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Abstract: Remote-vision-based image processing plays a vital role in the safety helmet and harness
monitoring of construction sites, in which computer-vision-based automatic safety helmet and harness
monitoring systems have attracted significant attention for practical applications. However, many
problems have not been well solved in existing computer-vision-based systems, such as the shortage
of safety helmet and harness monitoring datasets and the low accuracy of the detection algorithms. To
address these issues, an attribute-knowledge-modeling-based safety helmet and harness monitoring
system is constructed in this paper, which elegantly transforms safety state recognition into images’
semantic attribute recognition. Specifically, a novel transformer-based end-to-end network with a self-
attention mechanism is proposed to improve attribute recognition performance by making full use of
the correlations between image features and semantic attributes, based on which a security recognition
system is constructed by integrating detection, tracking, and attribute recognition. Experimental
results for safety helmet and harness detection demonstrate that the accuracy and robustness of the
proposed transformer-based attribute recognition algorithm obviously outperforms the state-of-the-
art algorithms, and the presented system is robust to challenges such as pose variation, occlusion,
and a cluttered background.

Keywords: automated safety checking system; safety helmets and harnesses; attribute recognition
based on transformer; construction site datasets

1. Introduction

The five major types and causes of accidents occurring on construction sites are: falling
from a height; being struck by objects; mechanical and hoisting damage; electrocution; and
collapse. The death toll of these five construction fatalities accounts for over 90% of all fatal
incidents in the construction industry. The fatal incidence of falling from a height is the
highest among these causes, and the safety risk is also exorbitant [1]. The U.S. Occupational
Safety and Health Administration (OSHA) and similar agencies in other countries aim to
develop and impose rules and regulations on construction sites to reduce injuries. They
found that all personnel working in close proximity to site hazards should wear appropriate
personal protective equipment (PPE) to minimize the risk of being exposed to or injured by
hazards [2]. For example, a safety helmet and safety harness, which are the most common
PPE components, can absorb and diffuse the impact of falling, reducing the risk of injury
to workers who fall from heights. However, for various reasons, such as workers’ simple
negligence or misinformation, these two PPE components are not always worn properly.
Hence, as a preventive step, an automatic safety helmet and harness monitoring system is
critical for construction contractors to enforce worker-safety monitoring.

With the development of computer vision technology, almost all automatic monitoring
methods for safety helmets and harnesses based on video streams are object detection
problems and are solved using computer-vision-based techniques. Among them, deep-
learning-based methods with convolutional neural networks (CNN) have made significant
breakthrough progress in object detection owing to the advantage of extracting deep
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and high-level feature representations from raw image pixels [3] and reducing the effort
in modeling prior knowledge of interest manually. Many studies have applied CNN-
based methods [4–7] for safety helmet and harness detection, which locate the target
object and identify a particular target’s category. For example, Han et al. [4] presented
an object detection algorithm based on a single-shot multibox detector (SSD) to solve
the problem of low accuracy in existing safety helmet detection. In [5], a hierarchical
positive sample selection (HPSS) mechanism was proposed to improve the fitting ability
of YOLOv5 for efficient safety helmet detection. The work in [8] adopted the object
detection network YOLOv5 and the human body posture estimation network OpenPose
for the detection of safety harnesses. A computer-vision-based approach for safety harness
detection, ref. [9] used a Faster-R-CNN to detect the presence of a worker and a deep CNN
model to determine if workers were wearing their harnesses when performing tasks while
working at heights. Despite the great success of deep-learning-based techniques for safety
helmets and harness detection, they have two limitations. On the one hand, object detection
is not ideal for the recognition of small targets and occlusions, which is demonstrated in
detail later. On the other hand, object detection methods are often trained using large-scale
datasets in a fully supervised manner, whereas there are relatively few public datasets
available for a detailed evaluation of safety helmet and harness monitoring systems. When
applied in actual scenarios, we have to consider how to alleviate these problems.

Motivated by the operating procedures of human experts and recent research in
attribute learning [10], semantic attribute representations (such as gender, hairstyle, or
clothing style) are reliable and robust to the variance of workers’ appearance in unknown
poses. In this study, we introduce a new class of midlevel attributes related to construction
safety states and transfer the traditional detection problem of safety helmets and harnesses
into a semantic attribute recognition problem of construction safety states. We designed
a novel attribute knowledge modeling network based on the transformer architecture, in
which the self-attention mechanism is applied to fully explore the relationship between
semantic attributes and image features for attribute recognition. Using the algorithms of
detection, tracking, and our proposed attribute knowledge modeling, a safety recognition
system and a real-time human–computer interface for use in construction sites are presented.
The system can intelligently identify whether workers comply with the safety regulations
and specifications. We collected the video streams of workers wearing safety helmets and
harnesses to create an open-site monitoring dataset for construction scenes, which contains
three subdatasets: object detection, multiobject tracking, and attribute recognition. The
experimental results prove that the mean accuracy (mA) of our attribute recognition model
in recognizing safety helmets and harnesses is 96%, which has a high application value.

We make the following contributions to this work:

• We propose an automatic safety helmet and harness monitoring system based on
attribute knowledge modeling to recognize the wearing states of safety helmets and
harnesses. In contrast to previous studies that apply object detection to locate and iden-
tify safety helmets and harnesses, we transfer this problem into a semantic attribute
recognition problem, which is more reliable and robust to the variance in workers’
appearances in unknown poses.

• We present a novel attribute knowledge modeling network based on the transformer
architecture, in which the self-attention mechanism is applied to fully explore the
relationship between attributes and image features for attribute recognition.

• We develop an open-site monitoring dataset for construction scenes containing three
subdatasets: object detection, multiobject tracking, and attribute recognition. This
benchmark dataset is crucial for evaluating safety helmet and harness monitoring
systems in unconstrained environments.

The remainder of this study is organized as follows. Section 2 introduces research
related to this study. In Section 3, we describe the proposed safety helmet and harness
monitoring system in detail. Section 4 introduces the utilized datasets and demonstrates
the implementation details of our experiments. The experimental results are presented in
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Section 5. A discussion of our work is in Section 6. Finally, in Section 7, conclusions and
future work are summarized.

2. Related Works

In this section, we provide background knowledge and review related work on safety
helmet and harness monitoring systems, pedestrian attribute recognition, and transformers
in computer vision.

2.1. The Safety Helmet and Harness Monitoring System

The safety helmet and harness monitoring system at construction sites plays a crucial
role for electronic eyes in safeguarding workers. Recent safety helmet and harness monitor-
ing systems can be divided into two classes: computer-vision-based [11,12] and wearable-
sensor-based methods [13,14]. Although numerous wearable-sensor-based methods use
contact sensors to gather data effectively, these sensors are often expensive, precluding
their widespread use. In contrast, computer-vision-based techniques are advantageous as
noncontact optical techniques that can be robust, hygienic, reliable, safe, cost-effective, and
suitable for long-distance and long-term monitoring. In terms of computer-vision-based
methods, Zdenek et al. [15] investigated how to improve the safety at construction sites
using CNN models for safety guardrail detection. This work was inspired by the fact
that most construction accidents are caused by falls from heights due to unguarded edges.
Fang et al. [16] proposed a method for automatically detecting the personal protective
equipment of construction workers. It adopted the Faster R-CNN algorithm to detect
bareheaded workers from field images with high speed and accuracy. Nath et al. [6] ap-
plied CNNs to detect multiple pieces of personal protective equipment, such as hard
hats and safety vests, from surveillance videos. Similarly, SSD and CNN were sug-
gested by Wu et al. [7] for detecting construction personnel wearing hard hats. Recently,
Shanti et al. [17] developed a novel technique that monitored whether the workers were
complying with the safety standard of the Personal Fall Arrest System (PFAS). The real-time
detection algorithms they built included safety helmets, safety harnesses, and lifeline. With
the development of UAV emergency monitoring [18], Shanti et al. [19] also focused on
UAVs, and proposed the use of UAVs to monitor workers in real-time while performing
high-altitude activities.

With the recent development of deep-learning-based object detection approaches, the
safety helmet and harness detection has achieved breakthrough performance. However, the
problem that has to be considered in the application is that the target cannot be detected due
to its small scale and occlusion in the actual scene. In our system, we innovatively propose
to transform the detection problem into the problem of semantic attribute recognition
of images to alleviate this deficiency. Considering the economy, we did not choose the
superior performance of the drone. We choose to use the existing monitoring system on the
construction site and only need to deploy a high-performance GPU server to realize the
remote-vision-based safety helmet and harness monitoring system.

2.2. Pedestrian Attribute Recognition

Earlier pedestrian attribute recognition methods generally modeled each attribute
independently based on hand-crafted features, such as color histograms and texture his-
tograms [20,21]. With the success of deep learning, pedestrian attribute recognition has
gained considerable attention in recent years, and many pedestrian attribute recognition ap-
proaches based on deep networks [22–24] have been developed. Most of these methods uti-
lize a CNN or attention mechanisms to capture discriminative features [23,25]. Li et al. [26]
treated the pedestrian attribute recognition task as a multilabel classification task [27,28]
and designed a weighted sigmoid cross-entropy loss to relieve the unbalanced attribute
problem. HydraPlus-Net [25] was introduced to encode multiscale features from multiple
levels for pedestrian analysis using the multidirectional attention (MDA) mechanism.
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Recently, some researchers have gradually focused on exploring the relationship
between image regions and semantic attributes. Sarfraz et al. [29] constructed their models
based on multitask learning (MTL), which learned the commonalities of all attributes,
but ignored the individuality of each attribute. A CNN–RNN-based encoder–decoder
framework was proposed in JRL [30], which aimed to discover the interdependence and
correlation among attributes with an LSTM model. GRL [31] split the body into regions
and fed the features of regions into the RNN to explore the correlations of the regions.
Zhao et al. [22] proposed two models, i.e., recurrent convolutional (RC) and recurrent
attention (RA) models. They explored the correlations between different attribute groups,
including the intragroup spatial locality correlation and the intergroup attention correlation
through a convolutional-LSTM network, respectively. Li et al. [32] performed reasoning
using graph convolutional networks (GCNs), in which one graph captured spatial relations
between regions and the other one learned potential semantic relations between attributes.
In JLAC [33], Tan et al. applied a GCN to build an attribute graph of attribute-specific
features and explored contextual relations.

As most previous methods consider the independence of attributes, they achieve poor
performance on pedestrian attribute recognition owing to their failure to exploit relations
between regions and attributes. In contrast, our work aims to extract discriminative features
from the transformer architecture and consider capturing the relationship between the
semantic attributes and spatial features.

2.3. Transformer in Computer Vision

Transformer [34] was first proposed to model long-range dependencies in sequence-
learning problems and has been widely used in natural language processing (NLP) tasks [35–38].
Recently, transformer-based models have been applied to many computer vision (CV)
tasks [39–41] and have shown great potential. Dosovitskiy et al. [39] proposed vision
transformers (ViT), in which they split an image into multiple patches and fed them into
a stacked transformer architecture for classification. Carion et al. [40] designed an end-
to-end object detection framework named DETR with a transformer, and it achieved a
good performance in object detection. For the task of object reidentification, He et al. [41]
proposed TransReID. The side-information embedding was plugged to encode camera or
viewpoint information, and a jigsaw patches module was designed to learn more robust
features. The success of transformers can be mainly attributed to self-supervision and
self-attention [42]. The self-supervision can train complex models without the high cost
of human annotation and encode useful relationships between entities presented. The
self-attention takes the context of a given sequence into account by learning the relations
between the elements in the token set (e.g., words in language or patches in an image). Some
methods [43–45] demonstrate the potential of the transformer architecture in capturing
sequence relationships.

Our study is inspired by the DETR method [40] for object detection. However, unlike
most existing works, we introduce a transformer to address the problem of attribute
recognition and leverage the transformer to extract spatial and semantic information
between features and attributes. Moreover, we exploit the self-attention mechanism to learn
attribute relations to improve the feature representations for a higher accuracy performance.

3. Methodology
3.1. Overall System

To achieve intelligent security monitoring, we designed an automatic safety helmet
and harness monitoring system for construction sites. The proposed system is based
on worker detection, tracking, and safety working state identification based on attribute
knowledge modeling. The overall framework of the system is shown in Figure 1.



Remote Sens. 2023, 15, 347 5 of 19

Input video 
sequence

Worker detection, 
tracking, counting

Safety operation state

Worker position 
coordinates display

Visual human-computer 
interaction

Detection module

Detector
Worker 

detection

Fusion 
processing 

module

System function

Tracking module

Tracker
Worker 

trajectory

Attribute knowledge modeling module

Transformer 
Model

Image 
Feature

Worker 
safety state 

…
…

Site Video Surveillance Network

Sending video data

Return the 
recognition result

Software Part

Hardware Part

Figure 1. The framework of our proposed system. The system is divided into the hardware part and
the software part. The hardware part is used to send input video data and display the recognition
results; the software part is used to intelligently process video and images.

The overall system was divided into two parts: hardware and software. The hard-
ware part included a video surveillance network on construction sites and a GPU high-
performance image processor. The video surveillance network at construction sites contains
a camera network and a monitoring computer. The video stream data were first collected
by the camera network and then sent by the monitoring computers to the GPU high-
performance image processor for vision-based image processing. After processing, the
recognition and warning results were returned to the monitoring computer. For the soft-
ware part, the input image sequence was input into the detection module for worker
detection and the tracking module for worker tracking. To identify a worker’s safety state,
the attribute knowledge modeling module treated the safety states as semantic attributes
and applied a transformer for attribute recognition. Finally, we introduced a fusion pro-
cessing module to integrate the tracking results and attribute recognition results. Next, we
introduce the specific modules in detail.

3.2. Worker Detection and Tracking

The algorithm for worker detection and tracking is shown in Figure 2. We selected the
common YOLOv5 as the detector and Deep SORT as the tracker. First, the video was input
into the YOLOv5 detector to locate workers in each video frame, and then we extracted the
bounding box and feature map for each detection. For Deep SORT, we extracted the motion
and surface features with two branches. For the motion feature extraction, we calculated
the Markov distance according to the bounding boxes of workers in continuous frames,
extracted the motion features of the particular target through the Kalman filter, and applied
the Hungarian algorithm to match two adjacent frames. For the surface feature extraction, a
CNN model was used to extract appearance feature information. Finally, the final tracking
result was acquired by combining the motion and surface features.
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Figure 2. The process of detecting and tracking. We adopted YOLOv5 as the detector and extract
motion features and appearance features based on the Kalman filter and Hungarian algorithm to
input into the Deep SORT algorithm to get tracking results.

3.3. Safety Attribute Recognition

In this study, the problem of recognizing a safe working state (such as wearing safety
helmets and harnesses) on construction sites was transferred to the problem of the recogni-
tion of images’ semantic attributes. Here, we present the utilization of the self-attention
mechanism of the transformer for the safety-attribute recognition, as shown in Figure 3.
It can be seen our method can be divided into four parts, namely, feature and attribute
embeddings, relation exploitation based on a transformer, a classifier, and a loss function.
We treated each feature embedding or attribute label embedding as a word vector and
input the transformer encoder for mutual learning simultaneously. Then, utilizing the
transformer encoder, we computed the dependencies between attributes and features by
self-attention. We finally obtained a set of weights rich in spatial and semantic information
and the final prediction results and losses.

Backbone
(CNN/ViT/...)

...

Transformer Encoder

Attribute label embeddings(L)

Age16-30 Age31-45 Helmet Harness

...

...

...

...

...

...

Feature 
embeddings(Q)

Position 
encoding(P)

xN

Attribute Recognition Classifier

...

Age16-30:0.41 Age31-45:0.95 Helmet:0.89 Harness:0.73

Logits

Loss Function

......

Attribute label embeddings(L)Feature embeddings(Q) + Position encoding(P)

Age16-30

Age31-45

...
Helmet

Harness

Figure 3. The framework of our proposed method. We use the transformer encoder to model the
relationship between feature embeddings and attribute label embeddings.

3.3.1. Feature and Attribute Embeddings

Image Feature Embeddings Q. Given an input image x ∈ RH×W×3, the feature ex-
tractor (e.g., ResNet in Figure 3) output a tensor Q ∈ Rh×w×d, where h, w, and d were the
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output height, width, and channel, respectively. We took the tensor Q as a set of vectors,
where Q = {q1,q2,. . . ,qn}, qi ∈ Rd, with i ranging from 1 to n (where n = h × w). Thus, we
had a tensor Q ∈ Rn×d, in which each feature embedding represented a subregion that
mapped back to a patch in the original image space. At the same time, we ran it through
an embedding layer to initialize the extracted image’s local feature tensor Q to generate a
learnable position encoding P = {p1,p2,. . . ,pn}, where

pi = w0 + w1qi. (1)

w1 stands for learnable parameters, w0 stands for bias, and qi ∈ Q.
Attribute Label Embeddings L. For each image, we retrieved a set of attribute label

embeddings L = {l1,l2,. . . ,ll}, li ∈ Rd, with i ranging from one to the number of attributes.
Attribute label embeddings were learned from an embedding layer of size d × l. They
represented the semantic information contained in the attribute label, that is, all possible
attributes contained in the images.

3.3.2. Relation Exploitation Based on Transformer

Because the transformer architecture has shown great performance in capturing differ-
ent and distant dependencies between variables in recent years [35,39,40], in this study, we
utilized a transformer to model interactions between image features and attributes. We fed
feature embeddings and attribute label embeddings into the transformer encoder simulta-
neously, and the attention mechanisms allowed the transformer to learn the dependencies
between attributes and features.

Let Z = {z1, z2, . . . , zh×w}, zi ∈ Rd, where Z represents the sum of the feature embed-
dings Q and position encoding P:

Z = Q + P. (2)

Let K = {z1, z2, . . . , zh×w, l1, l2, . . . , ll} be the set of embeddings that are input to the
transformer encoder(shown in Figure 3). In a transformer encoder, the weight of each
embedding relative to other embeddings is learned through self-attention [34]. Let αij be
the attention weight between embeddings ki ∈ K and k j ∈ K. αij was computed using the
following steps: First, we computed a normalized scalar attention coefficient αij between
embeddings ki and k j as follows:

αij = so f tmax((WQki)
T(WKk j)/

√
d). (3)

Then, each embedding ki was updated to k′i by calculating the weighted sum of all
embeddings followed by a nonlinear ReLU layer:

k′i = ReLU((
m

∑
j=1

αijWVk j) + b1) + b2. (4)

Here, WQ, WK, and WV were the query weight matrix, key weight matrix, and value
weight matrix, respectively; b1 and b2 were bias vectors; m was equal to h× w + l. This
update procedure could be repeated for N layers, and the updated embeddings, k′i, were
fed as inputs to the successive N transformer encoder layers. The learned weight matrices
{WQ, WK, WV} ∈ Rd×d were not shared between layers. We denoted the final output
of the transformer encoder after N layers as K′ = {z′1, z′2, . . . , z′h×w, l′1, l′2, . . . , l′l}, where
L′ = {l′1, l′2, . . . , l′l} was the attribute recognition outputs.
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3.3.3. Attribute Recognition Classifier

After the features and attributes had been transferred via the transformer encoder, an
independent feedforward network(FFNi) was introduced to make the final label predictions.
The FFNi contained a single linear layer and its output was calculated as follows:

outputi = FFNi(l′i) = σ((wi · l′i) + bi). (5)

where the weight wi for label prediction outputi is a vector 1× d, bi is a bias vector, and σ
is a sigmoid function.

3.3.4. The Loss Function

We adopted the binary cross-entropy loss function [26] for safety attribute recognition
using the following formula:

L(l̂, l) = − 1
M

M

∑
m=1

(lm log(σ(l̂m)) + (1− lm)log(1− σ(l̂m))). (6)

where l̂ and l represent the prediction results and the ground truth label, respectively, M is
the number of attributes, and σ(.) refers to the sigmoid activation function.

3.4. Fusion Processing Module

Owing to the limitations of the object detection algorithm, the worker detector might
generate missed detections and false alarms in some frames, which may affect the accuracy
of the safety attribute recognition. In our system, we adopted a simple voting method
by combining the attribute recognition results with multiobject tracking trajectories, as
shown in Figure 4. If it was not successfully detected and recognized, a judgment was
given based on the previous 30 frames. If more than half of the previous 30 frames had
detection and recognition events, the missed detection events were interpolated, and the
tracking result was corrected. Otherwise, it was considered that the object disappeared.
Finally, the detection and tracking results could be successfully smoothed. The successfully
recognized or corrected results were transmitted to the interface for display.

Figure 4. The fusion processing module. We fused the detection and recognition results on multiple-
object-tracking trajectories.
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4. Dataset and Experimental Details
4.1. Open-Site Monitoring Dataset

Because there are relatively few public datasets available for a detailed evaluation of
safety helmet and harness monitoring systems in the community, we developed an open-site
monitoring dataset for construction scenes containing three subdatasets: object detection,
multiobject tracking, and attribute recognition. This benchmark dataset is crucial for
evaluating safety helmet and harness monitoring systems in unconstrained environments.

(1) Object Detection Subdataset

The object detection subdataset can be used for safety helmet detection, safety harness
detection, and worker detection in construction scenes. The images for safety helmet
detection were selected from the public Safety Helmet Wearing Dataset (SHWD), which is
an open-source dataset provided by Github (https://github.com/njvisionpower/Safety-
Helmet-Wearing-Dataset, accessed on 1 January 2023).

As there is no public safety harness dataset available, we contributed a safety-harness-
wearing subset containing 4196 images downloaded from Google or taken on construction
sites. We manually labeled these data with LabelImg, and a VOC-format file was generated.
We converted the subset from VOC format to txt format, as required by YOLOv5. The
text-format file contained the annotation information of the images used for training or
testing. Sample images from our proposed subdataset are shown in Figure 5.

Figure 5. Sample images of our proposed object detection subdataset.

(2) Multiobject Tracking Subdataset

To evaluate our safety helmet and harness monitoring system for worker tracking,
we contributed a multiobject tracking subdataset consisting of four videos with a total of
7200 frames, in which three videos were work at a height and the last one was work on the
ground. All videos were annotated with the bounding boxes of workers, safety helmets,
and harnesses, as well as the corresponding categories. The construction site videos were
at 30 frames per second in a video of resolution 2560 × 1080. Sample images from the
proposed video dataset are shown in Figure 6.

(3) Safety Attribute Recognition Subdataset

The safety attribute recognition subdataset of construction site workers was cropped
from the proposed object detection subdataset and the multiobject tracking subdataset
above. It consisted of 3633 images including multiple attributes such as age, gender, safety
helmet, and safety harness. Among them, there were 164 images of workers wearing both
helmets and harnesses, 2439 images of workers wearing safety helmets but no harnesses,
519 images of workers wearing safety harnesses but no helmets, and 511 images without
safety helmets or harnesses. Sample examples are shown in Figure 7.

https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset
https://github.com/njvisionpower/Safety-Helmet-Wearing-Dataset
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Figure 6. Sample images of our proposed multiobject tracking subdataset.

Figure 7. Sample images of our proposed attribute recognition subdataset. All images were nor-
malized to 128× 64. (Top:) Sample images of workers wearing safety helmets and harnesses. (The
second line:) Samples of workers wearing safety helmets but no harnesses. (The third line:) Samples
of workers wearing safety harnesses but no helmet. (Bottom:) Sample images without any safety
helmet or harness.

4.2. Implementation Details

Image Feature Extractor. For fair comparisons, input images were resized to 224× 224.
Random horizontal mirroring, random rotation, and color jittering were used as data
augmentation [46] during training. We used the ResNet50 [47] pretrained on ImageNet [48]
as the backbone network to extract image features. We removed the last pooling layer and
the full connection layer in the ResNet traditional network, and the output dimension was
2048, so we set the embedding size to d = 2048. Since the images were resized to 224× 224,
the output of ResNet50 was a 7× 7× d tensor. Therefore, there was a total of 49 feature
embedding vectors.
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Transformer Encoder. To allow a particular embedding to pay attention to multiple
other embeddings (or multiple groups), our model used 4 attention heads [34]. We used a
L = 3 layer transformer encoder with a residual layer [47] around each embedding update
and layer norm [49].

Optimization. Our model was trained end-to-end. We used Adam [50] for the opti-
mizer with betas = (0.9, 0.999) and a weight decay of 0. We trained the models with a batch
size of 32 and a learning rate of 10−5. We used dropout with p = 0.1 for the regularization.

5. Experimental Results

To verify the feasibility and accuracy of the proposed safety helmet and harness moni-
toring system, we conducted experiments using the following four aspects: object detection,
object tracking, safety attribute recognition, and the visual interaction interface of the system.

5.1. Results and Analysis of Object Detection

We chose the YOLOv5s and YOLOv5x pretrained models on the COCO dataset [51] to
train our proposed object detection subdataset. Precision, recall, and mean average preci-
sion (mAP) were adopted as evaluation metrics [52]. The relevant parameters, batch_size,
and image_size of both models were set to 16 and 640× 640, respectively, and 300 epochs
were trained. Figure 8 shows the training results of our proposed dataset on the YOLOv5x
weights. Table 1 shows the test results for each category of the two pretrained models.

Figure 8. Training results of YOLOv5x on our proposed dataset.

Table 1 shows that the wearing detection of safety helmets and safety harnesses had a
high precision, but a low recall. This meant that the detector generated a large number of
missed detections, which affected the comprehensive metrics of mAP@.5 and mAP@.5:.95.
Because of the limitation of the object detection in the task of safety helmet and harness
monitoring, we transferred this task to a safety attribute recognition task. Please refer to
Section 5.3 for the experimental evaluation of the safety attribute recognition.

Table 1. Detection results with different pretrained weights.

Network Model Class Precision Recall mAP@.5 mAP@.5:.95

YOLOv5s

All 0.957 0.875 0.921 0.652
Head 0.959 0.897 0.948 0.684

Safety helmet 0.969 0.933 0.976 0.742
Safety harness 0.942 0.794 0.838 0.530

YOLOv5x

All 0.981 0.922 0.940 0.791
Head 0.983 0.974 0.990 0.832

Safety helmet 0.969 0.988 0.989 0.850
Safety harness 0.993 0.806 0.841 0.693
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5.2. Results and Analysis of Object Tracking

To evaluate object tracking in construction scenes, we selected the common Deep
SORT algorithm to complete the worker tracking task, which was tested on the proposed
multiobject tracking subdataset. We evaluated the task using the CLEAR metrics commonly
used in multitarget tracking [53,54], including MOTA, FP, FN, and ID Sw. IDF1 presented
in [55] evaluates different aspects of tracking performance, which evaluates the identity
preservation ability and focuses more on the association performance. The model parame-
ters were set as follows: Amax = 30 frames, confidence score = 0.4, and IOU threshold for
NMS = 0.5. The test results are listed in Table 2. The execution speed of the system was
approximately 25 fps, which met the real-time demand in real-world scenarios.

Table 2. The multiobject tracking results. ↑ indicates that higher scores are better, and ↓ means
the opposite.

Detector Tracker MOTA↑ IDF1↑ MT↑ ML↓ ID Sw↓ FP↓ FN↓
YOLOv5s

Deep SORT

97.6% 98.9% 75.2% 12.2% 12 192 44
YOLOv5m 96.5% 98.3% 73.1% 13.9% 17 304 47
YOLOv5l 92.2% 96.5% 70.2% 16.1% 25 723 72
YOLOv5x 93.9% 97.3% 71.7% 15.4% 22 556 60

5.3. Results and Analysis of Safety Attribute Recognition

In this subsection, we compare the proposed safety attribute recognition method with
some state-of-the-art methods on the proposed safety attribute recognition subdataset.
According to previous works [24,25,32,56], we adopted five metrics to evaluate the attribute
recognition performance, including a label-based metric called mean accuracy (mA), and
four instance-based metrics including accuracy (Accu), precision (Prec), Recall, and F1
score. These metrics are widely used for pedestrian attribute recognition [10]. For a fair
comparison, we report the performance of the proposed method based on the same settings.

The experimental results are listed in Table 3. It can be observed that the proposed
method exhibited an improvement compared with the other methods. The mean accuracy
was greater than 96%, which could be applied to actual scene applications.

Table 3. The attribute recognition results on our proposed safety attribute recognition subdataset.
Best results are shown in bold.

Method References mA Accuracy Precision Recall F1 Score

Resnet50 [47] CVPR’16 79.87 73.78 75.78 74.38 75.08
WRN [57] CVPR’16 81.90 73.89 75.62 74.88 75.25
ALM [24] ICCV’19 93.59 82.11 83.10 82.77 82.94
ViT [39] ICLR’21 94.45 82.91 83.93 83.30 83.61

The proposed method 96.44 86.76 87.47 88.38 87.34

As shown in Figure 9, we visualized the localized attribute regions from two attributes,
i.e., “Safety helmet” and “Safety harness”. The proposed method helped to locate attribute-
related regions for each attribute. For example, only the head region was considered when
recognizing the attribute “Safety helmet” and the attention was stronger in the body region
when recognizing the attribute “Safety harness”. It was further proof that the proposed
method could better model the relationship between attributes and feature regions by using
self-attention and extracting more representative features.
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WRN modelInput image
The proposed 
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WRN modelInput image

The proposed 
model

Figure 9. Attention regions of different models and attributes. The left is the visual feature map for
the safety helmet attribute, and the right is the visual feature map for the safety harness attribute.

5.4. System Visual Interface Design and Display

For a better and more intuitive visual display of the recognition results, we developed
a human–computer interaction interface for our system based on Pyqt5. The main interface
had six functions, as shown in Figure 10: worker counting, worker tracking, scene switching,
information display, video flow control, and monitoring screen display. Our system could
work for two types of operating scenarios: working on the ground and working at height,
depending on different rules and regulations at construction sites. Workers are allowed
not to wear safety harnesses when working on the ground, but not wearing safety helmets
causes an alarm. When working at a height, workers must wear safety helmets and safety
harnesses, and the system will give an alarm if either of the two pieces of equipment is not
worn. The UI is shown in Figure 11. We added the View button, which allowed users to see
the details of a specific worker, as shown in Figure 12.

Figure 10. The visual UI interface design.
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Figure 11. The visual UI interface display.

Figure 12. The worker’s construction details.

6. Discussion
6.1. The Superiority of Attribute Recognition for Safety Helmet and Harness Monitoring

A safety helmet and harness monitoring system mainly refers to the use of video
technology to monitor a construction scene and record the scene images in real time. With
the development of technology, traditional safety helmet and harness monitoring systems
have been unable to meet the needs of construction scenarios with frequent accidents.
People are paying more and more attention to the practical application of artificial intelli-
gence technology in safety helmet and harness monitoring systems. The current CV-based
methods are all based on object detection technology, which has the defect of an insufficient
accuracy due to occlusions or small targets. We proposed to transform this problem into
an image’s semantic attribute recognition problem and compared the difference between
the two as shown in Figure 13. It can be seen that the general object detection model
YOLOv5 is prone to missed detection for occlusion situations; for example, the harnesses
are often missed due to occlusion. Our recognition model based on attribute knowledge
modeling can utilize semantic information to accurately identify occluded attributes. Our
model learns the association between features and attributes, which alleviates the impact
of occlusion in practical applications. Moreover, our attribute recognition framework can
recognize scene information. Scene information is useful for practical applications, for
example, when working on the ground, where safety harnesses are not required. However,
scene information is also an indispensable part of a safety helmet and harness monitoring
system. Our proposed remote-vision-based safety helmet and harness monitoring sys-
tem framework addresses these deficiencies well. It is not only more robust to occluded
situations but also can recognize unseen classes such as scene information.

For a quantitative analysis, to better demonstrate the superiority of our framework,
we trained the attribute recognition model (ours) and the general object detection model
(YOLOv5) under the same settings (dataset, optimizer, etc.). We use precision and recall
for the evaluation and the results are shown in Figure 14. It can be seen that our pro-
posed method based on attribute recognition was superior over the method based on
object detection.
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Figure 13. The difference between the object detection model and the attribute recognition model.
The top row is the processing results of the general object detection models (YOLOv5), and the bottom
row is the processing results of our proposed attribute recognition model (ours). In object detection,
green bounding boxes represent ground truth, and red boxes represent predicted results. In attribute
recognition, the result of the recognition is displayed directly on the image in the form of text.

0.5 0.6 0.7 0.8 0.9 1

Precision

Recall

Attribute Recognition(Ours) Object Detection(YOLOv5)

Figure 14. Comparison of recall and precision between attribute recognition model (ours) and object
detection model (YOLOv5) under the same dataset.

6.2. The Effectiveness of Transformer on Attribute Knowledge Modeling

Some methods [40,43,58,59] have shown that the transformer architecture can better
capture the relationship between visual features and process sequences in parallel during
training. In this paper, we presented a novel attribute knowledge modeling network
based on the transformer architecture. We aimed to improve recognition performance by
exploiting self-supervision and self-attention mechanisms to explore the relations between
attributes and image features fully.

In a quantitative analysis, we drew the mean accuracy (mA) results of the ResNet50
and the proposed model as shown in Figure 15. We can see that the performance of the
model was greatly improved after adding the transformer.
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Figure 15. The mA comparison of different models. Resnet50 stands for backbone. Ours stands for
adding a transformer after Resnet50 to learn relational knowledge.

As a qualitative analysis, Figure 16 shows a comparison of the attention maps of
Resnet50 [47] and the proposed transformer-based method (ours) for different attributes. It
can be seen that the transformer-based model focused more precisely on the regions that
needed attention. It reduced the entangled mapping relationship between different regions
and improved the robustness and accuracy of the mapping relations between regions
and attributes.

Safety helmet Safety harnessSafety helmet Safety harness

Resnet50

Ours 
Input imageInput image

Figure 16. Attention comparison of different models. Visualization of different spatial information
extracted by the Resnet50 model (the top part) and our method (the bottom part).

6.3. The Significance of the Open-Site Monitoring Dataset

As far as we know, our proposed open-site monitoring dataset is the first formally
proposed dataset for construction scenarios in the industrial field. Although there are
currently a few public datasets in the community, such as for the detection of safety
helmets, these datasets do not have a clear, concrete, and unified setting. Most of the
current datasets are collected in real life and randomly split. This results in a large number
of identical pedestrian identities in the training and test set with the same image features.
As a result, the existing datasets’ settings are inconsistent with real-world applications.

Given the problems of existing datasets, the reasons why an open-site monitoring
dataset is crucial for industrial applications and academic research are given as follows.
First, because there are relatively few public datasets available for a detailed evaluation
of safety helmet and harness monitoring systems in the community, we developed an
open-site monitoring dataset for construction scenes containing three subdatasets: object
detection, multiobject tracking, and attribute recognition. Second, whether used as a
primary task in video surveillance or an auxiliary task in person retrieval, pedestrian
identities of the test set barely overlap with the identities of the training set. Finally, we
provided a strong transformer-based baseline on this dataset for follow-up studies.
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7. Conclusions

In this study, we developed a novel and practical safety helmet and harness monitor-
ing system to identify whether workers wear safety helmets and harnesses. Because the
object detection algorithm may not be sufficiently accurate when applied in construction
scenes, we proposed to transfer the object detection problem into a recognition problem
of the semantic attributes of images. To make the identification more accurate, we pro-
posed a novel end-to-end framework for safety attribute recognition that made full use of
the spatial and semantic relations between images and attributes. Specifically, this study
attempted to introduce the transformer into an attribute recognition task and achieved
improved performance in attribute recognition. We contributed a novel open-site construc-
tion scene dataset that included three subdatasets for object detection, object tracking, and
attribute recognition under construction site scenarios. Finally, the experimental results
demonstrated the effectiveness and efficiency of this remote-vision-based safety helmet
and harness monitoring system.

Application Scope and Limitation. Compared with some current cutting-edge tech-
nologies, our security monitoring has the advantages of a low cost, an easy deployment,
and being more intuitive. However, we used a network of video surveillance cameras on
construction sites. If workers are in danger of falling in places that cannot be monitored,
e.g., high-rise building construction, video streaming data cannot be collected. This is a
limitation of our system. Recently, Shanti et al. [19] proposed utilizing drones to monitor
workers at heights in real time, which is a great strategy. In future work, we will consider
how to optimize this problem, such as using a computer-vision-based drone, which is very
beneficial to the practical application of our system.
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OSHA Occupational Safety and Health Administration
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