms
significantly. The proposed method can improve mAP and reduce the training epochs
effectively.

The remainder of this paper is structured as follows: In Section 2, we introduce the
proposed method. Section 3 presents the experimental results and evaluation. Section 4
presents the conclusion of the proposed method.
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2. Methodology

In this section, we provide the details of the proposed method. The proposed method
is a GAN-based blind SR method for SAR images with speckle by learning the degradation
model and introducing SAR priors. The model consists of a learnable degradation model
and an SR model in a cycle-GAN [49] framework to conquer the domain gap. A probabilistic
degradation model is adopted to fit the diverse distributions of SAR images. A kernel
module and a noise module are introduced to rebuild the degradation. The SAR noise
model priors are integrated into the degradation processes. The SR module is designed
as an RRDBnet. Finally, adversarial loss and content loss are combined to train the whole
network simultaneously. Real SAR images that have different resolutions are adopted
as HR and LR images to learn the intrinsic relationship between them. These parts are
explained in detail below.

2.1. Model Framework

The model framework is a cycle-GAN-based model. GAN is a significant generative
network architecture where a generator network and a discriminator network are trained
simultaneously. The former is trained to gain samples that are similar to the target domain;
meanwhile, the latter is trained to determine the authenticity of the generated samples.
Cycle-GAN is an efficient way to resolve the unavailable paired data problem, which can
learn better from a source domain to a target domain by introducing another GAN network
with a cycle consistency loss. In this work, the HR images (IH) and the LR images (IL) are
regarded as two different domains that have distinctive features, and our goal is to learn
a degradation process Deg : IH → IL and an SR process SR : IL → IH simultaneously to
ensure the good consistent performance of the whole cycle-GAN based SR model.

The model framework is shown in Figure 1, which consists of a degradation model (D)
and an SR model (S), D focuses on learning the degradation process and S is to recover the
HR images from the generated LR images. To make sure that the proposed method is able
to conquer the domain gap between LR and HR caused by different imaging formations
from different imaging platforms, we encourage the D to learn the intrinsic relationship
between LR and HR to generate synthetic LR images similar to the real LR images, then,
the synthetic LR images carried with real LR characteristic are restored to the initial real
HR images, which proves that the SR model has the capacity to give more details than the
real LR images.
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We designed two discriminator networks to supervise the corresponding networks
respectively. The objective function of the network can be formulized as min-max problems
in (1) and (2).

min
SR

max
DH

V(SR, DH) = EIH∼PH(IH)

[
log
(

DH

(
IH
))]

+EIL∼PL(IL)

[
log
(

1− DH

(
SR
(

IL
)))]

(1)

min
Deg

max
DL

V(Deg, DL) = EIL∼PL(IL)

[
log
(

DL

(
IL
))]

+EIH∼PH(IH)

[
log
(

1− DL

(
Deg

(
IH
)))]

(2)

where DH and DL denote the discriminator 2 and the discriminator 1, as depicted in
Figure 1.

Finally, we introduce a consistency loss to measure the distance between
SR
(

Deg
(

IH)) and IH , which ensures the reconstruction ability of the model, i.e.,
IH → Deg

(
IH)→ SR

(
Deg

(
IH)) ≈ IH , therefore, we design a target function in (3)

argmin
Deg, SR

∣∣∣∣∣∣SR
(

Deg
(

IH
))
− IH

∣∣∣∣∣∣ (3)

The workflow of the model is shown in Figure 1, where the blue box and the gray box
are the degradation model and the SR model, respectively, which can be regarded as stage 1
and stage 2. In the first stage, the degradation model extracts the degradation features
adjust to the HR images by learning three modules. Then, synthetic LR images can be
obtained after operation of the learned modules. In stage 2, the SR model is built to generate
SR images from synthetic LR images. RRDB blocks and residual connections are introduced
to strengthen the capacity of the model. Finally, the two models are trained simultaneously
by adversarial training; the two yellow boxes are the discriminators. Discriminator 1
will distinguish the real LR images from synthetic LR images and discriminator 2 will
distinguish the recovered SR images from the original real HR images. To ensure the
similarity between HR and SR, we introduce content loss to restrain the whole process.

2.2. Probabilistic Degradation Model

Inspired by PDM-SR, we introduce a probabilistic degradation model with SAR
characteristics into the learnable architecture. The partial input of the probabilistic model
can be initialized as a specific distribution in each training epoch to model the random
factors in the degradations, which can improve the generalization to adapt to the diversity
of the SAR images. The probabilistic degradation model consists of a kernel module,
an additive noise module and a multiplicative noise module, where we introduce the
SAR noise and blur priors by reconstructing the architecture, and the whole degradation
model is described in Figure 2. The inputs of these modules are initialized in different
distributions according to the characteristics of each part, and the HR images are optional
to be concatenated with the initial distribution as the input of each module to guarantee
that the modules are fit to the input images. The forward processes are designed on the
base of the real SAR image degradation model.

To make sure the SAR degradation priors can be introduced properly, the characteris-
tics of the real SAR images are taken into account. We introduced the SAR speckle noise
statistical property into the degradation based on the conventional degradation form to
guide the degradation model to learn the gap between LR and SR so that the following SR
model can recognize and remove the SAR noise in the process of super resolution.

Generally, the degradation process can be formulized as an equation of (4)

D(x) = (x⊗ k) ↓ s + n (4)

where D(x) denotes the degradation function, x denotes the HR images, ⊗ stands for
convolution, k and n mean blur kernels and noise and ↓ s means down-sampling in s scale.
The main problem is to estimate the k and n. We can regard the distribution of D as the joint
distribution of k and n. Therefore, we can learn the mapping from a specific distribution of
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k and n to the target distribution of D by initializing the original distribution of k and n in a
deep-learning method. However, this requires a precondition that the distributions of k
and n should be independent so that we can design a model conformed to the real imaging
mechanism. Usually, the classical additive Gaussian noise and the blurring process are
independent, but this theorem is not followed in SAR images due to the coherent imaging
mechanism and the multiplicative speckle noise. The SAR noise model has been discussed
for decades and the noise has an accepted formula to describe. Assuming that Y ∈ RW×H is
the intensity of the observed image, X ∈ RW×H is the noise-free counterpart and F ∈ RW×H

is the speckle noise. The noise model can be formulized in (5)

Y = F•X (5)

where • denotes the elementwise multiplication. F follows a Gamma distribution with unit
mean and variance 1/L and its probability density function is shown in (6)

p(F) =
1

Γ(L)
LLFL−1e−LF (6)

where Γ(·) denotes the Gamma function and F ≥ 0, L ≥ 1 [50], and L represents the
SAR images.

The ideal model mentioned above may encounter some trouble in the real SAR scenes.
The signal is not only influenced by the signal-dependent multiplicative speckle noise
caused by coherent imaging mechanism but also affected by the signal-independent addi-
tive fluctuation noise caused by the SAR system circuit or natural environment. Thus, we
improve the degradation model for SAR images, as shown in (7),

D(x) = [(x⊗ k) ↓ s + n] ∗ n′ (7)

where ∗means elementwise multiplication and n′ denotes multiplicative noise, which has
different distribution from the additive noise. Therefore, the network can be designed
under the above principle, and the model is shown in Figure 2. The whole degradation
is trained in an adversarial framework, and the distribution of D can adapt to the target
domain automatically. In this way, the SAR priors can be introduced in the model.
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The details of the modules are depicted in Figure 3. The blur kernel module and the
noise module consist of head, body and tail. In the head block, a single convolution layer
with 1 × 1 or 3 × 3 kernel, 1 stride and 64 channels make the first layer. The following is a
batch normalization layer that may guarantee the stability of the model. Additionally, a
ReLU activation layer is used to increase the nonlinearity. The body block is designed as
16 residual blocks with 64 channels, which are shown in Figure 3. The tail adopts a 1 × 1 or
3 × 3 convolution layer and a softmax layer, which is used to ensure that all the output
elements sum to one.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 24 
 

 

 
Figure 3. Details of the kernel module and noise module. The module consists of head, body and 
tail parts. ⊕ means element-wise addition. 

2.3. SR Model 
Inspired by ESRGAN, the SR model is mainly composed of several residu-

al-in-residual dense blocks (RRDBs) without BN layers, which can improve the capacity 
and reduce computational complexity. As depicted in Figure 4, the RRDBnet mainly 
consists of 16 RRDBs and each RRDB consists of three dense blocks which adopt complex 
connections in five convolution layers with leakyReLU activation layers, and a long skip 
connection is used to combine different depth features. 

The SR model is also trained in an adversarial framework. The discriminator net-
work employs a patchGAN discriminator, which is used in cycleGAN. The discriminator 
network is shown in Figure 5, and the kernel size, feature channel and the stride are 
shown in it. The input images are divided into several blocks that represent the dis-
crimination result of each patch, and each picture is discriminated by the whole matrix. 
PatchGAN can pay attention to more areas and discriminate more accurately. 

 
Figure 4. The architecture of RRDBnet. RRDBnet contains several RRDB; the yellow box and the 
green box are the details of RRDB and Dense block, respectively. ⊕ means element-wise addition. 

Figure 3. Details of the kernel module and noise module. The module consists of head, body and tail
parts. ⊕means element-wise addition.

The differences between the blur kernel module and the noise module are the initial
distribution of the input and the kernel sizes of the body block. We define a standardized
normal distribution as the input of the blur kernel module and the additive noise module,
while we define a Gamma distribution as the input of the multiplicative noise module.
Particularly, the kernel size of the convolution layer is related to whether the processes are
correlated spatially. The SAR signal after the range-Doppler algorithm [51] can be modeled
as (8)

Sac(τ, ta) = A0sinc
(

τ − 2Rs

c

)
sinc(ta) exp

(
−j4π

Rs

λ

)
exp(j2π fdcta) (8)

where A0 denotes the amplitude of the target signal, Rs denotes the range of the target
away from the radar, c denotes the speed of light, τ and ta denote the fast-time and the
slow-time and λ and fdc denote the carrier wavelength and Doppler center frequency. As
the equation shows, the SAR images after demodulation are made up of the sinc function at
the scattering center, which is related to the adjacent pixels. Additionally, the speckle noise
is spatially coherent. Therefore, the kernel size of additive noise module is 1 × 1 while the
blur kernel noise module and the multiplicative noise module are 3 × 3.
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2.3. SR Model

Inspired by ESRGAN, the SR model is mainly composed of several residual-in-residual
dense blocks (RRDBs) without BN layers, which can improve the capacity and reduce
computational complexity. As depicted in Figure 4, the RRDBnet mainly consists of
16 RRDBs and each RRDB consists of three dense blocks which adopt complex connections
in five convolution layers with leakyReLU activation layers, and a long skip connection is
used to combine different depth features.
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The SR model is also trained in an adversarial framework. The discriminator network
employs a patchGAN discriminator, which is used in cycleGAN. The discriminator network
is shown in Figure 5, and the kernel size, feature channel and the stride are shown in it.
The input images are divided into several blocks that represent the discrimination result
of each patch, and each picture is discriminated by the whole matrix. PatchGAN can pay
attention to more areas and discriminate more accurately.
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2.4. Loss Function

The overall training loss is designed as the weighted combination of two adversarial
losses and content loss. The two adversarial losses are designed to supervise the two gener-
ator models, i.e., the degradation model and the SR model. To guarantee the consistency
between the original real HR images and the SR images after a series of processes, we
introduce the content loss to add the constraints preventing from learning arbitrarily.
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• Adversarial loss:

According to the min-max problem shown in (1) and (2), the adversarial loss is
defined as

L GAN1 (G1, DY, X, Y) = Ex∼p data (x)[log(1− DY(G1(x)))] +Ey∼p data (y)[log(DY(y))] (9)

L GAN2(G2, DX , Y, X) = Ey∼p data (y)[log(1− DX(G2(y)))] +Ex∼p data (x)[log(DX(x))] (10)

where X indicates the HR images and Y indicates the LR images. In L GAN1 , G1 aims
to generate fake data that looks like Y, while DY aims to discriminate between the fake
samples G1(x) and real samples y. G tends to minimize the objective against the adversary
D that tries to maximize it. The L GAN2 works the same.

• Content loss.

The content loss consists of L1 loss and perception loss with a regularization parameter.
The content loss aims to prevent the whole model from learning arbitrarily. L1 loss measures
the mean absolute error between the ground true y and generator output G(x) at the pixel
level, which is formularized as

L1 =
1

WH ∑
i,j

∣∣G(xi,j
)
− yi,j

∣∣ (11)

where x indicates the synthetic LR images and y indicates the ground true HR images.
However, the MAE lacks information on high-level features. Thus, we introduce

perception loss [52], which is defined as the feature representation distance between the
real high images x and the reconstructed image G(y). We adopt a pretrained VGG19 [53]
model as the feature extractor, and the perception loss takes the form as

LSR
percep =

1
WH ∑

i,j

(
φij(x)− φij(G(y))

)
(12)

where W and H indicate the width and height of the image, i, and j are the index of the
feature maps and φ denotes the feature map obtained after the fourth convolution layer
and before the fifth pooling layer in the VGG19 network.

Total loss is designed as a weighted summation of adversarial loss and content loss,
which is formularized as

L(G, F, DX , DY) = LGAN1 + λLGAN2 + ηL1 + µLpercep (13)

where λ, η and µ denote the adjustable parameters which balance the weights of differ-
ent losses.

3. Results
3.1. Dataset and Training Details

To solve the blind SAR SR problem, we built an unpaired SR dataset that consists of
LR and SR SAR images from real SAR products. To make a fair comparison with methods
requiring paired images, we also built a paired dataset that has the same SR images as
the unpaired SR dataset. The real SAR images are obtained from Terra-SAR and Gaofen-3
satellites. The details of the datasets are listed in Table 1. The original data we accessed is a
level-1A (L1A) single look complex (SLC) product, and the raw data is stored in 16 bits.
We stretch all the raw SAR images into 8 bits as a preprocessing step for the following
calculations. The complex data are processed into grayscale amplitude images. Therefore,
we mainly focus on the SR problems on grayscale amplitude images.
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Table 1. The details of unpaired datasets and paired datasets.

Datasets Unpaired Dataset Paired Dataset

Train data 17,926 17,926
Test data 205 801

resolution 1 m HR & 3 m LR 1 m HR & 4 m LR
LR sources real images down-sampling

All experiments in this paper are carried out on a NVIDIA Telsa V100 GPU (16 G). The
optimizer is Adam [54], with an initial learning rate of 2 × 10−4. The batch size is set as
8. We train the model for 1 × 105 iterations. The upscale factor is set as 4. The codes are
modified based on BasicSR [55].

3.2. Metrics

We introduce two kinds of evaluation metrics, which are classified by whether the
reference images are required. We adopt the Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity [56] (SSIM) as reference metrics to value the SR performance, and we
adopt the Equivalent Number of Looks [57,58] (ENL) as the no-reference metric, which
requires no ground true images to value the denoising performance.

Aimed at the traditional SR problems, the metrics of PSNR and SSIM are proper
to evaluate the performance. Nevertheless, for blind SR problems, these metrics are
inappropriate due to the inexistence of reference images. Therefore, we evaluate the
unpaired dataset mainly in terms of the visual perception and the non-reference metric
ENL. PSNR, SSIM and ENL are defined in Equations (14)–(16).

PSNR = 10× log

[
2552

1
WH ‖ISR − IHR‖2

2

]
(14)

SSIM =

(
2µIhr µIsr + c1

)(
2σIhr Isr + c2

)(
µ2

Ihr
+ µ2

Isr
+ c1

)(
σ2

Ihr
+ σ2

Isr
+ c2

) (15)

ENL =
1

npatch

npatch

∑
i=1

µ2
ISRi

σ2
Isr i

(16)

where ISR and IHR are SR images and ground true images, µIsr and µIhr are the averages of
ISR and IHR, σ2

Isr
and σ2

Ihr
are the variances of ISR and IHR, σIhr Isr is the covariance between

ISR and IHR, c1 and c2 are two constants to maintain the stability of the equation, npatch is
the number of patches in one image.

3.3. Experiment Results

• Results on SR Dataset.

The proposed method is compared with the bicubic interpolation, SNGAN, Real-
ESRGAN and PDM-SR. SNGAN is a GAN-based method aiming at SAR images and
requires paired datasets. Real-ESRGAN and PDM-SR are blind SR methods that do not
need paired datasets. To compare these methods effectively, we trained the first method
with the paired dataset and trained the last two methods with the unpaired dataset. Finally,
we tested the above methods with synthetic images and real SAR images, respectively.

Tables 2 and 3 lists the average PSNR, SSIM and ENL of several SR methods at a scale
factor of ×4 in synthetic and real SAR datasets. As Table 2 listed, the proposed method
achieves the best performance on the metrics of ENL and shows the second-best result on
PSNR and SSIM, except for the bicubic interpolation method. The bicubic interpolation
method gets good results on PSNR and SSIM because the input LR images are bicubic
down-sampled from the reference HR images, however, the better performance on metrics
cannot prove that they would be better on visual perception, as shown in Figures 6 and 7.
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SNGAN is trained with synthetic paired data and shows worse performance than the other
methods when compared to SSIM, which reveals the domain gap between the real and
synthetic SAR images. Real ESRGAN gets better results due to overcoming the domain
gap by learning with real unpaired SAR images. Real ESRGAN pays more attention to the
degradations such as blur, resize, noise and JPEG compression, and it adopts a high-order
degradation model. However, if these degradation model designs are not suitable for the
SAR mechanism, especially for the SAR noise mechanism, they may not obtain great results
on real SAR images in terms of ENL. Thus, Real ESRGAN shows better performance on
reconstruction metrics but worse on the noise intensity metric. The PDM SR adopts a
probabilistic degradation model on noise module design, which pays more attention to
estimating the noise in a probabilistic way, thus, it gains great performance on ENL second
to the proposed method. The proposed method introduces several SAR noise priors into
the degradation model in a probabilistic way and demonstrates the best performance on
denoising in terms of ENL.

Table 2. Valuation results of synthetic SAR images dataset.

Metrics Real Up Bicubic SNGAN Real ESRGAN PDM SR Proposed

PSNR - 20.805 18.773 19.544 16.126 19.254
SSIM - 0.489 0.329 0.394 0.309 0.362
ENL 0.906 1.044 0.981 0.841 1.420 2.295

Table 3. Valuation results of real SAR images dataset.

Metrics Real Up Bicubic SNGAN Real ESRGAN Proposed

ENL 1.332 1.401 1.245 0.920 1.907

Our proposed method is a joint super-resolution reconstruction and despeckling co-
processing, which inherited the advantages of both tasks. The metric of ENL represents the
noise level and the other methods do not take full account of the noise problems, therefore,
the proposed method with the denoising function gets the best score in ENL. the input
images of the synthetic paired dataset are obtained from the corresponding real high-
resolution images in a bicubic down-sampling way, and some of the methods we compared
are trained with the synthetic data in a supervised training strategy, while the proposed
method is aimed at the real scene SAR images and is trained with real SAR images all in
an unsupervised way, which means that the former methods have introduced the bicubic
deterministic degradation model in the training process, while the proposed method learns
the probabilistic implicit degradation mode between real LR and HR SAR images that
follows, definitely not the bicubic mode. The degradation modes that the two kinds of
methods learned are different. The synthetic paired dataset fits the methods trained with
bicubic mode data and they will get better scores on PSNR and SSIM because the forward
process is just the reverse process of the bicubic down-sampling. However, it is not good
for the blind SR problem because the degradation mode in the real scene is definitely not
bicubic mode. Therefore, the proposed method may not get better performance in the
synthetic dataset in which the LR images are bicubic down-sampled from the corresponding
HR images.

However, the SR problem is ill-posed, and there is no sole criterion to evaluate the
SR performance. Additionally, it is unfair to judge the blind SR method by the reference
metrics because the other methods used the reference HR images in the training process,
while the blind SR methods did not. Therefore, we evaluate the SR results comprehensively
by combining visual perception and metrics. When compared with other methods using
real SAR image datasets, the proposed method also shows the best performance on ENL.
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Figure 6. Visual results of synthetic SAR image dataset. The second row is the enlarged view of the
first row in each of three paired pictures. (a) Input image (bicubic down-sampling from the HR image).
(b) Bicubic interpolation. (c) SNGAN. (d) Real ESRGAN. (e) PDM-SR. (f) The proposed method.
(1)–(3) represent three pairs of examples to illustrate the performance. The second row of each pair of
examples is the enlarged view of the corresponding yellow box in the first row. The red boxes show
the outstanding performance of the proposed method in recovering texture and denoising.



Remote Sens. 2023, 15, 330 13 of 23Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 24 
 

 

 
Figure 7. Visual results of real SAR image dataset. The second row is the enlarged view of the first 
row in each of three paired pictures. (a) Input image (real LR image). (b) Bicubic interpolation. (c) 
SNGAN. (d) Real ESRGAN. (e) The proposed method. (1)–(3) represent three pairs of examples to 
illustrate the performance. The second row of each pair of examples is the enlarged view of the 
corresponding yellow box in the first row. 

Figure 7. Visual results of real SAR image dataset. The second row is the enlarged view of the first
row in each of three paired pictures. (a) Input image (real LR image). (b) Bicubic interpolation.
(c) SNGAN. (d) Real ESRGAN. (e) The proposed method. (1)–(3) represent three pairs of examples
to illustrate the performance. The second row of each pair of examples is the enlarged view of the
corresponding yellow box in the first row.
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To further demonstrate the advantages of our method, we select several visualization
results shown in Figures 6 and 7. Figure 6 shows the SR result of several typical targets
such as buildings, flat surfaces and ships in the synthetic SAR dataset. In order to compare
the details of SR performance, we provide enlarged views of the areas marked by yellow
rectangles. From the perspective of image visual effects, it can be found that the proposed
method shows powerful capability both in denoising and SR. In Figure 6, we present
three sets of pictures processed by different methods, as shown in each column, and
the areas in the yellow boxes are enlarged for more details visually, as shown in the
second row. Compared to interpolation and SNGAN, which require paired datasets, the
buildings processed by the proposed method in Figure 6 are exposed obviously due to
the suppression of backing noise, which demonstrates that the proposed method tends
to improve the denoising of SR images instead of the SR counterpart, similar to the real
images. At the same time, the texture of buildings and roads can be restored well by the
proposed method. Real ESRGAN also gains great denoising performance, but some of
the results show artifacts and generate some weird patterns that are incompatible with
the real scenes. In this aspect, the proposed method can restore continuous lines from
corrupt images without artificial patterns, as shown in the red box in the second row, which
is conducive to subsequent image interpretation. In the second example, the proposed
method can suppress the noise near the strong scattering target, and it can retain the target
scattering elements when suppressing cross bright spots, which may resolve the cross
bright spots of SAR images caused by signal processing of pulse compression. In the third
example, the original image has plenty of noise in flat areas, which can be suppressed after
the proposed SR process. Its enlarged parts shown in the second row demonstrate that the
proposed method can suppress the granularity noise and retain the texture.

In Figure 7, we select several scenes from real SAR images to illustrate the gener-
alization capability when processing real scene images. The proposed method can also
reduce the impact of sinc bright spots caused by strong scattering targets. As shown in
the first example, the oil tanks suffer from noise near the strong scattering area, like the
two-dimensional sinc function, and the proposed method can suppress the sinc noise by
suppressing the side lobes. In the second example, the proposed method also generates
the image with the least noise in the areas of the target and the backing ground. Mean-
while, GAN-based methods usually produce artifacts and nonexistent texture due to the
arbitrariness of the generator. As depicted in the third example, SNGAN and real-ESRGAN
generate some weird texture near the oil tanks while the proposed method suppresses the
speckle noise without artifacts. In brief, the proposed method can retain the texture of
original images and suppress noise effectively.

• Despeckling Evaluation

To further illustrate the despeckling effect, we compare our method with different
kinds of despeckling methods. The spatial domain filtering method used by Kuan [59]
and Frost [41], the non-local mean method NLM [60] and SAR-BM3D [61], and the deep-
learning-based method DnCNN [16] are implemented for comparison with the proposed
method. For a fair comparison, the LR images are restored by a basic bicubic upsam-
pling process. Figure 8 shows the best performance of the proposed method among the
mainstream despeckling methods in terms of ENL.

To illustrate the stability for different intensities of noise, we select the real scene SAR
images with noise of different intensities. As Figure 9 depicted, the SAR images with the
noise of lower intensities (higher ENL scores) can get better despeckling performance,
while the images with lower ENL scores may not get too much improvements in terms
of ENL scores due to the inherent severe noise. From the perspective of visual effects,
the processed images also get great despeckling performance according to the row b in
Figure 9.
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(d) DnCNN. (e) SAR-BM3D. (f) The proposed method. The scores below the images are ENLs. The
red bold format represents the best scores.

• Target Detection Evaluation

Additionally, we discover an enormous potential for detection due to the powerful
capabilities for exposing targets by generating the details and eliminating the noise. The
proposed method can improve mAP and reduce the training epochs effectively, which
indicates that the SR methods can reduce missed detection and false alarms significantly. We
train a target detection algorithm based on yolov5 with and without the SR preprocessing,
and the other parts of the algorithm are set identically. We train the model with the
MSAR [62] dataset, which contains 28,449 SAR images of ships, bridges, planes and oil
tanks. Table 4 shows the detail of the MSAR dataset. MSAR contains more categories than
other mainstream SAR target detection datasets, and it remains challenging on severe noise
and unbalanced samples, as shown in Figure 10.

Table 4. Details of MSAR dataset.

Category Indicator

Scenes HISEA-1
Polarization HH, VV, HV, VH
Size (pixel) 256 × 256, 2048 × 2048

Number of pictures 28,449
Number of ships 39,858

Number of oil tanks 12,319
Number of aircraft 6368
Number of bridges 1851
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represents the best scores.
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The metrics to measure the detection effect mainly include accuracy, recall and average

accuracy (mAP), which refer to the rate of correctly recognized samples in all positively
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detected samples, the rate of correctly identified samples in all ground truth samples, and
comprehensive metric calculated by P and R, respectively. The definitions are as follows:

P =
TP

TP + FP
(17)

R =
TP

TP + FN
(18)

mAP =
∫ 1

0
P(P)dR (19)

where TP, FP and FN refer to positive samples predicted as positive, negative samples
predicted as positive and negative samples predicted as negative, respectively.

We modify the yolov5 with the proposed SR processing, which is used as pre-processing
before the whole detection mode. The SR processing brings a huge improvement to detec-
tion. Figure 11 shows the training curve of the above training method and Tables 5 and 6
show the comparison indicators of each target. From the training curve, the SR process
improves mAP to 0.838 within less than 100 epochs, while the baseline can only reach 0.687
within 500 epochs, which indicates that the proposed SR process can improve the efficiency
and accuracy of the target detection task significantly. In Tables 5 and 6, we can also see
that the metrics of each category are improving to varying degrees, while the declination
of mAP in the bridge category is mainly caused by unbalanced quantity. The substantial
improvement is mainly caused by extra information from the SR process, which provides
effective information based on LR images and eliminates the interference of noise. The
powerful capabilities for exposing targets by generating the details and eliminating the
noise show great potential for detection tasks by significantly reducing missed detection
and false alarms.
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Table 5. Results of yolov5 in MSAR dataset.

Class Images P R mAP_0.5 mAP_0.5:0.95

All 0.848 0.654 0.687 0.408
Ship 0.844 0.891 0.916 0.562

Bridge 0.893 0.669 0.718 0.417
Plane 0.758 0.364 0.399 0.137

Oil tank 0.896 0.692 0.715 0.515
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Table 6. Results of SR modified yolov5 in MSAR dataset.

Class Images P R mAP_0.5 mAP_0.5:0.95

All 0.862 0.766 0.838 0.498
Ship 0.87 0.937 0.95 0.647

Bridge 0.884 0.254 0.566 0.232
Plane 0.784 0.895 0.855 0.348

Oil tank 0.908 0.979 0.98 0.765

To further illustrate how the SR process improves the performance of detection by
reducing missed detection and false alarms, we select several examples of the detection
results under the two methods, as shown in Figures 12 and 13. It is clear that the results
with SR methods have less missed detection and false alarms. The LR images contain
plenty of strong local noise, which can easily be falsely recognized as targets. As shown in
Figure 12, several ships and planes are falsely detected on land. Additionally, the heavy
noise causes the targets to be drowned out, as shown in Figure 11; an oil tank and several
ships are missed due to the heavy noise. The SR images processed by the proposed method
have lower noise and clearer targets, which is conducive to various interpretations.

Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 24 
 

 

 
Figure 12. Illustration of false alarms. Green circles mark fault detection. The left is the detection 
results without SR process and the right is processed in SR at a factor of 4. Different colors means 
different kinds of targets. 

 
Figure 13. Illustration of missing detection. Green circles mark the position of missing detection. 
The left insets are the detection results without the SR process. Different colors means different 
kinds of targets. 

To compare the proposed method with other detection methods in this challenging 
dataset, we choose P, R, mAP and time for each image as indicators. Table 7 shows the 

Figure 12. Illustration of false alarms. Green circles mark fault detection. The left is the detection
results without SR process and the right is processed in SR at a factor of 4. Different colors means
different kinds of targets.

To compare the proposed method with other detection methods in this challenging
dataset, we choose P, R, mAP and time for each image as indicators. Table 7 shows the
performance of these methods, the first three methods trained with MSAR dataset are
carried out in [62]. The proposed method improves the recognition accuracy greatly with
little increase in time consumption.

Table 7. Comparison with the latest target detection methods.

Class Images mAP_0.5

RetinaNet [63] 0.562
FCOS [64] 0.577

Yolov5 0.687
Proposed 0.837
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3.4. Ablation Results

To illustrate the effectiveness of the proposed method, we design ablation experiments
with and without each part of the proposed method. We mainly explore the effectiveness
of training data (paired or unpaired), SR model (EDSR or RRDBnet), degradation model
(original or improved PDM), kernel design (whether adjust the kernel size of convolution
layer) and loss (with or without perception loss). The details of the ablation results are
listed in Table 8, in which, the highest score is marked in bold red and the second highest
score is marked in bold black.

Through five sets of comparisons, the proposed method does not achieve the highest
accuracy in every index at the same time, but achieves the best results in balancing each
index and visual perception, and gets the second-best score. For training data, the adoption
of unpaired data will not improve evaluation indicators such as PSNR and SSIM that
require reference images, but will tend to find internal connections, which is reflected in
improving ENL. For the degradation model, the improved PDM can greatly improve the
image quality due to the introduction of SAR prior information into the model, which
can make SR better while maintaining the same content of the training data. For the SR
model, RRDBnet is an improvement of the super-resolution network, which has a stronger
learning ability; therefore, it can get better results. For the kernel design, when adopting the
improved kernel module design according to the noise and image characteristics without
adding the perception loss, although the ENL is greatly improved and the noise is greatly
reduced, the quality of the image structure cannot be guaranteed, which is reflected in the
blurring of the image and the thickening of the lines. The perception loss is to prevent the
GAN model from learning arbitrarily, so that the visual effect of the images can be closer to
the results that people accept most; therefore, the metrics show good improvement when
compared to the baseline method.



Remote Sens. 2023, 15, 330 20 of 23

Table 8. Influence of training data on experimental results.

SR Model Deg Model Kernel
Design

Perception
Loss

Training
Data PSNR SSIM ENL

EDSR Original × × Paired 17.440489 0.332912 1.241069
EDSR Original × × unpaired 16.125568 0.309423 1.419914
EDSR Improved × × unpaired 19.224419 0.375096 1.285013

RRDBnet Improved × × unpaired 19.930641 0.416975 1.701983
RRDBnet Improved

√
× unpaired 17.426025 0.275015 3.937221

RRDBnet Improved
√ √

unpaired 19.254030 0.361569 2.295177

4. Conclusions

In this paper, we proposed a blind SR method for SAR images by introducing SAR
priors in a cycle-GAN framework, which conquered the domain gap caused by severe
speckle noise and low-resolution problems and provided great assistance for subsequent
image interpretation and target detection. First, a learnable probabilistic degradation model
combined with statistical properties of SAR priors noise was presented to satisfy various
situations. Furthermore, we trained the degradation model and SR model simultaneously
in a unified cycle GAN framework to learn the intrinsic relationship between HR-LR
domains. Additionally, we trained the model with real SAR images instead of synthetic
images to conquer the domain gap. Finally, experimental results on both synthetic and
real SAR images demonstrated the high performance of the proposed method in terms of
image quality and visual perception. Experimental results on both synthetic and realistic
SAR images with various levels of speckle noise demonstrated the high performance of
the proposed method in terms of both image quality and visual perception. The results
also showed that SR and denoise tasks can be well realized simultaneously. Additionally,
we found a tremendous potential for target detection tasks by significantly reducing
missed detection and false alarms due to its powerful capabilities for exposing targets
by generating target details and eliminating noise. The proposed method can effectively
improve mAP and reduce the training epochs. In the future, we will try adding more SAR
priors into deep-learning-based methods, including SAR statistical properties and the SAR
imaging mechanism. In this work, we also found that the method based on GAN with the
proposed multiplicative noise module may make the training unstable, resulting in difficult
convergence after several training epochs. Therefore, we will try to add more constraints to
the model to improve its robustness.
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