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Abstract: Grassland aboveground biomass (AGB) is an important indicator for studying the change
in grassland ecological quality and carbon cycle. The rapid development of high-resolution remote
sensing and unmanned aerial vehicles (UAV) provides a new opportunity for accurate estimation of
grassland AGB on the plot scale. In this study, the mountain grassland was taken as the research
object. Using UAV Light Detection and Ranging (LiDAR) data and multispectral satellite images, the
influence of topographic correction methods on AGB estimation was compared and a series of LiDAR
metrics and vegetation indices were extracted. On this basis, a comprehensive indicator, the vegetation
index-height-intensity model (VHI), was proposed to estimate AGB quickly. The results show that:
(1) Among the four topographic correction methods, the Teillet regression has the best effect, and can
effectively improve the accuracy of AGB estimation in mountain grassland. The correlation between
corrected ratio vegetation index and AGB was the highest (correlation coefficient: 0.682). (2) Among
the height and intensity metrics, median height and max intensity yielded the higher accuracy in
estimating AGB, with Root Mean Square Error (RMSE) of 322 g/m2 and 333 g/m2, respectively. (3) The
VHI integrated spectrum and LiDAR information, and its accuracy for AGB estimation for mountain
grassland, was obviously better than other indicators, with an RMSE of 272 g/m2. We also found that
the accuracy of VHI in univariate models was comparable to that of complex multivariate models such
as stepwise regression, support vector machine, and random forest. This study provides a new approach
for estimating grassland AGB with multi-source data. As a simple and effective indicator, VHI has
shown strong application potential for grassland AGB estimating in mountainous areas, and can be
further applied to grassland carbon cycle research and fine management.

Keywords: mountain grassland; aboveground biomass (AGB); high-resolution images; Light Detection
and Ranging (LiDAR); topographic correction; vegetation index-height-intensity model (VHI)

1. Introduction

Grassland is one of the world’s important terrestrial ecosystem, accounting for about one
third of the land surface of the Earth [1] and accounting for about 40% of Chinese total land
area [2]. Grassland has an extremely important ecological protection function as a windbreak
and for sand fixation, soil and water conservation, carbon fixation and oxygen release, and
is also an important source of production materials for people in pastoral areas [3,4]. The
research on grassland aboveground biomass (AGB) has long been the focus of attention.
The grassland AGB directly reflects the fluctuation of grassland ecological quality and is an
important data source for research on the grassland carbon cycle and vegetation net primary
productivity [5,6], and can also provide a reliable basis for the policy formulation of grassland
management departments. Mountain grassland is one of the important grassland types, and
has the characteristics of large biomass, complex topographic conditions, and difficulty in
AGB estimation [7,8]. It is also widely distributed in the mountainous areas of southern

Remote Sens. 2023, 15, 405. https://doi.org/10.3390/rs15020405 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15020405
https://doi.org/10.3390/rs15020405
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs15020405
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15020405?type=check_update&version=2


Remote Sens. 2023, 15, 405 2 of 18

and western China. The rapid and accurate estimation of AGB in mountain grassland is a
challenging research subject, which is of great significance to the estimation of carbon storage
and the sustainable development of mountain grassland.

Remote sensing technology has become the main method of grassland AGB estimation
because of its advantages of continuous observation capabilities, wide coverage, and low cost.
Commonly used remote sensing data sources include MODIS [9], Landsat [10], and other low
and medium resolution satellite data. In recent years, with the continuous improvement of
sub-meter high-resolution data techniques and the emergence of various unmanned aerial
vehicle (UAV) platforms, the efficient and accurate estimation of grassland AGB on the plot
scale has become a new research focus [11,12]. This can provide reliable support for fine
management of key grassland areas and can also be used as the database for high-precision
retrieval of large-scale grassland AGB. However, the current estimation of grassland AGB
is mainly based on passive optical remote sensing data and retrieved by establishing the
relationship between the field measured AGB and the vegetation index (VI) or a certain
band. The traditional multispectral data can reflect the vegetation information on the plane.
However, the real vegetation is three-dimensional, and the vegetation information of the
vertical structure has widely been proved to be more important in AGB retrieval [13,14].

As a new active remote sensing data source, Light Detection and Ranging (LiDAR) data
have been successfully applied to the retrieval of several important vegetation parameters in
recent years [15,16]. The LiDAR sensor emits laser pulses to the ground and receives the re-
flected signals. Based on the sensor height and scanning angle, the three-dimensional position
information of the ground objects was calculated. Compared with the traditional photogram-
metric techniques, the position information of LiDAR point clouds is more accurate [17]. In
the research on AGB, UAV LiDAR has been widely used recently, which can help us obtain
the information on the vertical structure of the vegetation and establish the AGB estimation
model more accurately. For example, Luo et al. [14] found that the bias of estimating forest
AGB was 31.361 Mg/ha using spectral information, while the bias decreased to 15.245 Mg/ha
when spectral information was combined with UAV LiDAR data. In addition, UAV LiDAR
data also contain the intensity information of ground objects, which was mostly used for
landcover classification and species identification [18,19]. In recent years, LiDAR intensity has
been used in AGB modeling and has achieved good results. García et al. [20] found that the
AGB model of forest combining height and intensity variables provided the lowest errors and
highest index of agreement. In general, UAV LiDAR has been widely applied in forests [21],
wetland [22], etc., but has rarely appeared in the study of grassland AGB [23–25]. On the one
hand, the top-to-bottom view of UAV far away from the canopy and the density of grassland
vegetation make it difficult for the laser pulse to fully penetrate the canopy. On the other
hand, it is hard to detect low-stature vegetation because of the limited time of flight between
successive returns. These factors may cause information loss of vegetation and constrain the
accuracy of grassland AGB estimation. Another gap is that most of the existing studies were
concentrated on AGB estimation of flat terrain, while mountainous areas were rarely involved,
especially for mountain grassland.

Due to the influence of mountainous terrain on atmospheric radiation, shadow effect,
and multiple scattering, the retrieval of vegetation parameters in mountainous areas faces
the problem of reflectance deviation caused by topographic fluctuation [26]. Some studies
have simulated the change of pixel reflectivity under different slopes, and the results showed
that the maximum relative deviation can reach about 85% [27]. The topographic correction
methods can solve the impact of rugged terrain on remote sensing images to varying degrees,
which correct the reflectance of pixel to a reference plane (usually horizontal plane) based on
the mountain radiation transmission model or the solar radiation geometric transformation.
Since the digital elevation model (DEM) was first introduced into the Minnaert model in
1980, by using the slope cosine relationship [28], there have been many topographic correction
methods, which can be divided into empirical models, semi-empirical models, and physical
models. In comparison, physical models have received more attention in recent years, because
researchers pay more attention to the transferability and mathematical simplification of
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models. For example, Li et al. [29], Couturier et al. [30] and Yin et al. [31] have put forward the
latest physical models, respectively, in recent years, and can effectively correct topographic
effects in different regions. However, most of the previous studies focused on the comparison
of topographic correction algorithms of medium-resolution remote sensing data, and rarely
analyzed them in sub-meter images. In the high-resolution data sources, the topographic effect
will be more dramatic due to the influence of texture, shadow, and spectral variation [32], and
the effect of topographic correction methods may be different from that of medium-resolution
images. In addition, the influence of the topographic effect on the grassland AGB retrieval has
rarely been studied and discussed.

To sum up, the main research gaps in grassland AGB estimation are the lack of
vegetation vertical structure to improve accuracy, and the insufficient research on the impact
of rugged terrain on AGB estimation. In this paper, a typical area of mountain grassland in
southern China was selected as the study area. The overall goal is to propose a method for
estimating AGB of herbaceous vegetation in rugged terrain using the combination of LiDAR
data and multispectral data. Additionally, three objectives are established to accomplish this
goal: (1) to test the effect of topographic correction models on the estimation of mountain
grassland AGB, and identify the optimal correction model and VI in the study area; (2) to
extract various LiDAR metrics, evaluate their accuracy in AGB estimation and identify the
optimal height metric and intensity metric; and (3) to construct a comprehensive indicator
to estimate AGB and evaluate its performance in different regression models.

2. Materials and Methods

The flowchart of this study is shown in Figure 1. It presents five steps for estimating
AGB of mountain grassland based on UAV LiDAR and multispectral images, i.e., (1) data
acquisition and preprocessing; (2) topographic correction of vegetation indices; (3) LiDAR
metrics; (4) construction method of VHI; (5) AGB modelling and accuracy assessment.
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2.1. Study Area

The study area is located in Xingan County, Guilin City, Guangxi Province, in the
south of China (Figure 2), with a total grassland area of about 20 km2. The annual total
precipitation is about 1800 mm, and the average temperature is about 19 ◦C, making it a
subtropical monsoon climate with abundant water and heat. The study area is located at
the top of the mountain and the terrain fluctuates greatly, with the average altitude about
1100 m. The grassland type is tropical tussock grassland, and the main vegetation includes
Stipa bungeana Trin., Imperata koenigii (Retz.) Beauv., etc. The average height of the grass
is between 20 cm and 80 cm, and the vegetation coverage and AGB are both high. It is a
representative area of the mountain grassland in the south of China. In addition, wind
power equipment was built on mountain ridges in the area, with a height of 100 m and an
interval of 200 m to 500 m. The research on the AGB retrieval method in this area is helpful
for accurately grasping the dynamic changes of the vast mountain grassland in China at
the plot scale, and also provides a reference for AGB retrieval based on multi-source data
under complex topographic conditions.
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Figure 2. Location of the study area. (a). location of Guangxi in China; (b). location of the study area
in Guangxi; (c). SuperView-1 image of the study area; (d). digital photos of the study area.

2.2. Data Acquisition and Preprocessing
2.2.1. Field Data

Field sampling was conducted after the UAV flight in late July 2021. A total of
89 quadrats were uniformly arranged within the flight area of UAV, each 1 m× 1 m. The
measured parameters of each quadrat included longitude and latitude of the central point,
altitude, minimum height of the grass, mean height of the grass, maximum height of
the grass, vegetation coverage, and AGB. The fractional vegetation coverage (FVC) was
measured by five experts using visual estimation, and the average value was taken as the
final result. The AGB was clipped at the ground level and then determined by using a
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high-precision balance. The coordinates were measured by using handheld positioning
and navigation system (Qmini A5, Guangzhou Hi-Target Satellite Navigation Technology
Co., Ltd., Guangzhou, China), and the positioning accuracy was within 1 m. In order to
analyze the influence of topography on VIs and AGB retrieval, the quadrats were selected
with different slopes from 0◦ to 33◦. The descriptive statistics of field measured parameters
are shown in Table 1.

Table 1. Descriptive statistics of field measured parameters.

Parameters Mean Max Min Standard
Deviation

Coefficient
of Variation

Mean height of the
grass (m) 0.353 0.843 0.154 0.130 0.368

AGB (g/m2) 770 1923 175 394 0.512
Slope (◦) 15.629 33.000 0 7.879 0.504
FVC (%) 79.0 100 48.3 13.6 0.172

2.2.2. LiDAR Data

Before the field sampling, the DJI Matrice 600 integrates a RIEGL VUX-1UAV sensor,
adopted to collect LiDAR data. The sensor adopts a pulse range principle using a near-infrared
laser beam and integrates with an AP15(X) inertial navigation system. The field angle of view
is 330◦, the ranging accuracy is 25 mm, and the maximum ranging is 1050 m. The flight height
of UAV is about 200 m, the flight speed is 8 m/s, the width of scanning strip is 214 m, the
side overlap is 20%, the average point cloud density is 78 points/m2 of all echoes. Five flights
were conducted in the study area, with the total scanning area of 2.5 km2.

The processing of LiDAR point clouds was mainly completed using LiDAR360 (Green-
Valley International Inc.). Firstly, the original point clouds of each UAV flight were merged.
The easily-identified abnormal point cloud was manually clipped. For other abnormal
points, the denoising tool, based on statistical outlier removal, was used to denoise the orig-
inal point clouds. Secondly, the progressive triangulation algorithm was used to filter the
denoised point clouds, and the point clouds was classified to ground points and vegetation
points. Thirdly, the point clouds were normalized according to the ground points; that is,
the elevation of each vegetation point subtracted the elevation of the nearest ground point.
The normalized point clouds were later used to extract the vertical structure information
of the grass. Finally, the digital elevation model (DEM) was generated by interpolation of
ground points using the irregular triangulation algorithm, and the spatial resolution was
0.25 m. The results show that the R2 between DEM and field measured altitude reached
0.9996. DEM was used for topographic correction of multispectral images.

2.2.3. Multispectral Data

SuperView-1 was selected to provide multispectral data, which is a commercial satellite
of the China Aerospace Science and Technology Corporation. The image of SuperView-
1 has a width of 12 km, 0.5 m spatial resolution in panchromatic band, and 2 m spatial
resolution in multispectral bands, including four bands of blue, green, red and near-infrared.
Two SuperView-1 images used in this study were acquired on 6 June 2021, with cloud cover
of 0%. The solar zenith and azimuth angles were 13.1◦ and 99.3◦. Although the image
acquisition time is about 40 days earlier than the field sampling, they are all in the vigorous
growth period of the grassland in the study area and the spectral difference can still reflect
the AGB change of different quadrats, which will not affect the AGB retrieval.

The preprocessing of SuperView-1 images was completed in ENVI5.3, and ortho
correction, radiometric calibration, atmospheric correction, image fusion, and geomet-
ric correction were carried out successively. The FLAASH model was used for atmo-
spheric correction, NNDiffuse Pan Sharpening was used for the fusion of multispectral
and panchromatic images, and the point cloud data were used as the reference data to
carry out geometric correction. Finally, a multispectral image with 0.5 m spatial resolution
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of the study area was obtained. Normalized Difference Vegetation Index (NDVI), Ratio
Vegetation Index (RVI), and Enhanced Vegetation Index 2 (EVI2) were calculated for AGB
retrieval. The calculation formulas are as follows:

NDVI =
ρnir − ρr

ρnir + ρr
(1)

RVI =
ρnir
ρr

(2)

EVI2 =
2.5× (ρnir − ρr)

ρnir + 2.4× ρr + 1
(3)

where ρr denotes the reflectance of red band, and ρnir denotes the reflectance of near-
infrared band.

2.3. Topographic Correction of Vegetation Indices

One of the most significant advantages of UAV LiDAR data is that they can provide
high-precision and high-resolution topographic data. Based on the DEM in Section 2.2.2,
four representative topographic correction methods were conducted in this study, using
multispectral images, and four groups of corrected NDVI, RVI and EVI2 data were cal-
culated, respectively. Path length correction (PLC) is a new physical model proposed by
Yin et al. [33], which is based on the classical radiation transfer theory and assumes that the
vegetation canopy is composed of uniformly distributed leaves, and further simplifies the
radiation transfer equation into a BRDF (Bidirectional Reflectance Distribution Function)
correction formula. Teillet regression is an empirical statistical correction method, which is
based on the relationship between the image reflectance and the cosine value of the solar
incidence angle, and which converts the reflectance of the slope pixel to the horizontal
plane [30]. Two semi-empirical models were selected in this study, which have certain
physical significance, but some parameters need to be estimated by empirical methods. The
C model proposed by Teillet et al. [34] uses the empirical parameter C to reduce the over
correction phenomenon in the shadow area based on the Cosine model. Soenen et al. [35]
also introduced parameter C for improvement on the basis of the Sun-Canopy-Sensor
(SCS) [36] model. The calculation formulas of the four topographic correction methods are
in Table 2. All methods were implemented in R environment by ‘raster’ package.

Table 2. Expressions of topographic correction methods.

Correction Method Expression

PLC ρH = ρT ×
S(Ω1)+S(Ω2)

St(Ω1)+St(Ω2)

C ρH = ρT × cos θ+C
cos i+C

SCS + C ρH = ρT × cos θ×cos S+C
cos i+C

Teillet regression ρH = ρT − a× cos i− b + ρ

In Table 2, ρT is the reflectance of the original image, ρH is the reflectance of the
corrected image, ρ is the average of the original image reflectance, θ is the solar zenith, S is
the slope, and cos i is the cosine of solar incidence angle, calculated as follows:

cos i = cos θs cos S + sin θs sin S cos(ϕ− A) (4)

where ϕ is the solar azimuth angle, and A is the aspect. a and b can be regressed as follows:

ρT = a× cos i + b (5)

The parameter C is the ratio of b and a. A total of 2500 points were randomly selected
to fit Equation (5). In the PLC model, S(Ω1) and S(Ω2) are the path lengths along solar
and viewing directions over flat terrain, and St(Ω1) and St(Ω2) are their counterparts over
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sloping terrain. As for flat terrain, the path length can be calculated as a function of the
solar zenith angle:

S(i) =
1

cos i
(6)

As for sloping terrain, the path length can be calculated as follows:

St(θ, ϕ, S, A) =
1

cos θ(1− tan S cos(ϕ− A) tan θ)
(7)

2.4. LiDAR Metrics

When extracting LiDAR metrics, we adopted a point-based method rather than canopy
height model (CHM) to avoid the variation of height being smoothed. After experiments
and combining the results of previous related studies [22], the height threshold was set to
0 m in this study; that is, the normalized LiDAR points above 0 m were selected to extract
the vegetation height and intensity metrics. Additionally, the optimal radius plot was 1.8 m
by comparing different thresholds. The vertical structure of vegetation is an important
input variable in the AGB retrieval model. A total of 12 grass height metrics (Table 3)
were selected for further analysis, including the minimum height of grass (Hmin), the mean
height of grass (Hmean), the maximum height of grass (Hmax), the standard deviation of
grass height (Hsd), the variation coefficient of grass height (Hcv), and the percentile of grass
height (Hp).

Table 3. Metrics derived from the LiDAR data used for estimating biomass.

Height Metrics Intensity Metrics Description

Hmean Imean
Captures the difference in LiDAR

height and intensity of the
different grass components

Hmax Imax
Hmin Imin

Hp95, Hp90, Hp75, Hp50,
Hp25, Hp10, Hp5

Ip95, Ip90, Ip75, Ip50,
Ip25, Ip10, Ip5

Hsd Isd Characterizes the grass structure
based on height and intensityHcv Icv

The intensity of the point clouds is the amount of energy returned by ground objects
to the LiDAR system. In this study, the intensity information of the point cloud data were
taken as one of the important input variables of the AGB retrieval model. It is necessary
to correct the intensity data before using them, especially in the mountainous area with
complex terrain, as the uncorrected intensity data will cause a significant error in the
estimation of vegetation parameters. In order to eliminate the influence of the flight path
and angle of incidence, the intensity data were corrected using the following formula:

I′ = I × R2

R2
s cos α

(8)

where I′ is the corrected intensity value, I is the original intensity value, R is the distance from
sensor to object, RS is the average flying altitude of UAV, and α is the incident angle. For the
corrected intensity data, the same metrics as grass height were selected for analysis (Table 3).

2.5. Construction Method of VHI

In previous AGB studies, metrics of vegetation structure and vegetation indices were
usually inputted into the retrieval model as separate variables [20,22], some researchers only
used the structure information of vegetation obtained from point clouds to construct the
retrieval model [37], and there are also studies that combine vegetation spectral information
with structure information to synthesize an AGB retrieval indicator and achieved good
results [17]. However, the above studies were all carried out in limited sample areas, and
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focused on the woodland or farmland with flat and regular plots, and lack of exploration
for rapid acquisition of large-scale and complex topographic conditions of herbaceous
vegetation AGB.

Based on LiDAR and multispectral data, this study attempted to propose a VI-height-
intensity model (VHI) as a comprehensive indicator to quickly and accurately retrieve
grassland AGB under complex topographic conditions (Figure 3). The VHI is calculated
as follows:

VHI =
CVI × H

I
(9)

where CVI is the mean value of optimal VI after topographic correction, H is the optimal
height metric, I is the optimal intensity metric. Unlike most studies [24,38,39] that directly
selected VI and Hmean to retrieve AGB and ignored the importance of point clouds intensity,
VHI is simple and takes full advantages of LiDAR and multispectral data. During the VHI
calculation, the optimal LiDAR metrics in the study area were selected according to the
comparison results, and the topographic correction methods were also compared to select
the best VI.
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2.6. Methods of AGB Modelling and Accuracy Assessment

In this study, five commonly used univariate models were used to estimate AGB for each
VI and for LiDAR metrics, including linear, power, polynomial, logarithmic, and exponential
models. In addition, Spearman’s rank-order correlation analysis was used to investigate the
relationship between these variables and AGB. The VHI was constructed using the metrics
with high model accuracy and strong correlation. Three complex multivariable models,
stepwise linear regression (SMR), random forest (RF), and support vector regression (SVR),
were also selected in this study for comparative analysis. RF and SVR have been widely used
in AGB estimation [40,41], and have their own advantages in dealing with regression problems.
RF does not tend to over fit, and can produce the ranking of variable importance. SVR is
robust to outliers, and the model has excellent generalization ability. Additionally, SMR has
been proved to outperform other machine learning algorithms in estimating grassland AGB
using LiDAR data [42]. In the research, we chose these three algorithms to train multivariable
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complex models and compare them with univariate models based on VHI. All models were
built in R environment. In the RF model, ntree was set as 500 and mtry was set as the number
of variables divided by 3. In the SVR model, the kernel function was linear, and gamma was 1
divided by the number of variables.

Due to the limited number of samples, the leave-one-out cross-validation (LOOCV)
was selected for model training and accuracy validation. LOOCV was conducted 89 model-
ing times, one sample was selected for validation and the rest of the samples for training in
each trial. This method can accurately evaluate the prediction ability of the model. Coeffi-
cient of determination (R2), mean absolute error (MAE), root mean square error (RMSE)
and mean percent standard error (MPSE) were selected for accuracy verification. These
four verification methods were widely used in AGB research [43,44], and their definitions
and characteristics are shown in Table 4.

Table 4. Measures used for accuracy verification.

Methods Definition Characteristics

R2
1− ∑n

i=1(yi−ŷi)
2

∑n
i=1(yi−yi)

2

yi : measured AGB.
ŷi : predicted AGB.

n: number of observations.
MAE ∑n

i=1|yi−ŷi |
n R2 indicates the degree of fit between the predicted and the

measured value; MAE and RMSE indicate the error between the
predicted value and the measured value, although RMSE is more

sensitive to outliers; MPSE indicates the deviation ratio of the
prediction value.

RMSE
√

∑n
i=1(yi−ŷi)

2

n

MPSE ∑n
i=1

∣∣∣∣∣ (yi−ŷi)
ŷi

∣∣∣∣∣
n × 100

3. Results
3.1. Comparison of Vegetation Indices for AGB Estimation before and after Topographic Correction

The distribution of VI values before and after topographic correction of the 89 quadrats
is shown in Figure 4. The mean value of original RVI is 6.35, the mean value of original
NDVI is 0.71, and the mean value of original EVI2 is 0.69. Among the four topographic
correction methods, the mean VI value after C correction was lower than the original value,
which was similar to the original VI value after PLC and SCS + C correction. The mean
VI value after Teillet regression was bigger, especially for the quadrats with large original
VI values. Figure 5a shows the ranking of correlation coefficients of VIs before and after
topographic correction. Teillet regression was obviously the most effective method. The
correlation coefficient between the corrected T-RVI, T-EVI2, T-NDVI and AGB reached
0.682, which was higher than the original EVI2 (0.666), NDVI (0.661), and RVI (0.660). The
correlation coefficient of SCS + C corrected VI also improved, and reached 0.670. However,
the correlation coefficient of VI and AGB after PLC and C correction decreased.
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Table S1 in the Supplementary File shows the accuracy of five simple univariate AGB
retrieval models of VIs before and after topographic correction. The lowest RMSE results
can be obtained for the VIs corrected by Teillet regression (around 315 g/m2). The VIs
after SCS + C correction also performed well, with MAE and RMSE reduced. However,
the accuracy of C-VI and PLC-VI was basically the same as that of original VIs. The
above results showed that Teillet regression and SCS + C are more suitable for topographic
correction in the study area, while the PLC and C models are not effective.

3.2. Height and Intensity Data for AGB Estimation

Figure 6 shows the relationship between the LiDAR estimated and field measured
grass height. The mean grass height obtained by LiDAR was systematically underestimated
and was concentrated below 0.2 m, but it still has a strong linear relationship with the
measured value, which can reflect the change trend of grass height of the quadrats. This is
similar to the results when using LiDAR point clouds to extract the height of low-stature
vegetation in some studies [13,25]. The underestimation of the maximum grass height
obtained by LiDAR in this study was reduced, but the fitting result between the LiDAR
estimated and field measured value was poor.
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Figure 5b,c, respectively, show the ranking of correlation coefficients between height
and intensity metrics and AGB. The correlation coefficients between height metrics and
AGB were mostly higher than 0.6, of which Hp50 was the highest, reaching 0.666. Intensity
metrics were negatively correlated with AGB, and the correlation was relatively weak.
Most of the correlation coefficients of the intensity metrics were between −0.4 and −0.6,
of which Imax has the strongest correlation, reaching −0.606. In addition, the results in
Figure 5 show that the average level of grass height had a stronger correlation with AGB,
while Hmax, Hmin did not reflect AGB well in the vertical structure. The correlation between
the high value of intensity and AGB was stronger, and the correlation coefficient basically
decreased from Imax downward.

Tables S2 and S3 in the Supplementary File, respectively, show the accuracy verification
results of height and intensity metrics in five simple univariate AGB retrieval models. For
height metrics, the RMSE of Hp50 in the logarithmic model was the lowest (322 g/m2),
while the RMSE of each exponential model was higher than that of the other. For intensity
metrics, there was no significant difference in the accuracy performance of different models.
Imax, Ip95, Ip90 yielded higher accuracy, with RMSE around 335 g/m2.

3.3. VHI for AGB Estimation

According to the analysis results in Sections 3.1 and 3.2, T-RVI, Hp50, and Imax were
used to construct VHI. Before AGB modelling, normal distribution test and multiple
collinearity test were carried out using SPSS 21.0. The results showed that T-RVI, Hp50,
and Imax were all normally distributed and had no multicollinearity. Table 5 shows the
accuracy verification results of T-RVI, Hp50, Imax, and VHI for estimating AGB in five
simple univariate models, and compares the performance in three multivariate models:
SMR, SVR, and RF. The expression of each model was randomly selected using LOOCV,
and the average values of R2, MAE, RMSE, MPSE over 89 trials were calculated.

Table 5. Validation statistics of regression models for AGB estimation (The model with the lowest
RMSE for each type of input variable is highlighted in boldface).

Input Variables Model Name Model Equation R2 MAE
(g/m2)

RMSE
(g/m2) MPSE (%)

T-RVI

Linear y = 103.72x + 55.57 0.334 237 320 31.1
Power y = 137.61× x0.8965 0.334 238 320 31.1

Polynomial y = −510.86x2 + 2240.14x + 769.96 0.320 242 324 32.6
Logarithmic y = 705.55× ln(x)− 551.15 0.353 238 316 32.3
Exponential y = 340.63× exp(0.114× x) 0.338 244 320 31.8

Hp50

Linear y = 2753.2x− 443.2 0.194 261 356 33.6
Power y = (3.581e + 04)× x4.256e−01 0.282 251 332 32.2

Polynomial y = −1191.54x2 + 1850.78x + 769.96 0.225 257 352 40.4
Logarithmic y = 428.40× ln(x) + 1752.78 0.325 245 322 32.7
Exponential y = 599.35× exp(2.0807× x) 0.081 289 404 36.2

Imax

Linear y = −0.36x− 1345.5 0.271 272 335 38.2
Power y = 95651.78× x−0.6643 0.253 271 339 35.1

Polynomial y = −431.87x2 − 2031x + 769.96 0.274 266 334 34.9
Logarithmic y = −564.87× ln(x) + 4896.05 0.275 266 334 34.7
Exponential y = (1.674e + 03)× exp((−5.133e− 04)x) 0.278 265 333 34.6

VHI

Linear y = 444083.43x + 461.73 0.455 221 290 29.1
Power y = (1.381e + 04)× x0.3833 0.515 211 273 27.7

Polynomial y = −933.30x2 + 2568.67x + 769.96 0.517 212 273 27.8
Logarithmic y = 271.18× ln(x) + 2865.13 0.496 214 278 30.7
Exponential y = 560.63× exp(415.99× x) 0.379 234 309 30.6

T-RVI + Hp50 + Imax

SMR y = 59.72TRVI + 1273.05HP50 − 0.217Imax + 539.19 0.452 221 291 31.3
SVR / 0.445 214 294 29.8
RF / 0.459 217 288 27.8

T-RVI + Hp50 + Imax + VHI
SMR y = 37.94TRVI− 0.12Imax + 271500VHI+516.9 0.489 211 281 27.9
SVR / 0.476 208 288 29.4
RF / 0.484 216 282 27.7

In all the optimal univariate models, the metrics and AGB showed a nonlinear re-
lationship. The prediction bias of VHI in all univariate models was significantly lower
than that of T-RVI (RMSE of the same model decreases by 52 g/m2 at most), Hp50 (RMSE
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of the same model decreases by 99 g/m2 at most), and Imax (RMSE of the same model
decreases by 66 g/m2 at most). VHI in the polynomial model obtained the highest R2

(0.517), and the lowest prediction bias (RMSE = 273 g/m2). In the three multivariable
models, T-RVI + Hp50 + Imax and T-RVI + Hp50 + Imax + VHI were all tested. The results
showed that the prediction bias of the three models were reduced to a certain extent after
adding the VHI (RMSE decreased 7–10 g/m2). SMR obtained the lowest RMSE (281 g/m2)
among the three models. However, the improvement of model complexity did not improve
the prediction accuracy, and the accuracy of all multivariable models was not better than
that of VHI in simple univariate models.

Figure 7a shows the scatter plot of the predicted and the measured AGB of the optimal
models from different input variables, and Figure 7b is the corresponding ridgeline plot.
The scatter plots show that the four variables were prone to overestimate in the low AGB
values and underestimate in the high AGB values. The results of Hp50 and Imax were
the most significant, and the prediction results of VHI alleviated this problem. From
the ridgeline plot, it can be seen that the AGB prediction values of Hp50 and Imax were
concentrated in the range of 600–800 g/m2, and the T-RVI prediction values had two
distribution peaks at about 600 and 900 g/m2. The distribution of the predicted values
of VHI was the closest to those measured in the field, but the underestimation was still
significant for the quadrats above 1500 g/m2.
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All the above results show the advantages of VHI as a single indicator that is easy to
calculate in the estimation of AGB in mountain grassland. Compared with a single VI or
LiDAR metric, it can be more effectively used for rapid modeling and retrieval.

4. Discussion
4.1. Effect of Topographic Correction for AGB Estimation in Fine Scale

Based on the high-precision DEM acquired by UAV LiDAR, this study compared the
effects of four representative topographic correction methods on improving the accuracy of
AGB estimation. Empirical models are generally considered to have insufficient theoretical
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basis and lack clear physical meaning, and different models need to be established under
different conditions [45]. For example, ρ in the Teillet regression refers to the theoretical
reflectivity of flat terrain. Since it is difficult to obtain in mountainous areas, the average
reflectance is taken to represent ρ. However, the results of this paper showed that the
traditional empirical model (Teillet regression) has the best effect on improving the accuracy
of AGB estimation, while the recently proposed physical model (PLC) had no effect. In
addition, random points were used to calculate the correlation between the vegetation
indices and the cosine of the solar incidence angle (Table 6), and the larger correlation
coefficient indicated a bigger topographic effect. Only the correlation coefficients after
the correction of the PLC model increased, while the correlation coefficients decreased
the most after the correction of the Teillet regression. It indicated that Teillet regression
effectively reduced the topographic effect of VIs, but the PLC model had barely any no
effect. Moreover, the VIs corrected by the semi-empirical models (C and SCS + C) also
significantly reduced the impact of terrain. The result shows that, although the empirical
model is difficult to popularize in a large area, it may produce better results at a fine scale
based on very high-resolution images. Despite the physical model based on the radiation
transmission theory with clear physical significance yielding good performance in multiple
regional scale studies [33,46], it may be difficult to effectively eliminate the topographic
effect on the fine scale.

Table 6. Correlation coefficient (r) between vegetation indices and the cosine of the local solar
incidence angle before and after topographic correction (low correlation coefficient indicates small
topographic effect).

Original VI C PLC SCS + C T

EVI2 0.1834 0.0328 0.1834 0.1190 0.0004
NDVI 0.1833 0.0328 0.1835 0.1189 0.0004

RVI 0.1834 0.0328 0.1835 0.1189 0.0004

The effect of topographic correction is also affected by some other factors. Previous
studies have shown that vegetation indices with no band ratio form are more susceptible to
topographic fluctuations [32,47]. This phenomenon was not observed in this study, and
there was no significant difference in the performance of the three vegetation indices in the
AGB model. The landcover also has a great impact on the topographic correction models.
Some studies have found that the landcover stratification can improve the correction
effect of Teillet regression, which might be the reason for the better performance of Teillet
regression in this study. In addition, most of the current correction models are built on the
Lambertian assumption, while the land surface in the real environment is non-Lambertian.
The BRDF information can be introduced to improve the effect of correction. In general,
the performance of each model in the previous studies varied with different data sources
and environments. Although the empirical model showed the best correction result and
improved the accuracy of the AGB estimation in this study, it still needs to use more
simulated images to explore the optimal method of topographic correction using very
high-resolution data and the impact on the retrieval of important ecological indicators.

4.2. Advantages of VHI for AGB Estimation

The mutual correlation analysis results are shown in Figure 8a. Compared with the
optimal VI, height metric, and intensity metric, the correlation between VHI and AGB
reached more than 0.78, significantly higher than the three sub-indicators. The correlation
coefficient among the three sub-indicators was relatively low, with the highest correlation
coefficient of 0.61 between T-RVI and Hp50, while the average correlation coefficient between
VHI and the three sub-indicators reached 0.82. Figure 8b shows the importance ranking
of VHI and the optimal VI, height metric, and intensity metric in the RF model. VHI was
the most important variable in the RF model. When VHI was randomly disturbed, the
out-of-bag error was the largest, which reached 18.95%. The importance of Hp50 and Imax
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was lower, and T-RVI was the least important in the RF model. The above results show that
VHI can comprehensively represent the three sub-indicators and has higher importance in
the AGB retrieval model.
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We also selected two indicators commonly used in previous studies to compare with
VHI. Some studies [24] found that the optimal retrieval indicator of AGB can be obtained
by multiplying the mean value of VI and height. The calculation formula is as follows:

VH = VImean × Hmean (10)

where VImean is the original VI with the strongest correlation with AGB (EVI2). In addition,
researchers [17] found that the volume indicator (CVMVI) constructed by the pixel accu-
mulation of canopy height and VI can retrieve AGB with higher accuracy. In this study,
the CHM was obtained in LiDAR360, using the method of normalization based on DEM.
The pixels above 0 m within the quadrat buffer area were selected, and the CVMVI was
calculated as follows:

CVMVI =
n

∑
i=1

Ai × Hi ×VIi (11)

where VIi is the EVI2 value of pixel i, Ai is the area of pixel i, and Hi is the height of pixel i.
Table 7 shows the best accuracy result of VH and CVMVI in five univariate models. The

optimal models of the two indicators were obtained by logarithmic regression. The lowest
RMSE of VH was 300 g/m2, and the lowest RMSE of CVMVI was 307 g/m2. Compared
with the results in Table 5, the accuracy of the above two indicators is better than that of
the single VI or LiDAR metric, but lower than that of VHI. It shows that the estimation of
grassland AGB by VHI proposed in this paper under rugged terrain performed better than
VH and CVMVI.

Table 7. Validation results for AGB estimation using different variables.

Input Variables Model R2 MAE (g/m2) RMSE (g/m2) MPSE (%)

VH Logarithmic 0.413 224 300 29.9
CVMVI Logarithmic 0.389 227 307 31.2

4.3. Analysis of Possible Factors Affecting AGB Estimation

Unlike the previous grassland research based on LiDAR data, which is characterized
by flat terrain, small range, and low biomass, AGB retrieval of mountain grassland is a new
challenge. Although the VHI proposed in this study effectively improved the accuracy of
AGB estimation of mountain grassland, it was still limited by some factors.
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FVC is an important factor affecting the accuracy of AGB estimation. The scatter plot
in Figure 9a shows that the residual of AGB estimated by the optimal VHI model displays
an increasing trend with the increase of FVC of the quadrats. Especially for the quadrats
with FVC greater than 90%, the AGB residual reached more than 500 g/m2. It may be
caused by the saturation phenomenon of VI in a densely vegetated area. In addition, the
dense and uniform vegetation leads to a difficulty in the laser pulse penetrating the grass
to the ground [48,49]. The reduction of ground LiDAR points caused the large estimation
bias of canopy height in the high vegetation coverage area. Slope is another important
factor in this study. The scatter plot of Figure 9b shows that the residual of AGB increases
with the increase of the slope. The slope and aspect between pixels and within pixels
caused by topography have a direct impact on the estimation of vegetation parameters,
especially in high spatial resolution images. Additionally, the point clouds density could
be affected by the relative height difference brought by undulating terrain [25]. The Bubble
plot in Figure 9c shows the distribution of AGB residuals under different FVC and slope
conditions. It can be found that the quadrats with large residuals are concentrated in the top
right corner of the plot, i.e., the area with high FVC and a large slope, which also illustrates
the difficulty of accurate retrieval of AGB in mountain grassland.
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In addition to the above two factors, there are other factors that restrict the further
improvement of accuracy in this study. For example, there is wind-power equipment in the
study area, so it is difficult to reduce the flight height and increase the point cloud density
to ensure the flight safety of the UAV. More complex retrieval models such as deep learning
algorithms combined with VHI may perform better.

5. Conclusions

This study took mountain grassland as the research object, and a fast and accurate AGB
estimation method was proposed by using UAV LiDAR and high-resolution multispectral
data. The main conclusions are as follows:

(1) Based on the high-precision DEM obtained from LiDAR data, four methods were
used to correct the impact of topography on grassland AGB estimation in high-resolution
images. The results showed that the effect of empirical models was better than that of
semi-empirical and physical models. Compared with the original VI, the RMSE of AGB
estimation reduced about 10 g/m2 using the VI corrected by the Teillet regression.

(2) Height and intensity metrics were evaluated by their correlation coefficients with
AGB and performance in AGB retrieval models. The average level of grass height and the
high value of intensity had a stronger correlation with AGB. For height metrics, the RMSE
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of Hp50 in the logarithmic model was the lowest (322 g/m2). For intensity metrics, Imax

yielded higher accuracy, with RMSE around 333 g/m2.
(3) Based on the optimal VI after topographic correction, and the optimal height and

intensity metrics, a synthesized indicator, VHI, was proposed to estimate the AGB of moun-
tain grassland. Compared with the original VI, LiDAR metrics, and the other indicators
proposed in previous studies, VHI can effectively improve the estimation accuracy of
AGB in mountain grassland. The construction method of VHI is simple and integrates the
optimal spectral and LiDAR information. The accuracy of the VHI in univariate models
was not lower than that of the complex multivariate models (RF, SVM, SMR).

The method developed in this study showed high application potential in grassland
AGB estimation, especially in mountain grassland. The comparison results of topographic
correction methods can provide reference for future AGB estimation in rugged terrain
based on high-resolution images. Although the VHI proposed in this study yielded high
accuracy, it needs to be tested in various mountain grasslands. Additionally, the optimal
AGB estimation model was based on empirical models, which may not be directly used in
different environments.

The AGB estimation of mountain grassland is still faced with constraints such as high
FVC and rugged terrain. A terrain-following mode of UAV LiDAR is an option for future
study to overcome the topography impact. In addition, full-waveform LiDAR data can be
used to further improve overall accuracy, since they contain more information.
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