The Spatiotemporal Characteristics and Driving Factors of Dust Emissions in East Asia (2000–2021)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. MERRA-2
2.2.2. CALIPSO Data
2.2.3. ERA5/Land
2.2.4. Climate Indices
2.2.5. Other Datasets
2.3. Methods
2.3.1. Theil–Sen Median Trend Analysis and the Mann–Kendall Test
2.3.2. Correlation Analysis
3. Results and Discussion
3.1. Spatiotemporal Distribution of Dust Emissions
3.2. Interannual Variation and Trends in Dust Emissions
3.3. Correlation of Interannual Variation in Spring Dust Emissions with Climate Indices
3.4. Effect of Winter NAO/AO Coupling on Dust Emissions in Spring
3.4.1. Synoptic System
3.4.2. Possible Mechanism
3.5. Influence of Surface Conditions on Spring Dust Emissions
4. Conclusions
- (1)
- The TKD in the TB, the Turpan Basin, the Gurbantonggut Desert in the JB, and the GD in western IM and southern Mongolia were the main sources of dust emissions in East Asia. The dust emitted into the air was concentrated in the middle and lower troposphere, particularly at 0–2 km above the Earth’s surface.
- (2)
- The dust emissions in East Asia showed clear annual variation characteristics. Dust emissions increased significantly from March to May and gradually decreased from June onwards. April and May were the months with the highest emissions, whereas January and December had the lowest emissions. Interestingly, 2007 was the turning point in terms of largest monthly emissions for the 2000–2021 period. April had the highest emissions from 2000 to 2006, whereas from 2007 to 2021 May had the highest emissions. Regarding interannual variation trends, the eastern and southwestern TB, the northern JB, and parts of the GD in southern Mongolia had significantly increasing emissions over the past 22 years. However, the southwestern Tibetan Plateau, southwestern IM, and a small part of the northern Mongolian GD showed a significant downward trend.
- (3)
- There were significant negative correlations between the AO and NAO in winter and dust emissions in the following spring. In years with different AO/NAO phase couplings, dust emissions showed different change characteristics. In AO−/NAO− years, dust emissions increased abnormally in the northern TB, western IM, and southern Mongolia, whereas dust emissions in the JB and part of the southern TKD decreased. In AO−/NAO+ years, dust emissions in the GD of East Asia increased abnormally. In the AO+/NAO− year, emissions in southern Mongolia, western IM, and the northern region of the TB decreased abnormally, whereas those in the southern region of the TB and JB increased abnormally. AO+/NAO+ years had opposite trends to those in AO−/NAO+ years, with a significant reduction in dust emissions.
- (4)
- Through a composite analysis of atmospheric variables, the potential physical mechanism of the AO/NAO coupling on dust emissions in East Asia was studied. In AO−/NAO− years, the Asian polar vortex, Ural high ridge, EAT, and SH were stronger in the following spring. Most parts of East Asia are located in front of the Baikal trough and behind the Ural ridge, thus making them areas conducive to the formation of more cold events. Dust emissions in East Asia were accelerated by frequent cold air activity. The position of the Asian polar vortex in the AO−/NAO+ years was stronger to the south than normal, causing more polar cold air to be transported southward along the Siberian negative geopotential height anomaly region. Despite weakening of the SH, deepening and development of the Baikal trough increased the frequency and intensity of Siberian cold air entering East Asia. In the AO+/NAO− year, the position of the Asian polar vortex was west by north, the intensity of the EAT was weak, and the SH had a clear declining trend. However, the positive geopotential anomaly over northeast China and the negative geopotential anomaly over South Asia formed an abnormal convergence in northwest China, which resulted in a strong easterly wind anomaly over northwest China. At the same time, the strengthening of the Balkhash trough provided favorable conditions for gale weather in northwest China, leading to an abnormal increase in emissions in northwest China. The AO+/NAO+ annual polar vortex was northward, and the East Asian trough and Siberian High were weak, decreasing the frequency of cold air. Thus, the intensity of dust activity in East Asia was reduced, and emissions were subsequently significantly reduced.
- (5)
- Precipitation in the GD is low in spring, and the high near-surface temperature accelerated the evaporation of soil water, resulting in low soil water moisture. Extremely low precipitation and low soil moisture are not conducive to vegetation growth and reduce the adhesion and cohesion of the topsoil. Large areas of exposed, dry, and loose soil in the GD in East Asia make it highly susceptible to wind erosion and diffusion into the air.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, Z.Q.; Lau, W.K.M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M.G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; et al. Aerosol and monsoon climate interactions over Asia. Rev. Geophys. 2016, 54, 866–929. [Google Scholar] [CrossRef]
- Chen, S.Y.; Huang, J.P.; Li, J.X.; Jia, R.; Jiang, N.X.; Kang, L.T.; Ma, X.J.; Xie, T.T. Comparison of dust emissions, transport, and deposition between the Taklimakan Desert and Gobi Desert from 2007 to 2011. Sci. China Earth Sci. 2017, 60, 1338–1355. [Google Scholar] [CrossRef]
- Perlwitz, J.; Tegen, I.; Miller, R.L. Interactive soil dust aerosol model in the GISS GCM: 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols. J. Geophys. Res.-Atmos. 2001, 106, 18167–19192. [Google Scholar] [CrossRef]
- Choobari, O.A.; Zawar-Reza, P.; Sturman, A. The global distribution of mineral dust and its impacts on the climate system: A review. Atmos. Res. 2014, 138, 152–165. [Google Scholar] [CrossRef]
- Ross, A.D.; Holz, R.E.; Quinn, G.; Reid, J.S.; Xian, P.; Turk, F.J.; Posselt, D.J. Exploring the first aerosol indirect effect over Southeast Asia using a 10-year collocated MODIS, CALIOP, and model dataset. Atmos. Chem. Phys. 2018, 18, 12747–12764. [Google Scholar] [CrossRef] [Green Version]
- Tsikerdekis, A.; Zanis, P.; Georgoulias, A.K.; Alexandri, G.; Katragkou, E.; Karacostas, T.; Solomon, F. Direct and semi-direct radiative effect of North African dust in present and future regional climate simulations. Clim. Dynam. 2019, 53, 4311–4336. [Google Scholar] [CrossRef]
- Richon, C.; Dutay, J.C.; Dulac, F.; Wang, R.; Balkanski, Y. Modeling the biogeochemical impact of atmospheric phosphate deposition from desert dust and combustion sources to the Mediterranean Sea. Biogeosciences 2018, 15, 2499–2524. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Gong, S.L.; Zhao, T.L.; Arimoto, R.; Wang, Y.Q.; Zhou, Z.J. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett. 2003, 32, L01103. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.Z.; Zhu, X.Y.; Pan, H.X.; Ai, W.X.; Song, W.L.; Pan, Y.P. Changes of the relationship between spring sand dust frequency and large-scale atmospheric circulation. Atmos. Res. 2019, 226, 102–109. [Google Scholar] [CrossRef]
- Guan, Q.Y.; Sun, X.Z.; Yang, J.; Pan, B.T.; Zhao, S.L.; Wang, L. Dust storms in northern China: Long-term spatiotemporal characteristics and climate controls. J. Clim. 2017, 30, 6683–6700. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Gong, D.Y.; Mao, R.; Qiao, L.; Kim, S.J.; Liu, S.C. Possible influence of the Antarctic oscillation on haze pollution in North China. J. Geophys. Res.-Atmos. 2019, 124, 1307–1321. [Google Scholar] [CrossRef]
- He, S.P.; Gao, Y.Q.; Li, F.; Wang, H.J.; He, Y.C. Impact of Arctic Oscillation on the East Asian climate: A review. Earth-Sci. Rev. 2017, 164, 48–62. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.W.; Wang, B.; Qian, W.H. Why do dust storms decrease in northern China concurrently with the recent global warming? Geophys. Res. Lett. 2008, 35, l18702. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.J.; Wang, H.J. Analysis on the decadal scale variation of the dust storm in North China. Sci. China D 2005, 48, 2260–2266. [Google Scholar] [CrossRef]
- Wu, Y.F.; Zhang, R.J.; Han, Z.W.; Zeng, Z.M. Relationship between East Asian monsoon and dust weather frequency over Beijing. Adv. Atmos. Sci. 2010, 27, 1389–1398. [Google Scholar] [CrossRef]
- Sun, J.M.; Zhang, M.Y.; Liu, T.S. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. J. Geophys. Res.-Atmos. 2001, 106, 10325–10333. [Google Scholar] [CrossRef]
- Gong, S.L.; Zhang, X.Y.; Zhao, T.L.; Zhang, X.B.; Barrie, L.A.; McKendry, I.G.; Zhao, C.S. A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part II: Interannual variability and climate connections. J. Clim. 2006, 19, 104–122. [Google Scholar] [CrossRef]
- Nagashima, K.; Suzuki, Y.; Irino, T.; Nakagawa, T.; Tada, R.; Hara, Y.; Yamada, K.; Kurosaki, Y. Asian dust transport during the last century recorded in Lake Suigetsu sediments. Geophys. Res. Lett. 2016, 43, 2835–2842. [Google Scholar] [CrossRef] [Green Version]
- Mao, R.; Gong, D.Y.; Bao, J.D.; Fan, Y.D. Possible influence of Arctic Oscillation on dust storm frequency in North China. J. Geogr. Sci. 2011, 21, 207–218. [Google Scholar] [CrossRef]
- Gao, H.; Washington, R. Arctic oscillation and the interannual variability of dust emissions from the Tarim Basin: A TOMS AI based study. Clim. Dynam. 2010, 35, 511–522. [Google Scholar] [CrossRef]
- Liu, H.; Liu, X.D.; Dong, B.W. Influence of Central Siberian Snow-Albedo Feedback on the Spring East Asian Dust Cycle and Connection with the Preceding Winter Arctic Oscillation. J. Geophys. Res.-Atmos. 2018, 123, 13368–13385. [Google Scholar] [CrossRef]
- Mao, R.; Ho, C.H.; Shao, Y.P.; Gong, D.Y.; Kim, J. Influence of Arctic Oscillation on dust activity over northeast Asia. Atmos. Environ. 2011, 45, 326–337. [Google Scholar] [CrossRef]
- Gong, D.Y.; Mao, R.; Fan, Y.D. East Asian dust storm and weather disturbance: Possible links to the Arctic Oscillation. Int. J. Climatol. 2006, 26, 1379–1396. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, A.N.; Zhu, X.S.; Zhou, Y.; Huang, Y. The impact of the winter North Atlantic Oscillation on the frequency of spring dust storms over Tarim Basin in northwest China in the past half-century. Environ. Res. Lett. 2013, 8, 024026. [Google Scholar] [CrossRef] [Green Version]
- Fan, K.; Wang, H.J. Antarctic oscillation and the dust weather frequency in North China. Geophys. Res. Lett. 2004, 31, L10201. [Google Scholar] [CrossRef] [Green Version]
- Gong, D.Y.; Mao, R.; Shi, P.J.; Fan, Y.D. Correlation between east Asian dust storm frequency and PNA. Geophys. Res. Lett. 2007, 34, L14710. [Google Scholar] [CrossRef]
- Liu, J.; Wu, D.Y.; Liu, G.J.; Mao, R.; Chen, S.Y.; Ji, M.X.; Fu, P.Q.; Sun, Y.L.; Pan, X.L.; Jin, H.C.; et al. Impact of Arctic amplification on declining spring dust events in East Asia. Clim. Dynam. 2020, 54, 1913–1935. [Google Scholar] [CrossRef] [Green Version]
- Fan, K.; Xie, Z.M.; Wang, H.J.; Xu, Z.Q.; Liu, J.P. Frequency of spring dust weather in North China linked to sea ice variability in the Barents Sea. Clim. Dynam. 2018, 51, 4439–4450. [Google Scholar] [CrossRef]
- Lee, Y.G.; Kim, J.; Ho, C.H.; An, S.I.; Cho, H.K.; Mao, R.; Tian, B.J.; Wu, D.; Lee, J.N.; Kalashnikova, O.; et al. The effects of ENSO under negative AO phase on spring dust activity over northern China: An observational investigation. Int. J. Climatol. 2015, 35, 935–947. [Google Scholar] [CrossRef]
- Hara, Y.; Uno, I.; Wang, Z.F. Long-term variation of Asian dust and related climate factors. Atmos. Environ. 2006, 40, 6730–6740. [Google Scholar] [CrossRef]
- Jun, C.; Ban, Y.F.; Li, S.N. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef] [Green Version]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Clim. 2014, 24, 3624–3648. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Randles, C.A.; Da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef]
- Shi, L.M.; Zhang, J.H.; Yao, F.M.; Zhang, D.; Guo, H.D. Temporal variation of dust emissions in dust sources over Central Asia in recent decades and the climate linkages. Atmos. Environ. 2020, 222, 117176. [Google Scholar] [CrossRef]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.M.; Holben, B.; Dubovil, O.; Lin, S.J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res.-Atmos. 2001, 10, 20255–20273. [Google Scholar] [CrossRef]
- Colarco, P.R.; Nowottnick, E.P.; Randles, C.A.; Yi, B.Q.; Yang, P.; Kim, K.M.; Smith, J.A.; Bardeen, C.G. Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index. J. Geophys. Res.-Atmos. 2014, 119, 753–786. [Google Scholar] [CrossRef]
- Jing, Y.Y.; Zhang, P.; Chen, L.; Xu, N. Integrated analysis of dust transport and budget in a severe Asian dust event. Aerosol. Air Qual. Res. 2017, 17, 2390–2400. [Google Scholar] [CrossRef] [Green Version]
- Yao, W.R.; Che, H.Z.; Gui, K.; Wang, Y.Q.; Zhang, X.Y. Can MERRA-2 reanalysis data reproduce the three-dimensional evolution characteristics of a typical dust process in East Asia? A case study of the dust event in May 2017. Remote Sens. 2020, 12, 902. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.M.; Zhang, J.H.; Yao, F.M.; Zhang, D.; Guo, H.D. Drivers to dust emissions over dust belt from 1980 to 2018 and their variation in two global warming phases. Sci. Total Environ. 2021, 767, 144860. [Google Scholar] [CrossRef]
- Winker, D.M.; Tackett, J.L.; Getzewich, B.J.; Liu, Z.; Vaughan, M.A.; Rogers, R.R. The global 3-D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys. 2013, 13, 3345–3361. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.P.; Wang, T.H.; Wang, W.C.; Li, Z.Q.; Yan, H.R. Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res.-Atmos. 2014, 119, 11398–11416. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, D.; Huang, J.P.; Vaughan, M.; Uno, I.; Sugimoto, N.; Kittaka, C.; Trepte, C.; Wang, Z.; Hostetler, C.; et al. Airborne dust distributions over the Tibetan Plateau and surrounding areas derived from the first year of CALIPSO lidar observations. Atmos. Chem. Phys. 2008, 8, 5045–5060. [Google Scholar] [CrossRef] [Green Version]
- Tackett, J.L.; Winker, D.M.; Getzewich, B.J.; Vaughan, M.A.; Young, S.A.; Kar, J. CALIPSO lidar level 3 aerosol profile product: Version 3 algorithm design. Atmos. Meas. Tech. 2018, 11, 4129–4152. [Google Scholar] [CrossRef] [Green Version]
- Young, S.A.; Vaughan, M.A.; Garnier, A.; Tackett, J.L.; Lambeth, J.D.; Powell, K.A. Extinction and optical depth retrievals for CALIPSO’s Version 4 data release. Atmos. Meas. Tech. 2018, 11, 5701–5727. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Zhao, T.L.; Boiyo, R.; Chen, S.Y.; Lu, Z.Q.; Wu, Y.; Zhao, Y. Vertical structures of dust aerosols over East Asia based on CALIPSO retrievals. Remote Sens. 2019, 11, 701. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, L.; Günther, G.; Li, D.; Stein, O.; Wu, X.; Griessbach, S.; Heng, Y.; Konopka, P.; Müller, R.; Bärbel, V.; et al. From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys. 2019, 19, 3097–3124. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.Y.; Cao, X.F.; Li, Q.J.; Li, D.; Sun, J.C.; You, Z.J.; Sun, Q.Y. Evaluating the accuracy of ERA5 wave reanalysis in the water around China. J. Ocean. Univ. China 2021, 20, 1–9. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. Regional climate impacts of the Northern Hemisphere annular mode. Science 2001, 293, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.G.; Yuan, L.H.; Wang, W.J.; Cao, R.; Zhang, Y.F.; Shen, W.M. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Neeti, N.; Eastman, J.R. A contextual Mann-Kendall approach for the assessment of trend significance in image time series. Trans. Gis. 2011, 15, 599–611. [Google Scholar] [CrossRef]
- Song, H.Q.; Wang, K.; Zhang, Y.; Hong, C.B.; Zhou, S.H. Simulation and evaluation of dust emissions with WRF-Chem (v3. 7.1) and its relationship to the changing climate over East Asia from 1980 to 2015. Atmos. Environ. 2017, 167, 511–522. [Google Scholar] [CrossRef]
- Thompson, D.W.; Wallace, J.M. Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Clim. 2000, 13, 1000–1016. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.P.; Zhao, C.; Qian, Y.; Leung, L.R.; Yang, B. Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J. Geophys. Res.-Atmos. 2013, 118, 797–812. [Google Scholar] [CrossRef]
- Park, T.W.; Ho, C.H.; Yang, S.; Jeong, J.H. Influences of Arctic Oscillation and Madden-Julian Oscillation on cold surges and heavy snowfalls over Korea: A case study for the winter of 2009–2010. J. Geophys. Res.-Atmos. 2010, 115, 122. [Google Scholar] [CrossRef]
- Watanabe, M. Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J. Clim. 2004, 17, 4674–4691. [Google Scholar] [CrossRef]
- Huang, R.H.; Chen, J.L.; Wang, L.; Lin, Z.D. Characteristics, processes, and causes of the spatio-temporal variabilities of the East Asian monsoon system. Adv. Atmos. Sci. 2012, 29, 910–942. [Google Scholar] [CrossRef]
- Feng, G.L.; Zou, M.; Qiao, S.B.; Zhi, R.; Gong, Z.Q. The changing relationship between the December North Atlantic Oscillation and the following February East Asian trough before and after the late 1980s. Clim. Dynam. 2018, 51, 4229–4242. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Rashki, A.; Dumka, U.C.; Mofidi, A.; Kambezidis, H.D.; Psiloglou, B.E.; Karagiannis, D.; Petrinoli, K.; Gavriil, A. Atmospheric dynamics associated with exceptionally dusty conditions over the eastern Mediterranean and Greece in March 2018. Atmos. Res. 2019, 218, 269–284. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, H. Desertification in north China: Background, anthropogenic impacts and failures in combating it. Land. Degrad Dev. 2005, 16, 367–376. [Google Scholar] [CrossRef]
- An, L.C.; Che, H.Z.; Xue, M.; Zhang, T.H.; Wang, H.; Wang, Y.Q.; Zhou, C.H.; Zhao, H.J.; Gui, K.; Sun, T.Z.; et al. Temporal and spatial variations in sand and dust storm events in East Asia from 2007 to 2016: Relationships with surface conditions and climate change. Sci. Total Environ. 2018, 633, 452–462. [Google Scholar] [CrossRef]
- Peng, S.S.; Piao, S.L.; Zeng, Z.Z.; Ciais, P.; Zhou, L.M.; Li, L.Z.; Li, L.Z.; Myneni, R.B.; Yin, Y.; Zeng, H. Afforestation in China cools local land surface temperature. Proc. Natl. Acad. Sci. USA 2014, 111, 2915–2919. [Google Scholar] [CrossRef] [Green Version]
- Ravi, S.; Zobeck, T.M.; Over, T.M.; Okin, G.S.; D’odorico, P. On the effect of moisture bonding forces in air-dry soils on threshold friction velocity of wind erosion. Sedimentology 2006, 53, 597–609. [Google Scholar] [CrossRef]
β | |Z| | Trend Features |
---|---|---|
β > 0 | 2.576 ≤ |Z| | Extremely significant increase |
1.96 ≤ |Z|< 2.576 | Significant increase | |
1.645 ≤ |Z| < 1.96 | Slightly significant increase | |
|Z| < 1.645 | No significant increase | |
β = 0 | |Z| | No change |
β < 0 | |Z| > 1.645 | No significant decrease |
1.645 ≤ |Z| < 1.96 | Slightly significant decrease | |
1.96 ≤ |Z| < 2.576 | Significant decrease | |
2.576 ≤ |Z| | Extremely significant decrease |
AO | NAO | Typical Years |
---|---|---|
AO− | NAO+ | 2001, 2004, 2006, 2013, 2016, 2018 |
NAO− | 2003, 2010, 2011, 2021 | |
AO+ | NAO+ | 2000, 2002, 2005, 2007, 2008, 2012, 2014, 2015, 2017, 2019, 2020 |
NAO− | 2009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Chen, J.; Zhang, Y.; Xu, Y.; Yu, W. The Spatiotemporal Characteristics and Driving Factors of Dust Emissions in East Asia (2000–2021). Remote Sens. 2023, 15, 410. https://doi.org/10.3390/rs15020410
Wang N, Chen J, Zhang Y, Xu Y, Yu W. The Spatiotemporal Characteristics and Driving Factors of Dust Emissions in East Asia (2000–2021). Remote Sensing. 2023; 15(2):410. https://doi.org/10.3390/rs15020410
Chicago/Turabian StyleWang, Ning, Jian Chen, Yuanyuan Zhang, Yongming Xu, and Wenzheng Yu. 2023. "The Spatiotemporal Characteristics and Driving Factors of Dust Emissions in East Asia (2000–2021)" Remote Sensing 15, no. 2: 410. https://doi.org/10.3390/rs15020410
APA StyleWang, N., Chen, J., Zhang, Y., Xu, Y., & Yu, W. (2023). The Spatiotemporal Characteristics and Driving Factors of Dust Emissions in East Asia (2000–2021). Remote Sensing, 15(2), 410. https://doi.org/10.3390/rs15020410