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Abstract

:

Pine wilt disease (PWD) has caused huge economic and environmental losses since it invaded China. Although early monitoring is an effective way to control this hazard, the monitoring window for the early stage is hard to identify, and varies in different hosts and environments. We used UAV-based multispectral images of Pinus thunbergii forest in East China to identify the change in the number of infected trees in each month of the growing season. We built classification models to detect different PWD infection stages by testing three machine learning algorithms—random forest, support vector machine, and linear discriminant analysis—and identified the best monitoring period for each infection stage (namely, green attack, early, middle, and late). From the obtained results, the early monitoring window period was determined to be in late July, whereas the monitoring window for middle and late PWD stages ranged from mid-August to early September. We also identified four important vegetation indices to monitor each infection stage. In conclusion, this study demonstrated the effectiveness of using machine learning algorithms to analyze multitemporal multispectral data to establish a window for early monitoring of pine wilt disease infestation. The results could provide a reference for future research and guidance for the control of pine wilt disease.
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1. Introduction


Pine wilt disease is caused by the pinewood nematode Bursaphelenchus xylophilus (Steiner & Buhrer) Nickle, which is mainly transmitted by insects of the genus Monochamus [1,2,3,4]. The main transmission vectors in China are Monochamus alternatus (Hope) and Monochamus saltuarius (Gebler) [5,6]. Vector insects spread pinewood nematodes to the host tree when they feed on branches and lay eggs in tree trunks, resulting in the death of the trees. B. xylophilus was first discovered in China in 1982 on the black pine of the Sun Yat-sen Mausoleum in Nanjing [7]. In the last 40 years, pine wilt disease has gradually expanded nationwide and killed billions of pine trees, causing direct and indirect economic losses of over 100 billion yuan [8]. At present, there are 17 species of pine trees that are naturally infected by pine wilt disease in China [7,9,10], and four species are found in Shandong epidemic areas: Pinus thunbergia (Parl.), P. densiflora (Sieb. et Zucc.), P. massoniana (Lamb.) and P. tabuliformis (Carr.) [11]. According to the latest announcement of the State Forestry and Grassland Administration, pine wilt disease in China in 2021 is spread over 721 epidemic areas in 17 provinces (autonomous regions and municipalities) (State Forestry and Grassland Administration Announcement, 2021 no. 5). It can be considered one of the most serious and costly forest-related disasters recorded in China.



At present, the most commonly adopted control measure is the logging of infected trees [12,13]. Accurate monitoring is the basis for the effective felling of diseased trees [14]. However, traditional ground surveys are time-consuming and labor-intensive. High-resolution remote sensing can effectively solve this disadvantage. The most significant visible changes in pine trees infected with pinewood nematodes include two features: the discoloration of pine needles, and the reduction in pine resin secretion. Both of them are due to the changes in physiological parameters (such as photosynthesis and water content) and biochemical parameters (such as chlorophyll content) inside the pine trees [15]. Compared with needles infected by PWD, healthy needles exhibit higher reflectance in blue and green bands and lower reflectance in the red band [16]. Under the stress of PWD, plants will block the water metabolism of leaf cells, destroy the cell structure and reduce the content of internal pigments. These changes will lead to the decrease of absorption in the red band and the increase in spectral reflectance [17,18,19]. These physiological and biochemical transformations can be detected through changes in the spectral values of remote sensing images, making it possible for remote sensing monitoring of susceptible pine trees at early stages [20].



In recent years, research on monitoring pine wilt disease using unmanned autonomous vehicles (UAV) as data sources has been very extensive, and can be roughly divided into the following aspects. To begin with, there was the monitoring of diseased trees at the late stage of pine wilt disease based on RGB images and multispectral images, primarily focusing on the identification and classification of dead trees [21,22,23]. Li et al. [24] used a UAV with an RGB camera and an image segmentation algorithm based on the combination of the ultra-green feature factor and the maximum interclass variance method (ExG + Otsu) to identify dead trees with an accuracy of 90.4%. Zhang et al. [25] used UAV aerial photography to acquire RGB images of infected pine forests over large areas, and combined them with the deep learning segmentation network U-Net to carry out the image segmentation of infected pine trees with a recognition accuracy of 95.17%. However, because visible light reflectance is generally not suitable for the early monitoring of infected trees, there is little research in this area.



Hyperspectral UAV data have higher spectral resolution and are often used in high-precision early monitoring [26,27]. A few studies have used hyperspectral data for early monitoring of pine wilt disease [28,29]. Yu et al. [30] proposed a new approach combining the metrics of UAV-based hyperspectral imaging and light detection and ranging (LiDAR) data to precisely predict pine wilt disease infection stages at the tree level, obtaining good accuracy (overall accuracy (OA) 73.96%, kappa 0.66). However, hyperspectral image processing is complex and expensive and is not suitable for large-scale applications. There have also been relevant studies on the early detection of pine wilt disease using UAV multispectral data. Yu et al. [16] used multispectral UAV data of infected pine forests and employed two object detection algorithms (Faster R-CNN and YOLOv4) and two traditional feature extraction-based machine learning algorithms (random forest, RF, and support vector machine, SVM) to identify infected pines with an accuracy of 60.98–66.7%. The current early monitoring was aimed at identifying infected trees when their canopy has already turned yellow-green, but this was not the real green attack stage. The infected trees with green crowns were defined as trees in the green attack stage, which need to be carefully monitored. In early monitoring, most studies analyzed single images rather than multitemporal data [31].



According to the previous research studies, we believe that the use of multispectral images to analyze the green attack stage will be helpful for the early monitoring of pinewood nematode disease. In this study, we used a UAV with multispectral sensors to capture multitemporal images to observe the spectral changes of infected trees damaged by pinewood nematodes. This paper aimed to: (1) quantify changes of infected trees in different months of one infection cycle; (2) build classification models of healthy and diseased trees by analyzing multitemporal multispectral data with three machine learning algorithms—random forest (RF), support vector machine (SVM), and linear discriminant analysis (LDA); and (3) explore the monitoring window period of different infection stages, especially the early monitoring window. The results documented in this article provide technical support for the comprehensive control of pine wilt disease.




2. Materials and Methods


2.1. Study Area


A study area (Figure 1) of 6.52 ha was selected in Muping District, Yantai City, Shandong Province, East China (37.4499°N, 121.6997°E). The area has a warm, temperate, continental monsoon climate, with an annual average temperature of 13.2 °C, annual average precipitation of 57.25 mm, and annual average humidity of 64.58%. The tree species in the study area was the Japanese black pine (P. thunbergii). Japanese black pine is the main species of Yantai coastal protection forest, which has the functions of windbreak and sand fixation, water and soil conservation, and water conservation. It plays a unique and irreplaceable role in disaster prevention, mitigation and maintenance of ecological balance in coastal areas. According to the relevant forestry departments, the area was determined to be a pine wilt disease endemic area.




2.2. Field Measurement Data


The ground survey was carried out from May to November 2021. Ground surveys were conducted once a month. We established three plots of 30 × 30 m in the study area and inspected 15–20 pine trees in each plot. We selected some trees with slight discoloration from May to July to detect pinewood nematodes, mainly including damaged branches and wood cores. We used the Bellman funnel method [32] to obtain nematode extracts and used morphological and molecular identification techniques to detect whether the sampled trees were infected with pine wilt disease. At first, we obtained a low detection rate (3.92–25.33%). Therefore, we continued to sample and apply the same detection method once the tree crowns turned yellow-green and achieved a detection rate of 88.3%, which showed that these sample trees were infected with pine wilt disease. As a result, we found that at the early stage of infection, that is, when there was little difference between the tree crowns of diseased and healthy trees, it was difficult to detect pinewood nematodes due to their scarcity.




2.3. UAV-Based Multispectral Data Acquisition and Preprocessing


This study used the DJI Phantom 4 Multispectral Edition (Figure 2) to acquire images for the study and used virtual RTK (real-time kinematic) services for precise positioning. The device was equipped with a visible light lens and five multispectral lenses, including five bands, namely, blue (450 nm ± 16 nm), green (560 nm ± 16 nm), red (650 nm ± 16 nm), red edge (730 nm ± 16 nm), and near-infrared (840 nm ± 26 nm), and collected both visible light and multispectral images. The sensor has a field of view of 62.7° and a focal length of 5.74 mm. From 20 June to 24 November, the frequency of UAV image data acquisition was once every 3 days. The UAV images were taken in clear weather from 9:00 to 14:00. The flight altitude and speed were 30 m and 3 m/s, respectively, and the ground sample distance (GSD) was 1.59 cm/pixel. The front overlap and side overlap were set to 75%, and the flight cycle was 3 days. The standard board is covered with PTFE (polytetrafluoroethylene) material, which is a Lambertian reflector, for correction and calibration of the multispectral data. The reflectance of the standard board was known (0.6 in our study).



Due to the poor lighting conditions of some shooting dates, this part of the observation data was removed, and only the data of the remaining 10 observation dates were analyzed. Therefore, we selected multispectral images for 10 dates to build a multitemporal data sequence for the analysis. Terra v3.5.5 was used to perform atmospheric correction, radiation correction and stitching of UAV images. The final output was an orthophoto mosaic. ENVI v5.3 was used to analyze the stitched images in the next step. Regions of interest (ROIs) were traced to extract the canopy of sample trees in the superimposed stitched images. The ROI of each tree is manually extracted, and each ROI has more than 1000 pixels.



We selected a total of 246 Japanese black pine trees, of which 123 were healthy and 123 were infected. Previous studies mainly divided PWD infection stage into four classes: healthy, early stage, middle stage, and late stage [16]. We added a green attack stage between the healthy and early stages by combining multitemporal UAV multispectral images. This experiment was mainly based on the visual interpretation of multitemporal UAV images to determine the green attack stage. Firstly, we determined the UAV image of the sample tree in its early stage (the tree crown turns yellow-green for the first time, such as 30 July). Secondly, we selected the UAV images of the same sample tree in the green attack stage (the tree crown is green) for tree crown extraction in the UAV images from 20 to 29 July (within 10 days). The green attack stage was defined as the infected tree in the first 10 days before the early stage of infection (yellow-green), and was characterized by the canopy still being green. Pinewood nematodes were detected in all infected trees at the middle stage. Detailed tree apparent characteristics and classification criteria are shown in Table 1. Temporal changes in canopy color are shown in Figure 3.




2.4. Vegetation Index Selection


Referring to previous spectral studies on discolored trees and considering the changes in chlorophyll, water content and other aspects after tree damage [12,16,33], we analyzed 23 parameters: 5 individual bands and 18 vegetation indices. Specific parameters are shown in Table 2.



UAV data were collected from June to November. In order to exclude changes in target spectral indices not caused by pine wilt disease, such as changes caused by physiological reactions in the growing season, climate events, and atmospheric effects, and accurately obtain changes in spectral characteristics caused by pine wilt disease, this experiment referred to previous studies [52,53] to detrend the spectral data and reduce spectral differences caused by factors other than pine wilt disease. The formula used is as follows [53]:


Si = (S − Sμ)/Sδ



(1)




where S is the original spectral index value, Si is the rescaled spectral index, and Sμ and Sδ are the mean and standard deviation values, respectively, for the healthy trees within the same time step. Using this method, the time series of the spectral indices can be detrended in a robust and easy-to-implement manner, provided that the healthy trees selected were representative of the average forest conditions within a time step.



We further explored the impact of multitemporal differences in spectral characteristic data on model accuracy by calculating all parameters in the following way [14]:


Ci = Ai − Oi



(2)




where Ci represents the spectral difference between different dates, Ai represents the detrended spectral parameter value, and Oi represents the detrended initial value of each spectral parameter (the spectral parameter values of the same tree on 20 June were taken as the initial values because most trees in the study area were healthy on this date).




2.5. Data Analysis


The overall analysis process is shown in Figure 4.



2.5.1. Temporal Data Analysis


We explored the temporal relationship between the changes in tree spectral characteristics and disease progression of infected trees. We believed that the change in number of trees from the healthy stage to the infection stage was a good proxy of the dynamic processes of this disease in the study area. The cross-correlation factor (CCF) available from the “stats” R package was calculated between the temporal change in the number of healthy trees and the spectral indices examined. This analysis was designed to examine whether the spectral indices and the quantitative temporal change in healthy trees varied together or whether there was a temporal lag that would indicate that a spectral index was sensitive earlier or later to the temporal number change in healthy trees. Based on the statistical distribution of the temporal changes of parameters selected in the study, we set a certain range as “no-change” region. Our studies used the 25th and 75th percentiles of the indices extracted from healthy trees to define this region. Plots were considered stressed if the 75th percentile detrended spectral index values dropped below the lower bound of the no-change region or the 25th percentile detrended spectral index values rose above the upper bound of the no-change region.




2.5.2. Classification Procedure


We used RF, SVM and LDA for classifying the infected trees. RF is a nonparametric algorithm widely used in classification and regression. It is suitable for solving classification problems with a small number of samples and a large number of variables and is robust against multicollinearity and overfitting [54,55]. Two important parameters needed to be defined: the number of decision trees (ntree) and the number of variables/features at each split node (mtry) [56]. We randomly set relevant parameters and compared the model results to confirm the optimal parameter values. Therefore, we set the parameter “ntree” to 1000 and the parameter “mtry” to 3. The RF classification models were established using the statistical software R version 4.0.4 with the package “randomForest” [57,58].



SVM is another supervised machine learning algorithm applied for classification analysis. It has strong generalization ability and can simultaneously minimize empirical errors and maximize the geometric edge region [59]. It builds optimal hyperplanes in high-dimensional space based on the theory of minimizing structural risks. These hyperplanes increase the distance (margin) between the closest points in the two categories as much as possible, and the points lying on the boundaries, called support vectors, determine the margin [58,59,60,61]. The SVM type used in the experiment is C-classification, and the kernel is radial basis [62]. For SVM, the regularization or complexity parameter (C) and radial kernel search parameter (gamma) chosen to minimize the cross-validation error are default values. Relevant studies have proved that this method can effectively classify remote sensing data [54,63]. SVM classification models were established using R statistical software version 4.0.4 with the package “e1071.”



LDA is an effective subspace technique, as it optimizes the Fisher score [64,65]. In addition, it does not require the tuning of free parameters. These good capabilities have resulted in its extensive use and practical exploitation in remote sensing applications mainly focused on image classification and feature reduction. LDA has been used in geobotanical investigation, conifer species recognition, classification of tropical rainforest tree species, and identification of land-cover units in ecology, among others [66,67,68,69]. The class proportions for the training set were used as the prior probabilities of class membership in the study. LDA classification models were established using R statistical software version 4.0.4 with the package “MASS.”



We used RF to calculate the importance of each feature (i.e., the vegetation indices and bands used for the classifications), and took MDA (mean decrease accuracy) under each observation date as the evaluation basis of the importance of each parameter in the classification accuracy of the infected trees.



We used the weighted overall accuracy (WO) value to explore the temporal change in classification accuracy. At the same time, we used Student’s t-test to analyze the significance of differences in the precision of the models fitted by the same algorithm, but with different data at each date. We used 60% of the data as the training set and 40% as the validation set, according to the requirements. The training set includes canopy spectral values and vegetation indices of 114 trees on 10 dates, and the validation set includes canopy spectral values and vegetation indices of 76 trees on 10 dates. The same algorithm was repeated three times, and the samples were randomly selected each time. The final result was a combination of the three results. The number of trees in each infection stage varied considerably on different observation dates. Therefore, we chose weighted precision to evaluate the total precision of the algorithm at different infection stages. The weighted overall accuracy was calculated as follows [70,71]:


WO = ∑ (UAi×Ni/N)



(3)




where UAi is the UA (user’s accuracy) of stage i, Ni is the number of stage i, and N is the total number of samples in the same observation day.



With regard to the weighted accuracy, after fully considering the number of samples, we set two thresholds for WO: 0.7, indicating relatively high accuracy, and 0.8, indicating high precision.




2.5.3. Definition of the Monitoring Window Period


The main goal of this study was to define the monitoring window period for pine wilt disease in the study area. We defined the monitoring window as the key observation period in the entire observation period during which a tree goes from healthy to dead. This period needs to meet two conditions: high precision and high proportion of infected trees. In this experiment, we assumed that high precision was 0.7 and above. Considering the demand of the algorithm for the number of samples, a high proportion was defined to be 20% and above.






3. Results


3.1. Monitoring Window Period of Infected Trees


3.1.1. Temporal Changes of the Number of Infected Trees


Combined with the multitemporal UAV image analysis, the time sequence changes of the number of five different infection stages of 123 infected trees are shown in Figure 5. From late June to mid-August, the number of trees in the healthy stage gradually decreased to fewer than 20. The results showed that there were two growth peaks in the number of trees at the early infection stage (late July and late August), corresponding to the two emergence peaks of M. alternatus in late June and late July. In the early stage, the number of infected trees gradually increased from the beginning, reached a peak around the first 10 days of August, and then gradually decreased until the end of August. There was a slight recovery, and then it gradually decreased. The number of infected trees in the middle stage gradually increased from the beginning, reached a peak in late August, and then gradually decreased. The number of trees in the late stage had been rising continuously since late July, and finally, more than 97.6% had changed to the late stage.




3.1.2. Monitoring Accuracy of Infected Trees


The WO values of the six curves increased gradually with the change in observation time (Figure 6). In late July, the precision of each model was as follows—RF: 0.645; RF-C: 0.675; SVM: 0.684; SVM-C: 0.693; LDA: 0.719; LDA-C: 0.680. On 10 August, the precision of each model was as follows—RF: 0.792; RF-C: 0.877; SVM: 0.829; SVM-C: 0.846; LDA: 0.864; LDA-C: 0.886. In the last 10 days of September, the precision of each model was as follows—RF: 0.999; RF-C: 1; SVM: 0.996; SVM-C: 1; LDA: 0.996; LDA-C: 0.991. It could be seen that the accuracy of the model calculated by using the Ci data had improved for most observation dates compared with the accuracy of the model calculated by using the Ai data. Taking the RF model as an example, from 23 July to 2 September, the accuracy of the model fitted with the Ci data was significantly improved compared with the model fitted with the Ai data.




3.1.3. Multitemporal Change in Important Classification Parameters


In this study, we focused on the period when the number of trees in the green attack stage (23 July) and the middle stage (24 August) significantly increased (Figure 7). On 23 July, NDRE, LCI, red edge, NIR and red had the most significant impact on accuracy. On 10 August, PSRI, green NDVI, CIG, PBI and NDVI had the most significant impact on accuracy.



We compared the original and the detrended values of each parameter of healthy and infected samples (Figure A1 of Appendix A). There were subtle multitemporal changes in the original values of an infected tree, but after detrending, there were obvious downward or upward trends. The multitemporal changes of LCI, Red, PSRI, NDVI, NWI, VARI and RVI were more significant. From 10 August, red and PSRI increased above the no-change region. Meanwhile, LCI, NDVI, NWI, VARI and RVI fell below the no-change region.



The multitemporal change in the red spectral characteristics of infected trees was particularly evident. Therefore, we used CCF to analyze the correlation between the quantitative temporal change in healthy trees and the temporal change in the red spectral values. The correlations were largest when the lag was equal to zero. This indicated that while the spectral indices were accurate indicators of the infection, they did not provide an earlier indication of stress compared with the UAV observations.





3.2. Multitemporal Changes of Parameters of Trees at Different Infection Stages


3.2.1. Spectral Characteristics of Trees at Different Infection Stages


Considering that the spectral characteristics of the targets in images of different observation dates differed slightly, we chose trees in different stages of the same day to compare their spectral characteristics. The results in Figure 8 show variations in the spectral characteristics of the red, red edge and NIR bands of trees at different infection stages. For example, the red band reflectance in the middle and the late stages was higher than those of the healthy, green attack, and early stages. The red edge and NIR reflectance of the stages with the greatest crown discoloration were lower than those of the stage with no or no significant discoloration of the crown.




3.2.2. Classification Accuracy at Different Stages of Infection


The results in Section 3.2.1 demonstrated that the accuracy obtained by fitting the model with Ci is higher than that obtained by fitting the model with Ai. Accuracy of the three algorithms increased as the infection stage progressed (Figure 9). The overall trend was the same as the results in Section 3.1.2. Before 17 August, the discrimination accuracy based on the three algorithms was lower than 0.7 and exceeded 0.8 after 2 September.



Accuracy of the models fitted by each algorithm on the same date showed that there was no significant difference in the precision of the models fitted by RF and SVM on the same observation date (Table 3). We selected the RF model and drew a confusion matrix for several key dates with improved accuracy (Table A1). The classification accuracy of each infection stage under different dates is shown in Table 4. The results showed that the WO and KAPPA continued to increase and the accuracy of each infection stage continued to increase. The number of samples at each stage also increased progressively; thus, the accuracy of each stage increased.




3.2.3. Important Parameters Affecting Monitoring Accuracy at Different Stages of Infection


The early monitoring window period and the middle and late infection window period were determined according to the multitemporal changes in the number of infected trees in different stages and the RF accuracy. The images of July and August were selected. The ranking results of parameter importance under each observation date are shown in Figure 10. On 23 July, the top five descending MDA parameters were NDRE, LCI, red, PSRI, and NWI. On 10 August, the top five descending MDA parameters were PSRI, NDVI, LCI, NWI, and green NDVI. On 24 August, the top five descending MDA parameters were PSRI, NDVI, NWI, VARI and NGRDI.



Due to the harm of pine wilt disease, the pigment and water content of the leaves decreased, and the spectral characteristics of the leaves changed. The reflectance of leaves in the red band increased, while the reflectance of the red edge and near-infrared bands decreased, and this change was relatively obvious in the early stage of infection. Therefore, the vegetation index constructed based on the reflectance of the above three bands was more sensitive to changes in physiological indicators than other vegetation indices, such as NDRE, LCI, PSRI, etc.






4. Discussion


Based on the multitemporal multispectral images and machine learning algorithms, this paper established the window periods of different infection stages of P. thunbergii along the coast of Yantai, Shandong with high monitoring accuracy. In comparison to previous studies, the results of this paper clarified that the classification accuracy of the model can be effectively improved by using multitemporal multispectral data.



4.1. Temporal Variation in Tree Numbers at Different Infection Stages


The results showed that there were two growth peaks in the number of trees at the early infection stage (late July and late August), corresponding to the two emergence peaks of M. alternatus in late June and late July. Based on this, we made it clear that the changes in the crown color of the trees in the study area can be observed with the naked eye about one month after being damaged by pine wilt disease. In this study, we also established a multitemporal change rule based on the number of infected trees in different infection stages, which allowed us to determine the monitoring window period of different infection stages based on the discrimination accuracy of different models. Multitemporal data are used to improve the monitoring accuracy in the early stages of disease, and there are few experiments involving the multitemporal changes of the number of infected trees [14,30,72].




4.2. Important Parameters of Different Monitoring Window Periods


The results showed that the effect of vegetation indices on the accuracy increased gradually with observation time. The MDA values of PSRI, NDRE, LCI and NDVI in different monitoring periods were all high, indicating that these indices played an important role in the monitoring of pine wilt at different infection stages. These indices are mostly based on the red, red edge and NIR bands. Our results were consistent with the conclusion that these bands and vegetation indices are important for the monitoring of pine wilt disease [12,26,73]. However, the CCF result indicated that the red band value provided an accurate indicator of UAV measured values, but did not provide an earlier indication of stress than the UAV observations.




4.3. Monitoring Window Period


In this paper, we built a window period for monitoring different stages of infected trees for different actual monitoring needs. In terms of early monitoring, we focused on comparing the differences between the healthy stage and the green attack stage. At the end of July, the WO of the three algorithms fitting the model exceeded 0.7, and the number of trees in the green attack infection stage was at a peak. Therefore, the early monitoring window period of pine wilt disease in the study area was late July. Because there are ancient trees in the study area, accurate monitoring of infected trees in the early monitoring window will help the relevant departments take relevant control measures as soon as possible.



On the other hand, it is very important to determine the monitoring window in the middle and late infection stages of pine forests in the epidemic areas where pine trees are seriously affected by pine wilt disease. From the middle of August to the beginning of September, there was a large proportion of trees in the middle infection period, and the WO of the models fitted by the three algorithms exceeded 0.8. Based on the analysis of the multitemporal data, we found that the increase in the number of samples in the middle and late infection stages was the main reason for the improvement in accuracy as the observation date progressed. Therefore, we believed that the monitoring window period for the middle and late stages of pine wilt disease was from mid-August to early September. The monitoring of infected trees in the middle and late stages of infection would help to count and locate the number of infected trees to be cleaned and take effective measures to prevent and control them.



In this paper, we tried to clarify the window period of different infection stages in the research area (Figure 11), but the determination of the monitoring window period of PWD in different regions needed to consider more factors. When it was extended to a wider area, factors such as environmental conditions in different areas, local tree species, and the life history of local media needed to be further considered in detail [16,29,72].




4.4. Advantages of Multitemporal Data


The results showed that detrending spectral data could not only effectively identify stressed trees but also effectively reduce the noise caused by weather or other factors. In addition, compared with the model calculated with Ai data, the accuracy of the model calculated with Ci data was improved on most observation dates. It can be seen that the time-series differences of parameters obtained by multitemporal observations can effectively improve the classification accuracy of the model. From 23 July to 2 September, the accuracy of the model fitted by RF was further improved by 3–8%. Operationally, relevant personnel should acquire multispectral UAV images according to the life history of the vector beetles. The images should be taken before peak emergence and one month and three months after peak emergence. The damage of pine wilt disease at different infection stages could be accurately monitored by fitting the model presented here.



Since the early monitoring of infection in this article mainly focused on the green attack stage, there were few discussions on this stage in existing articles. Therefore, the comparison of the early detection accuracy of infection mainly focused on the comparison of the early stage, because the monitoring accuracy for the PWD early stage on different dates continued to change, and the number of infected trees was the main reason for the change. Considering that in forestry work, when there was a certain number of infected trees, the work carried out can maximize the cost savings and achieve the expected results. Therefore, this paper compared the early detection accuracy on August 10, when the number of trees in the early stage of infection reached its peak, with the accuracy of early detection of PWD detection in other studies.



Compared with the early monitoring accuracy of infection obtained by using single-temporal multispectral data, this experiment has the following advantages. First, we have obtained a higher monitoring accuracy. The accuracy obtained by using the RF fitting model is 0.615, which is about 12.6% higher than the 0.489 obtained by using the Faster R-CNN fitting model in other experiments [16]. Second, we have made it clear that higher early detection accuracy can be obtained at a relatively early time. Other experiments using single-temporal data can only obtain monitoring accuracy for a specific day. Third, we can focus on monitoring the infected trees in the green attack stage.



Many studies on remote sensing of pine wilt disease have focused on using various algorithms to improve the classification accuracy of damaged wood (red crown) and dead wood (gray crown), but there are still few studies on the monitoring date [74,75,76,77]. Because of unsuitable weather conditions during the observation period, this experiment lacked more frequent data in June and July. Increasing the observation frequency and exploring the data potential under poor lighting conditions might help to narrow the time range of the monitoring window period. At the same time, using multitemporal hyperspectral data for analysis and selecting more algorithms, such as deep learning, could further improve the accuracy of the early monitoring window period.





5. Conclusions


In this paper, time series of multispectral UAV images were used to successfully monitor pine wilt disease in coastal black pine forests. First, in the healthy and early stages, the green attack stage was further proposed as the key stage of early monitoring. Second, multitemporal UAV images illustrated the temporal changes in the number of trees in each infection stage. Third, LDA, SVM and RF were used to fit the trend spectrum data, and the infection monitoring window period was defined. The early monitoring window period was the end of July, and the monitoring window period for the middle and late stages of pine wilt disease was from the middle of August to the beginning of September. Fourth, the order of different parameters under different monitoring purposes was clarified through RF. The results showed that PSRI, NDRE, LCI and NDVI were of great significance in monitoring different infection stages. NDRE is the best vegetation index for early detection. The results of this paper provide data support for precise monitoring and scientific prevention and control of pine wilt disease.



We believe that accurate monitoring is the basis for effective control of pine wilt disease. At present, we mainly focus on using traditional algorithms to analyze multitemporal and multispectral data, fully mining the positive impact of multitemporal data on classification accuracy, and reducing the difficulty of practical application. From the division of infection stage, we mainly monitor the green attack stage to achieve the purpose of early monitoring. In the future, we can pay more attention to new findings and new methods of multitemporal multispectral data processing and achieve higher monitoring accuracy. The establishment of monitoring window period is conducive to early detection of damaged trees, and helps forestry departments to take control measures, such as cutting down damaged trees. The fallen trees will be burned or crushed on the spot to kill nematodes and prevent large-scale forest destruction.
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Appendix A


The timing changes of each parameter are shown in Figure A1 below.
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Figure A1. Multitemporal change in each parameter. Upper and lower red dotted lines indicate the extent of the “no-change” region. The no-change region was defined as the 25th and 75th percentiles of the spectral value prior to infection (20 June 2020). The black horizontal line is the median line; the diamond point an abnormal value; and the square point in the middle of the box is the mean value. The range of the box line is 1.5 IQR. (a) NDRE; (b) LCI; (c) red edge; (d) NIR; (e) red; (f) PSRI; (g) NWI; (h) VARI; (i) NDVI; (j) RVI. 
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Table A1. Confusion matrix for several key days.
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Date

	
23 July






	
Reference data

	
Classified as




	
Infection stages

	
H

	
GA

	
E

	
M

	
L

	
UA




	
H

	
11

	
3

	
0

	
0

	
0

	
0.786




	
GA

	
4

	
9

	
1

	
0

	
0

	
0.643




	
E

	
0

	
3

	
1

	
0

	
0

	
0.250




	
M

	
0

	
0

	
0

	
0

	
0

	
NA




	
L

	
0

	
1

	
0

	
0

	
0

	
0




	
PA

	
0.733

	
0.563

	
0.500

	
NA

	
NA

	




	
WO

	
0.636

	

	

	

	

	




	
KAPPA

	
0.388

	

	

	

	

	




	
Date

	
10 August




	
Infection stages

	
H

	
GA

	
E

	
M

	
L

	
UA




	
H

	
12

	
1

	
0

	
0

	
0

	
0.923




	
GA

	
1

	
1

	
2

	
0

	
0

	
0.250




	
E

	
1

	
1

	
8

	
3

	
0

	
0.615




	
M

	
0

	
0

	
3

	
7

	
0

	
0.700




	
L

	
0

	
0

	
0

	
0

	
2

	
1.000




	
PA

	
0.857

	
0.333

	
0.615

	
0.700

	
1.000

	




	
WO

	
0.714

	

	

	

	

	




	
KAPPA

	
0.611

	

	

	

	

	




	
Date

	
24 August




	
Infection stages

	
H

	
GA

	
E

	
M

	
L

	
UA




	
H

	
17

	
0

	
0

	
0

	
0

	
1




	
GA

	
2

	
0

	
2

	
0

	
0

	
0




	
E

	
2

	
0

	
5

	
1

	
0

	
0.625




	
M

	
0

	
0

	
1

	
14

	
2

	
0.824




	
L

	
0

	
0

	
0

	
3

	
5

	
0.625




	
PA

	
0.81

	
NA

	
0.625

	
0.778

	
0.714

	




	
WO

	
0.759

	

	

	

	

	




	
KAPPA

	
0.671

	

	

	

	

	








Note: NA means not applicable.
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Figure 1. (a) Location of the study area; (b) UAV orthophoto of the study area. 
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Figure 2. (a) DJI Phantom 4 Multispectral Edition; (b) multispectral camera with six images; lenses; (c) an RGB sample along with the reflectance in the different multispectral bands. 
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Figure 3. Temporal changes in the canopy color of infected trees. The text above the date of the picture indicates different stages of infection, and H, GA, E, M, and L represent healthy, green attack, early, middle, and late, respectively. 






Figure 3. Temporal changes in the canopy color of infected trees. The text above the date of the picture indicates different stages of infection, and H, GA, E, M, and L represent healthy, green attack, early, middle, and late, respectively.



[image: Remotesensing 15 00444 g003]







[image: Remotesensing 15 00444 g004 550] 





Figure 4. Flowchart of the adopted analysis process. 
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Figure 5. Temporal variation in tree numbers at different infection stages. The red discontinuous line represents that the number is 20. 
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Figure 6. Temporal variation in classification accuracy of infected trees (the red discontinuous line from bottom to top represents that WO is 0.7, 0.8, 1.0). The classifications (RF, SVM and LDA) were performed using the basic values and the difference values (indicated by C). RF: random forest; SVM: support vector machine; LDA: linear discriminant analysis. The symbol * indicates significant differences (p < 0.05). 
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Figure 7. Parameter importance ranking (a) 23 July; (b) 24 August. 
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Figure 8. Canopy spectral reflectance at each infection stage. 
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Figure 9. Weighted accuracy of each infection stage. The red dotted line from bottom to top represents 0.7 and 0.8. 
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Figure 10. Parameter importance ranking. The numbers in the picture represent the MDA rank of each parameter. 
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Figure 11. Overview of monitoring period for different PWD infection stage. The patterns indicate data collection dates. Insect patterns indicated peak eclosion time. 
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Table 1. Detailed apparent tree characteristics and classification criteria.






Table 1. Detailed apparent tree characteristics and classification criteria.





	PWD Infection Stage
	Healthy Stage
	Green Attack Stage
	Early Stage
	Middle Stage
	Late Stage





	UAV (30 m)
	 [image: Remotesensing 15 00444 i001]
	 [image: Remotesensing 15 00444 i002]
	 [image: Remotesensing 15 00444 i003]
	 [image: Remotesensing 15 00444 i004]
	 [image: Remotesensing 15 00444 i005]



	Ground
	 [image: Remotesensing 15 00444 i006]
	 [image: Remotesensing 15 00444 i007]
	 [image: Remotesensing 15 00444 i008]
	 [image: Remotesensing 15 00444 i009]
	 [image: Remotesensing 15 00444 i010]



	Needles
	 [image: Remotesensing 15 00444 i011]
	 [image: Remotesensing 15 00444 i012]
	 [image: Remotesensing 15 00444 i013]
	 [image: Remotesensing 15 00444 i014]
	 [image: Remotesensing 15 00444 i015]
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Table 2. Vegetation indices analyzed in this study.






Table 2. Vegetation indices analyzed in this study.





	Abbreviation
	Name
	Formula
	Reference





	NDVI
	Normalize difference vegetation indices
	(ρNIR − ρRed)/(ρNIR + ρRed)
	[34]



	NDRE
	Normalize difference red-edge indices
	(ρNIR − ρRed Edge)/(ρNIR + ρRed Edge)
	[35]



	GLI
	Green leaf index
	2 × (ρGreen − ρRed − ρBlue)/2 × (ρGreen + ρRed − ρBlue)
	[36]



	CIG
	Chlorophyll index green
	(ρNIR/ρGreen) − 1
	[37]



	CVI
	Chlorophyll vegetation index
	ρNIR(ρRed/ρGreen2)
	[38]



	NGRDI
	Normalize difference Green/red
	(ρGreen − ρRed)/(ρGreen + ρRed)
	[39]



	PBI
	Plant biochemical index
	(ρNIR)/(ρGreen)
	[40]



	GNDVI
	Green normalized difference vegetation index
	(ρNIR − ρGreen)/(ρNIR + ρGreen)
	[41]



	LCI
	Leaf chlorophyll index
	(ρNIR − ρRed Edge)/(ρNIR + ρRed)
	[42]



	RVI
	Ratio vegetation index
	ρNIR/ρRed
	[43]



	EVI
	Enhanced vegetation index
	2.5(ρNIR − ρRed)/(ρNIR + 6ρRed − 7.5ρBlue + 1)
	[44]



	DVI
	Difference vegetation index
	ρNIR − ρRed
	[45]



	RDVI
	Re-normalized difference vegetation index
	SQRT (NDVI × DVI)
	[46]



	TVI
	Triangular vegetation index
	60(ρNIR − ρGreen) − 100 (ρRed − ρGreen)
	[47]



	VARI
	Vegetation atmospherically resistant index
	(ρGreen − ρRed)/(ρGreen+ρRed − ρBlue)
	[48]



	NWI
	Normalized wilt index
	NWI = −NDGI × (NDVI + NDGI)

NDGI = (ρRed − ρGreen)/(ρRed + ρGreen)
	[49]



	PSRI
	Plant Senescence Reflectance Index
	(ρRed − ρBlue)/ρRed Edge
	[50]



	BR
	Blue ratio
	(ρRed/ρBlue) × (ρGreen/ρBlue) × (ρRed Edge/ρBlue) × (ρNIR/ρBlue)
	[51]







Note: ρi is the reflectance at wavelength i and SQRT is square root.
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Table 3. The difference comparison results of the accuracy of the three algorithms under each date.






Table 3. The difference comparison results of the accuracy of the three algorithms under each date.





	
Date

	
Tukey’s Multiple Comparisons Test

	
Mean Diff.

	
95.00% CI of Diff.

	
Adjusted p Value






	
23 July

	
RF vs. SVM

	
−0.006733

	
−0.05320 to 0.03973

	
0.9374




	
RF vs. LDA

	
0.04377

	
−0.002696 to 0.09024

	
0.0695




	
SVM vs. LDA

	
0.05050

	
0.004037 to 0.09697

	
0.0295




	
10 August

	
RF vs. SVM

	
−0.007937

	
−0.05440 to 0.03853

	
0.9141




	
RF vs. LDA

	
0.03968

	
−0.006784 to 0.08615

	
0.1107




	
SVM vs. LDA

	
0.04762

	
0.001153 to 0.09409

	
0.0432




	
17 August

	
RF vs. SVM

	
0.01961

	
−0.02686 to 0.06607

	
0.5792




	
RF vs. LDA

	
−0.01961

	
−0.06607 to 0.02686

	
0.5792




	
SVM vs. LDA

	
−0.03922

	
−0.08568 to 0.007250

	
0.1164




	
24 August

	
RF vs. SVM

	
0.03292

	
−0.01354 to 0.07939

	
0.2177




	
RF vs. LDA

	
0.06379

	
0.01732 to 0.1103

	
0.0040




	
SVM vs. LDA

	
0.03086

	
−0.01560 to 0.07733

	
0.2612




	
2 September

	
RF vs. SVM

	
0.002137

	
−0.04433 to 0.04860

	
0.9935




	
RF vs. LDA

	
−0.04274

	
−0.08920 to 0.003731

	
0.0785




	
SVM vs. LDA

	
−0.04487

	
−0.09134 to 0.001594

	
0.0609




	
22 September

	
RF vs. SVM

	
0.02469

	
−0.02177 to 0.07116

	
0.4218




	
RF vs. LDA

	
0.06702

	
0.02055 to 0.1135

	
0.0023




	
SVM vs. LDA

	
0.04233

	
−0.004138 to 0.08879

	
0.0823




	
12 October

	
RF vs. SVM

	
−0.004831

	
−0.05130 to 0.04164

	
0.9672




	
RF vs. LDA

	
−0.02415

	
−0.07062 to 0.02231

	
0.4376




	
SVM vs. LDA

	
−0.01932

	
−0.06579 to 0.02714

	
0.5884
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Table 4. Confusion matrix for several key days.






Table 4. Confusion matrix for several key days.





	
Date

	
23 July

	
10 August

	
24 August






	
Infection stages

	
UA

	
WO

	
KAPPA

	
UA

	
WO

	
KAPPA

	
UA

	
WO

	
KAPPA




	
Healthy

	
0.786

	
0.636

	
0.388

	
0.923

	
0.714

	
0.611

	
1.000

	
0.759

	
0.671




	
Green attack

	
0.643

	
0.250

	
0




	
Early

	
0.250

	
0.615

	
0.625




	
Middle

	
NA

	
0.700

	
0.824




	
Late

	
0

	
1.000

	
0.625
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