Detection of the Monitoring Window for Pine Wilt Disease Using Multi-Temporal UAV-Based Multispectral Imagery and Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurement Data
2.3. UAV-Based Multispectral Data Acquisition and Preprocessing
2.4. Vegetation Index Selection
2.5. Data Analysis
2.5.1. Temporal Data Analysis
2.5.2. Classification Procedure
2.5.3. Definition of the Monitoring Window Period
3. Results
3.1. Monitoring Window Period of Infected Trees
3.1.1. Temporal Changes of the Number of Infected Trees
3.1.2. Monitoring Accuracy of Infected Trees
3.1.3. Multitemporal Change in Important Classification Parameters
3.2. Multitemporal Changes of Parameters of Trees at Different Infection Stages
3.2.1. Spectral Characteristics of Trees at Different Infection Stages
3.2.2. Classification Accuracy at Different Stages of Infection
3.2.3. Important Parameters Affecting Monitoring Accuracy at Different Stages of Infection
4. Discussion
4.1. Temporal Variation in Tree Numbers at Different Infection Stages
4.2. Important Parameters of Different Monitoring Window Periods
4.3. Monitoring Window Period
4.4. Advantages of Multitemporal Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Date | 23 July | |||||
---|---|---|---|---|---|---|
Reference data | Classified as | |||||
Infection stages | H | GA | E | M | L | UA |
H | 11 | 3 | 0 | 0 | 0 | 0.786 |
GA | 4 | 9 | 1 | 0 | 0 | 0.643 |
E | 0 | 3 | 1 | 0 | 0 | 0.250 |
M | 0 | 0 | 0 | 0 | 0 | NA |
L | 0 | 1 | 0 | 0 | 0 | 0 |
PA | 0.733 | 0.563 | 0.500 | NA | NA | |
WO | 0.636 | |||||
KAPPA | 0.388 | |||||
Date | 10 August | |||||
Infection stages | H | GA | E | M | L | UA |
H | 12 | 1 | 0 | 0 | 0 | 0.923 |
GA | 1 | 1 | 2 | 0 | 0 | 0.250 |
E | 1 | 1 | 8 | 3 | 0 | 0.615 |
M | 0 | 0 | 3 | 7 | 0 | 0.700 |
L | 0 | 0 | 0 | 0 | 2 | 1.000 |
PA | 0.857 | 0.333 | 0.615 | 0.700 | 1.000 | |
WO | 0.714 | |||||
KAPPA | 0.611 | |||||
Date | 24 August | |||||
Infection stages | H | GA | E | M | L | UA |
H | 17 | 0 | 0 | 0 | 0 | 1 |
GA | 2 | 0 | 2 | 0 | 0 | 0 |
E | 2 | 0 | 5 | 1 | 0 | 0.625 |
M | 0 | 0 | 1 | 14 | 2 | 0.824 |
L | 0 | 0 | 0 | 3 | 5 | 0.625 |
PA | 0.81 | NA | 0.625 | 0.778 | 0.714 | |
WO | 0.759 | |||||
KAPPA | 0.671 |
References
- Kim, N.; Jeon, H.W.; Mannaa, M.; Jeong, S.I.; Kim, J.; Kim, J.; Lee, C.; Park, A.R.; Kim, J.C.; Seo, Y.S. Induction of resistance against pine wilt disease caused by Bursaphelenchus xylophilus using selected pine endophytic bacteria. Plant Pathol. 2019, 68, 434–444. [Google Scholar] [CrossRef]
- Hunt, D. Pine wilt disease: A worldwide threat to forest ecosystems. Nematology 2009, 11, 315–316. [Google Scholar] [CrossRef] [Green Version]
- Abelleira, A.; Picoaga, A.; Mansilla, J.P.; Aguin, O. Detection of Bursaphelenchus Xylophilus, Causal Agent of Pine Wilt Disease on Pinus pinaster in Northwestern Spain. Plant Dis. 2011, 95, 776. [Google Scholar] [CrossRef] [PubMed]
- Futai, K. Pine Wood Nematode, Bursaphelenchus xylophilus. Annu. Rev. Phytopathol. 2013, 51, 61–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhang, R.; Chen, J. Species and dispersal ability of Bursaphelenchus xylophilus vector insects. J. Zhejiang For. Univ. 2007, 24, 7. [Google Scholar]
- Zhang, R.; You, J.; Lee, J. Detecting Pine Trees Damaged by Wilt Disease Using Deep Learning Techniques Applied to Multi-Spectral Images. IEEE Access 2022, 10, 39108–39118. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, P.; Shi, Y.; Wu, H.; Yu, H.; Jiang, S. Difference analysis of pine wilt disease in Liaoning and other endemic areas in China. J. Beijing For. Univ. 2021, 43, 155–160. [Google Scholar]
- Ye, J. Analysis on the Epidemic Status, Control Techniques and Countermeasures of Pine Wood Nematode Disease in China. For. Sci. 2019, 55, 1–10. [Google Scholar]
- Yu, H.; Wu, H.; Huang, R.; Wang, J.; Zhang, R.; Song, Y. Isolation and identification of Bursaphelenchus xylophilus in Fushun, Liaoning. China For. Pests 2020, 39, 6–10. [Google Scholar]
- Pan, L.; Li, Y.; Liu, Z.; Meng, F.; Chen, J.; Zhang, X. Isolation and identification of Bursaphelenchus xylophilus from Korean pine in Fengcheng City, Liaoning. China For. Pests 2019, 38, 1–4. [Google Scholar]
- Li, Y.; Zhang, X. Trend analysis of the invasion and expansion of Bursaphelenchus xylophilus. China For. Pests 2018, 37, 1–4. [Google Scholar]
- Kim, S.; Lee, W.; Lim, C.; Kim, M.; Kafatos, M.C.; Lee, S.; Lee, S. Hyperspectral analysis of pine wilt disease to determine an optimal detection index. Forests 2018, 9, 115. [Google Scholar] [CrossRef] [Green Version]
- Syifa, M.; Park, S.; Lee, C. Detection of the pine wilt disease tree candidates for drone remote sensing using artificial intelligence techniques. Engineering 2020, 6, 919–926. [Google Scholar] [CrossRef]
- Zhang, B.; Ye, H.; Lu, W.; Huang, W.; Wu, B.; Hao, Z.; Sun, H. A Spatiotemporal Change Detection Method for Monitoring Pine Wilt Disease in a Complex Landscape Using High-Resolution Remote Sensing Imagery. Remote Sens. 2021, 13, 2083. [Google Scholar] [CrossRef]
- Xu, H. Pathophysiology of Black pine and Masson pine after Natural Infection with Pine xylophilus. Diploma Thesis, Beijing Forestry University, Beijing, China, 2013. [Google Scholar]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. Early detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery. For. Ecol. Manag. 2021, 497, 119493. [Google Scholar] [CrossRef]
- Thomas, J.R.; Namken, L.N.; Oerther, G.F.; Brown, R.G. Estimating leaf water content by reflectance measurements 1. Agron. J. 1971, 63, 845–847. [Google Scholar] [CrossRef]
- Tao, H.; Li, C.; Cheng, C.; Jiang, L.; Hu, H. Research progress in remote sensing monitoring of pine wood nematode disease color. For. Sci. Res. 2020, 33, 172–183. [Google Scholar]
- Dawson, T.P.; Curran, P.J. Technical note A new technique for interpolating the reflectance red edge position. Int. J. Remote Sens. 1998, 19, 2133–2139. [Google Scholar] [CrossRef]
- Proença, D.N.; Francisco, R.; Santos, C.V.; Lopes, A.; Fonseca, L.; Abrantes, I.M.; Morais, P.V. Diversity of bacteria associated with Bursaphelenchus xylophilus and other nematodes isolated from Pinus pinaster trees with pine wilt disease. PLoS ONE 2010, 5, e15191. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Tong, Z.; Lan, Y.; Huang, Z. Detection and Location of Dead Trees with Pine Wilt Disease Based on Deep Learning and UAV Remote Sensing. Agriengineering 2020, 2, 294–307. [Google Scholar] [CrossRef]
- Tao, H.; Li, C.; Zhao, D.; Deng, S.; Hu, H.; Xu, X.; Jing, W. Deep learning-based dead pine tree detection from unmanned aerial vehicle images. Int. J. Remote Sens. 2020, 41, 8238–8255. [Google Scholar] [CrossRef]
- You, J.; Zhang, R.; Lee, J. A Deep Learning-Based Generalized System for Detecting Pine Wilt Disease Using RGB-Based UAV Images. Remote Sens. 2021, 14, 150. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.; Zheng, H.; Chen, X.Y. Research on pine wood nematode surveillance technology based on unmanned aerial vehicle remote sensing image. J. Chin. Agric. Mech. 2020, 41, 170–175. [Google Scholar]
- Zhang, R.; Xia, L.; Chen, L.; Xie, C.; Chen, M.; Wang, W. Recognition of wilt wood caused by pine wilt nematode based on U-Net network and unmanned aerial vehicle images. Trans. Chin. Soc. Agricult. Eng. 2020, 36, 61–68. [Google Scholar]
- Iordache, M.; Mantas, V.; Baltazar, E.; Pauly, K.; Lewyckyj, N. A machine learning approach to detecting pine wilt disease using airborne spectral imagery. Remote Sens. 2020, 12, 2280. [Google Scholar] [CrossRef]
- Einzmann, K.; Atzberger, C.; Pinnel, N.; Glas, C.; Boeck, S.; Seitz, R.; Immitzer, M. Early detection of spruce vitality loss with hyperspectral data: Results of an experimental study in Bavaria, Germany. Remote Sens. Environ. 2021, 266, 112676. [Google Scholar] [CrossRef]
- Wu, B.; Liang, A.; Zhang, H.; Zhu, T.; Zou, Z.; Yang, D.; Tang, W.; Li, J.; Su, J. Application of conventional UAV-based high-throughput object detection to the early diagnosis of pine wilt disease by deep learning. For. Ecol. Manag. 2021, 486, 118986. [Google Scholar] [CrossRef]
- Yu, R.; Luo, Y.; Li, H.; Yang, L.; Huang, H.; Yu, L.; Ren, L. Three-Dimensional Convolutional Neural Network Model for Early Detection of Pine Wilt Disease Using UAV-Based Hyperspectral Images. Remote Sens. 2021, 13, 4065. [Google Scholar] [CrossRef]
- Yu, R.; Luo, Y.; Zhou, Q.; Zhang, X.; Wu, D.; Ren, L. A machine learning algorithm to detect pine wilt disease using UAV-based hyperspectral imagery and LiDAR data at the tree level. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102363. [Google Scholar] [CrossRef]
- Ye, H.; Huang, W.; Huang, S.; Cui, B.; Dong, Y.; Guo, A.; Ren, Y.; Jin, Y. Identification of banana fusarium wilt using supervised classification algorithms with UAV-based multi-spectral imagery. Int. J. Agric. Biol. Eng. 2020, 13, 136–142. [Google Scholar] [CrossRef]
- Song, Y.; Zang, X.; Liu, Y.; Wang, Y. Relationship between room temperature changes and pine xylophilus segregation. For. Dis. Pest Commun. 1992, 21–22. [Google Scholar]
- Zhou, Q.; Zhang, X.; Yu, L.; Ren, L.; Luo, Y. Combining WV-2 images and tree physiological factors to detect damage stages of Populus gansuensis by Asian longhorned beetle (Anoplophora glabripennis) at the tree level. For. Ecosyst. 2021, 8, 1–12. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Gobron, N.; Pinty, B.; Verstraete, M.M.; Widlowski, J. Advanced vegetation indices optimized for up-coming sensors: Design, performance, and applications. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2489–2505. [Google Scholar]
- Gitelson, A.A.; Vina, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 5. [Google Scholar] [CrossRef] [Green Version]
- Vincini, M.; Frazzi, E.; D’Alessio, P. A broad-band leaf chlorophyll vegetation index at the canopy scale. Precis. Agric. 2008, 9, 303–319. [Google Scholar] [CrossRef]
- Hunt Jr, E.R.; Daughtry, C.; Eitel, J.U.; Long, D.S. Remote sensing leaf chlorophyll content using a visible band index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, H.; Skidmore, A.K.; Darvishzadeh, R.; Heurich, M. Timing of red-edge and shortwave infrared reflectance critical for early stress detection induced by bark beetle (Ips typographus, L.) attack. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101900. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Lichtenthaler, H.K. Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm. J. Plant Physiol. 1996, 148, 501–508. [Google Scholar] [CrossRef]
- Harfi, T.; Tabatabai, S.J. Effect of Nitrogen Level on Growth, and Relationships between Petiole Nitrate Level, Leaf Chlorophyll Index, and Hypocotyl Nitrate Level of Radish. Isfahan Univ. Technol.-J. Crop Prod. Process. 2015, 4, 203–213. [Google Scholar]
- Suits, G.H. The calculation of the directional reflectance of a vegetative canopy. Remote Sens. Environ. 1971, 2, 117–125. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, J.; Chen, J.; Chen, X. Spatiotemporal fusion method to simultaneously generate full-length normalized difference vegetation index time series (SSFIT). Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102333. [Google Scholar] [CrossRef]
- Roujean, J.; Breon, F. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Uto, K.; Takabayashi, Y.; Kosugi, Y.; Ogata, T. Hyperspectral analysis of Japanese Oak wilt to determine normalized wilt index. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; Volume 2, p. 295. [Google Scholar]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Waser, L.T.; Küchler, M.; Jütte, K.; Stampfer, T. Evaluating the potential of WorldView-2 data to classify tree species and different levels of ash mortality. Remote Sens. 2014, 6, 4515–4545. [Google Scholar] [CrossRef] [Green Version]
- Healey, S.P.; Cohen, W.B.; Zhiqiang, Y.; Krankina, O.N. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Dash, J.P.; Watt, M.S.; Pearse, G.D.; Heaphy, M.; Dungey, H.S. Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. Isprs-J. Photogramm. Remote Sens. 2017, 131, 1–14. [Google Scholar] [CrossRef]
- Gao, B.; Yu, L.; Ren, L.; Zhan, Z.; Luo, Y. Early Detection of Dendroctonus valens Infestation with Machine Learning Algorithms Based on Hyperspectral Reflectance. Remote Sens. 2022, 14, 1373. [Google Scholar] [CrossRef]
- Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y. Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer–a case study of small farmlands in the South of China. Agric. For. Meteorol. 2020, 291, 108096. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.; Dai, H.; Xu, B.; Yang, H.; Feng, H.; Li, Z.; Yang, X. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullen, K. Early Detection of Mountain Pine Beetle Damage in Ponderosa Pine forests of the Black Hills Using Hyperspectral and WorldView-2 Data. Master’s Thesis, Minnesota State University, Mankato, MI, USA, 2016. [Google Scholar]
- Gutierrez, D.D. Machine Learning and Data Science: An Introduction to Statistical Learning Methods with R.; Technics Publications: Bernards, NJ, USA, 2015. [Google Scholar]
- Sothe, C.; De Almeida, C.M.; Schimalski, M.B.; La Rosa, L.; Castro, J.; Feitosa, R.Q.; Dalponte, M.; Lima, C.L.; Liesenberg, V.; Miyoshi, G.T. Comparative performance of convolutional neural network, weighted and conventional support vector machine and random forest for classifying tree species using hyperspectral and photogrammetric data. Gisci. Remote Sens. 2020, 57, 369–394. [Google Scholar] [CrossRef]
- Lesmeister, C. Mastering Machine Learning with R; Packt Publishing Ltd.: Birmingham, UK, 2017. [Google Scholar]
- Rumpf, T.; Mahlein, A.; Steiner, U.; Oerke, E.; Dehne, H.; Plümer, L. Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput. Electron. Agric. 2010, 74, 91–99. [Google Scholar] [CrossRef]
- Oommen, T.; Misra, D.; Twarakavi, N.K.; Prakash, A.; Sahoo, B.; Bandopadhyay, S. An objective analysis of support vector machine based classification for remote sensing. Math Geosci. 2008, 40, 409–424. [Google Scholar] [CrossRef]
- Guo, Y.; Fu, Y.; Hao, F.; Zhang, X.; Wu, W.; Jin, X.; Bryant, C.R.; Senthilnath, J. Integrated phenology and climate in rice yields prediction using machine learning methods. Ecol. Indic. 2021, 120, 106935. [Google Scholar] [CrossRef]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
- Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [Google Scholar] [CrossRef]
- Schwaller, M.R. A geobotanical investigation based on linear discriminant and profile analyses of airborne thematic mapper simulator data. Remote Sens. Environ. 1987, 23, 23–34. [Google Scholar] [CrossRef]
- Gong, P.; Pu, R.; Yu, B. Conifer species recognition: An exploratory analysis of in situ hyperspectral data. Remote Sens. Environ. 1997, 62, 189–200. [Google Scholar] [CrossRef]
- Clark, M.L.; Roberts, D.A.; Clark, D.B. Hyperspectral discrimination of tropical rain forest tree species at leaf to crown scales. Remote Sens. Environ. 2005, 96, 375–398. [Google Scholar] [CrossRef]
- Lobo, A. Image segmentation and discriminant analysis for the identification of land cover units in ecology. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1136–1145. [Google Scholar] [CrossRef]
- Xu, Z. Research on Subtropical Forest Monitoring Method Based on UAV Remote Sensing and AI Algorithm. Diploma Thesis, Jiangxi Agricultural University, Nanchang, China, 2021. [Google Scholar]
- Xu, Z.; Guo, X.; Zhu, A.; He, X.; Zhao, X.; Han, Y.; Subedi, R. Using deep convolutional neural networks for image-based diagnosis of nutrient deficiencies in rice. Comput. Intell. Neurosci. 2020, 2020, 7307252. [Google Scholar] [CrossRef]
- Yu, R.; Huo, L.; Huang, H.; Yuan, Y.; Gao, B.; Liu, Y.; Yu, L.; Li, H.; Yang, L.; Ren, L.; et al. Early detection of pine wilt disease tree candidates using time-series of spectral signatures. Front. Plant Sci. 2022, 13, 1000093. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.B.; Kim, E.S.; Lee, S.H. An analysis of spectral pattern for detecting pine wilt disease using ground-based hyperspectral camera. Korean J. Remote Sens. 2014, 30, 665–675. [Google Scholar] [CrossRef] [Green Version]
- Qiao, R.; Ghodsi, A.; Wu, H.; Chang, Y.; Wang, C. Simple weakly supervised deep learning pipeline for detecting individual red-attacked trees in VHR remote sensing images. Remote Sens. Lett. 2020, 11, 650–658. [Google Scholar] [CrossRef]
- Li, F.; Liu, Z.; Shen, W.; Wang, Y.; Wang, Y.; Ge, C.; Sun, F.; Lan, P. A Remote Sensing and Airborne Edge-Computing Based Detection System for Pine Wilt Disease. IEEE Access 2021, 9, 66346–66360. [Google Scholar] [CrossRef]
- Sun, Z.; Ibrayim, M.; Hamdulla, A. Detection of Pine Wilt Nematode from Drone Images Using UAV. Sensors 2022, 22, 4704. [Google Scholar] [CrossRef]
- Park, H.G.; Yun, J.P.; Kim, M.Y.; Jeong, S.H. Multichannel Object Detection for Detecting Suspected Trees With Pine Wilt Disease Using Multispectral Drone Imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2021, 14, 8350–8358. [Google Scholar] [CrossRef]
PWD Infection Stage | Healthy Stage | Green Attack Stage | Early Stage | Middle Stage | Late Stage |
---|---|---|---|---|---|
UAV (30 m) | |||||
Ground | |||||
Needles |
Abbreviation | Name | Formula | Reference |
---|---|---|---|
NDVI | Normalize difference vegetation indices | (ρNIR − ρRed)/(ρNIR + ρRed) | [34] |
NDRE | Normalize difference red-edge indices | (ρNIR − ρRed Edge)/(ρNIR + ρRed Edge) | [35] |
GLI | Green leaf index | 2 × (ρGreen − ρRed − ρBlue)/2 × (ρGreen + ρRed − ρBlue) | [36] |
CIG | Chlorophyll index green | (ρNIR/ρGreen) − 1 | [37] |
CVI | Chlorophyll vegetation index | ρNIR(ρRed/ρGreen2) | [38] |
NGRDI | Normalize difference Green/red | (ρGreen − ρRed)/(ρGreen + ρRed) | [39] |
PBI | Plant biochemical index | (ρNIR)/(ρGreen) | [40] |
GNDVI | Green normalized difference vegetation index | (ρNIR − ρGreen)/(ρNIR + ρGreen) | [41] |
LCI | Leaf chlorophyll index | (ρNIR − ρRed Edge)/(ρNIR + ρRed) | [42] |
RVI | Ratio vegetation index | ρNIR/ρRed | [43] |
EVI | Enhanced vegetation index | 2.5(ρNIR − ρRed)/(ρNIR + 6ρRed − 7.5ρBlue + 1) | [44] |
DVI | Difference vegetation index | ρNIR − ρRed | [45] |
RDVI | Re-normalized difference vegetation index | SQRT (NDVI × DVI) | [46] |
TVI | Triangular vegetation index | 60(ρNIR − ρGreen) − 100 (ρRed − ρGreen) | [47] |
VARI | Vegetation atmospherically resistant index | (ρGreen − ρRed)/(ρGreen+ρRed − ρBlue) | [48] |
NWI | Normalized wilt index | NWI = −NDGI × (NDVI + NDGI) NDGI = (ρRed − ρGreen)/(ρRed + ρGreen) | [49] |
PSRI | Plant Senescence Reflectance Index | (ρRed − ρBlue)/ρRed Edge | [50] |
BR | Blue ratio | (ρRed/ρBlue) × (ρGreen/ρBlue) × (ρRed Edge/ρBlue) × (ρNIR/ρBlue) | [51] |
Date | Tukey’s Multiple Comparisons Test | Mean Diff. | 95.00% CI of Diff. | Adjusted p Value |
---|---|---|---|---|
23 July | RF vs. SVM | −0.006733 | −0.05320 to 0.03973 | 0.9374 |
RF vs. LDA | 0.04377 | −0.002696 to 0.09024 | 0.0695 | |
SVM vs. LDA | 0.05050 | 0.004037 to 0.09697 | 0.0295 | |
10 August | RF vs. SVM | −0.007937 | −0.05440 to 0.03853 | 0.9141 |
RF vs. LDA | 0.03968 | −0.006784 to 0.08615 | 0.1107 | |
SVM vs. LDA | 0.04762 | 0.001153 to 0.09409 | 0.0432 | |
17 August | RF vs. SVM | 0.01961 | −0.02686 to 0.06607 | 0.5792 |
RF vs. LDA | −0.01961 | −0.06607 to 0.02686 | 0.5792 | |
SVM vs. LDA | −0.03922 | −0.08568 to 0.007250 | 0.1164 | |
24 August | RF vs. SVM | 0.03292 | −0.01354 to 0.07939 | 0.2177 |
RF vs. LDA | 0.06379 | 0.01732 to 0.1103 | 0.0040 | |
SVM vs. LDA | 0.03086 | −0.01560 to 0.07733 | 0.2612 | |
2 September | RF vs. SVM | 0.002137 | −0.04433 to 0.04860 | 0.9935 |
RF vs. LDA | −0.04274 | −0.08920 to 0.003731 | 0.0785 | |
SVM vs. LDA | −0.04487 | −0.09134 to 0.001594 | 0.0609 | |
22 September | RF vs. SVM | 0.02469 | −0.02177 to 0.07116 | 0.4218 |
RF vs. LDA | 0.06702 | 0.02055 to 0.1135 | 0.0023 | |
SVM vs. LDA | 0.04233 | −0.004138 to 0.08879 | 0.0823 | |
12 October | RF vs. SVM | −0.004831 | −0.05130 to 0.04164 | 0.9672 |
RF vs. LDA | −0.02415 | −0.07062 to 0.02231 | 0.4376 | |
SVM vs. LDA | −0.01932 | −0.06579 to 0.02714 | 0.5884 |
Date | 23 July | 10 August | 24 August | ||||||
---|---|---|---|---|---|---|---|---|---|
Infection stages | UA | WO | KAPPA | UA | WO | KAPPA | UA | WO | KAPPA |
Healthy | 0.786 | 0.636 | 0.388 | 0.923 | 0.714 | 0.611 | 1.000 | 0.759 | 0.671 |
Green attack | 0.643 | 0.250 | 0 | ||||||
Early | 0.250 | 0.615 | 0.625 | ||||||
Middle | NA | 0.700 | 0.824 | ||||||
Late | 0 | 1.000 | 0.625 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Yu, L.; Yu, R.; Zhou, Q.; Li, J.; Zhang, X.; Ren, L.; Luo, Y. Detection of the Monitoring Window for Pine Wilt Disease Using Multi-Temporal UAV-Based Multispectral Imagery and Machine Learning Algorithms. Remote Sens. 2023, 15, 444. https://doi.org/10.3390/rs15020444
Wu D, Yu L, Yu R, Zhou Q, Li J, Zhang X, Ren L, Luo Y. Detection of the Monitoring Window for Pine Wilt Disease Using Multi-Temporal UAV-Based Multispectral Imagery and Machine Learning Algorithms. Remote Sensing. 2023; 15(2):444. https://doi.org/10.3390/rs15020444
Chicago/Turabian StyleWu, Dewei, Linfeng Yu, Run Yu, Quan Zhou, Jiaxing Li, Xudong Zhang, Lili Ren, and Youqing Luo. 2023. "Detection of the Monitoring Window for Pine Wilt Disease Using Multi-Temporal UAV-Based Multispectral Imagery and Machine Learning Algorithms" Remote Sensing 15, no. 2: 444. https://doi.org/10.3390/rs15020444
APA StyleWu, D., Yu, L., Yu, R., Zhou, Q., Li, J., Zhang, X., Ren, L., & Luo, Y. (2023). Detection of the Monitoring Window for Pine Wilt Disease Using Multi-Temporal UAV-Based Multispectral Imagery and Machine Learning Algorithms. Remote Sensing, 15(2), 444. https://doi.org/10.3390/rs15020444