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Abstract: Coastal dune ecosystems are highly threatened, and one of the strongest pressures is
invasive alien plants (IAPs). Mitigating the negative effects of IAPs requires development of optimal
identification and mapping protocols. Remote sensing offers innovative tools that have proven to
be very valuable for studying IAPs. In particular, unmanned aerial vehicles (UAVs) can be very
promising, especially in the study of herbaceous invasive species, yet research in UAV application
is still limited. In this study, we used UAV images to implement an image segmentation approach
followed by machine learning classification for mapping a dune clonal invader (Carpobrotus sp. pl.),
calibrating a total of 27 models. Our study showed that: (a) the results offered by simultaneous RGB
and multispectral data improve the prediction of Carpobrotus; (b) the best results were obtained by
mapping the whole plant or its vegetative parts, while mapping flowers was worse; and (c) a training
area corresponding to 20% of the total area can be adequate for model building. Overall, our results
highlighted the great potential of using UAVs for Carpobrotus mapping, despite some limitations
imposed by the particular biology and ecology of these taxa.

Keywords: alien early detection; GNDVI; HIS; LSMS; monitoring protocol; OBIA; random forest
classification; SAVI; ultra-high spatial resolution

1. Introduction

Coastal ecosystems, due to their transitional nature between terrestrial and marine
environments, are among those with the highest primary and secondary productivity and
provide a large number of ecosystem services [1]. At the same time, human activities
have had considerable direct and indirect impacts on coastal ecosystems, including habitat
reduction, overexploitation, eutrophication, and pollution [2–6]. Beaches and coastal dune
systems are among the coastal ecosystems most impacted by human activities, especially
tourism-related ones [3,7,8]. Coastal dunes make up about three-quarters of the world’s
coastline and represent one of the most dynamic landscapes on earth [9,10], providing a
multi-service nature of ecosystem services [11]. Under natural conditions, dune systems
are characterised by marked gradients in chemical and physical characteristics from the
coastline inland, favouring the establishment of highly specialised flora and fauna that
follow one another in well-structured and defined communities [8,12–15].

Among the various threats to dune ecosystems, invasive alien plants (IAPs) repre-
sent one of the most serious [16]. IAPs are non-native taxa introduced voluntarily or
involuntarily by humans, originating breeding populations in places far from their native
ranges, resulting in negative economic and/or ecological impacts [17,18]. Indeed, IAPs are
considered the second major threat to biodiversity globally, affecting species composition
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and jeopardizing the conservation status of invaded habitats [18,19]. Early identification
and accurate mapping of the presence of IAPs are basic prerequisites of any containment
or eradication plans against these plants [17,20–22], as well as modelling their future in-
vasion risks [23]. Traditional detection and mapping of IAPs usually involve intensive
field investigations, which can be time-consuming and costly [24]. Nowadays, the avail-
ability of remote sensing technologies enables acquisition of data with more and more
spatial and temporal resolution, and have expanded the range of applications in the field of
IAPs mapping and detection [25–28]. However, the resolution of most of the satellite data
was still recognised as the main cause for classification inaccuracies when discriminating
IAPs from native vegetation [29]. An even more innovative frontier is offered by the use
of unmanned aerial vehicles (UAVs) that are capable of low flying and acquiring RGB,
multispectral, and hyperspectral images at higher resolution than satellite data [30–32].
When it comes to IAPs, resolution of satellite images may not be high enough to detect
isolated individual plants or even small populations of plants [33]. In recent years, UAVs
have been successfully employed in studying IAPs [32,34–37], sometimes in tandem with
satellite imagery or as a high-resolution training dataset for upscaling satellite data [38–41].
Hitherto, despite their potential, the use of UAVs for invasion management of IAPs remains
vastly outmatched by satellite and airborne imagery or even field measurements [29].

In coastal dune landscapes, UAVs have proven effective tools in the identification and
mapping of IAPs, since the use of satellite imagery alone cannot always yield effective re-
sults due to both the dynamic and heterogeneous nature of the landscape and the too coarse
spatial resolution compared to the very fine grain of the dunes [34]. Nevertheless, coastal
dunes in Europe are more successfully invaded by relatively small species, such as annuals
including Xanthium orientale L. (Asteraceae) and Erigeron canadensis L. (Asteraceae) or sev-
eral taxa of the genus Oenothera L. (Onagraceae) that are biennial hemicryptophytes [42,43].
A recent study showed that 49% of remote sensing applications dealt with the management
of herbaceous plant invaders [29], yet most studies addressing herbaceous IAPs are focused
on agricultural weeds [44–46]. Moreover, less than 4% of the IAP research has focused on
marine coastal sand dune ecosystems, while even less information is available for succulent
invaders, which account for about 1.5% of the total IAP studies [29].

Among the succulent IAPs that most seriously threaten dune environments is the
genus Carpobrotus N.E.Br. (Aizoaceae). Despite their prominent role as invaders on coastal
dunes, there is little research on Carpobrotus using remote sensing applications [47–50] and,
to the best of our knowledge, no studies have ever attempted a detailed, high-resolution
mapping of single Carpobrotus patches on coastal dunes using a combination of object-based
image analysis (OBIA) and machine learning classification based on ultra-high-resolution
UAV images.

In this study, we address several technical issues concerning the application of UAVs
for identifying and propose potential mapping protocols of Carpobrotus invasions on coastal
dunes. In particular, we aim to: (a) evaluate the most suitable RS set of variables to predict
the presence of Carpobrotus among those derived from RGB and multispectral sensors; (b)
evaluate the best approach to predict the whole plant or only the green parts or flowers
using an OBIA–machine learning approach; and (c) establish the minimum training area in
which to carry out photointerpretation of species presence to minimise manual effort when
designing monitoring plans in new areas.

2. Materials and Methods
2.1. Study Species

A prominent example of IAP heavily affecting coastal dunes is the genus Carpobrotus
(Figure 1). Carpobrotus are succulent, trailing perennial grasses, native to South Africa with
a great propensity for clonal reproduction [51–53]. They have been introduced to Europe
for ornamental and soil stabilisation purposes since the early 17th century and they are now
widely naturalised in coastal habitats of southern and western Europe [53]. Two different
species are typically found in Europe: C. edulis (L.) N.E.Br. and C. acinaciformis (L.) L.Bolus,
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which are often difficult to distinguish from each other and can easily hybridise [49,53].
Although it is problematic to discriminate between the two species (especially in the absence
of flowers), their ecological impact is essentially the same [54]; thus, from now onwards,
we refer to Carpobrotus indicatively.
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Figure 1. UAV image of a single patch of Carpobrotus about 6 m in diameter, with details of the plant
as a whole, the green parts, and the flowers. Pictures by Michele Innangi.

Carpobrotus can invade sandy coastal ecosystems—from embryonic dunes to juniper
groves—and rocky coastal ecosystems with equal success [53]. Carpobrotus represents one
of the most important plant invaders in the Mediterranean [53,55], where their spread
in coastal ecosystems is seriously threatening the conservation of biodiversity on both
local and global scales, and numerous eradication initiatives have been implemented [56],
especially on small islands [55,57,58].

2.2. Study Area

The area under investigation was a sector of central Italy on the Thyrrenian coast
(41.909461◦N, 12.148823◦E, Passoscuro, Fiumicino, Rome; Figure 2). In this area, it is
possible to recognise the typical dune zonation characterised by a strong environmental
gradient from the coastline inland that contributes to the formation of a sequence of habitats,
many of which are of conservation importance [3,13,14]. In spite of the presence of a well-
formed dune structure, the Passoscuro area has also been subject to tourist exploitation,
encouraging a strong colonisation of alien species, in particular Carpobrotus [41].
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right inset shows detail of the Passoscuro dune, highlighting a Carpobrotus bloom (Picture by Alicia 
Teresa Rosario Acosta). 
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Figure 2. Map of the study area (41.909461◦N, 12.148823◦E, Passoscuro, Fiumicino, Rome, EPSG:4326-
WGS84). The location of the Passoscuro shoreline where the UAV surveys were carried out is shown
in the red boxes on the left on a map of Italy and a map of the region Latium where Passoscuro
is located. The 5-hectare area surveyed is outlined in red in the central air photo (image acquired
in March 2022 © Maxar Technologies and visible on the © Google Earth platform). The top right
inset shows detail of the Passoscuro dune, highlighting a Carpobrotus bloom (Picture by Alicia Teresa
Rosario Acosta).

2.3. Data Acquisition and Pre-Processing

We implemented a semi-automatic classification approach based on OBIA followed by ma-
chine learning classification for mapping Carpobrotus. An outline of the whole methodology can
be seen in Figure 3. In May 2021 (i.e., during the peak flowering period of Carpobrotus), images
were acquired by a UAV equipped with two different sensors over an area of approximately 5
hectares. We employed a multirotor quadcopter DJI Phantom 4 Pro V2.0 equipped with CMOS
(complementary metal oxide semiconductor) sensor, i.e., a Red–Green–Blue (RGB) camera with
20 Mpx and 24 mm of equivalent focal length (EFL), and Parrot Sequoia multispectral camera
with four bands, each with 1.2 Mpx and 30 mm EFL: Green (G, bandwidth: 550 nm ± 40 nm),
Red (R, bandwidth: 660 nm ± 40 nm), Red Edge (RE, bandwidth: 735 nm ± 10 nm), and Near
Infrared (NIR, bandwidth: 790 nm ± 40 nm).

Flights were planned via the freeware mobile application PIX4Dcapture (version 4.11.0
for Android, https://www.pix4d.com/product/pix4dcapture/, accessed on 18 November
2022). All UAV surveys were standardized using the same settings: time of acquisition
between 10:00 and 12:00 PM, altitude of 35 m above the take-off point and speed of
5 m/s. The image overlap was set to 80% for both forward and lateral overlap. For
setting up the Parrot Sequoia camera, we used the dedicated HTML interface, accessible
by connecting the camera to the smartphone via Wi-Fi. Within the HTML interface, we
entered the same flight altitude and image overlay values described for the PIX4Dcapture
application. The two sensors captured images simultaneously during the flights; the CMOS
sensor was activated by PIX4Dcapture, while the Parrot Sequoia camera was activated
by the HTML interface. Before the flights, 12 ground control points (GCPs) of 50 cm2

were placed in the flight area. The coordinates of the GCPs (longitude, latitude, and

https://www.pix4d.com/product/pix4dcapture/
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altitude) were measured with a high-precision GNSS receiver (Trimble R2) connected to
the HxGN SmartNet GNSS positioning services for RTK correction (nearest) with nominal
and estimated horizontal accuracies of 1 and 7 cm, respectively. All aerial images were
processed using Agisoft Metashape Professional’s Structure for Motion (SfM) approach
(version 1.6.2, https://www.agisoft.com/, accessed on 18 November 2022). We produced,
for each flight, the RGB orthomosaic and the digital surface model (DSM) using the aerial
images derived from the RGB CMOS sensor and the orthomosaics of the G, R, RE and NIR
bands from the aerial images of the multispectral Parrot Sequoia sensor. These orthomosaics
were georeferenced with the coordinates of the GCPs [34,59,60]. The spatial resolutions
were 2 cm in RGB orthomosaics, 2.5 cm in DSM, and 5 cm in multispectral orthomosaics.
All orthomosaics were upscaled by means of bilinear interpolation to a resolution of 5 cm,
which was the coarsest resolution available from the multispectral data [34,61].
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2.4. Preparation of Variables

Based on the up-scaled RGB orthomosaic, we derived hue, intensity, and saturation
metrics (HIS) using the i.rgb.his tool within GRASS GIS 8.2 (https://grass.osgeo.org/,
accessed on 19 November 2022), where hue (HUE) refers to the dominant wavelength of

https://www.agisoft.com/
https://grass.osgeo.org/
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light within the pixel, intensity (INT) refers to the total brightness of a colour measured as
the relative degree of black or white, while saturation (SAT) refers to the purity of colour
defined as the absence of blending in a fully saturated pixel devoid of other frequencies [34,
62]. Based on the multispectral orthomosaics, we derived two indexes that have been
listed among those useful for detecting alien species [27], i.e., green normalized difference
vegetation index (GNDVI, Equation (1)) and soil adjusted vegetation index (SAVI, Equation
(2)). GNDVI is derived from the normalized difference vegetation index (NDVI) but, while
NDVI involves NIR and R bands, GNDVI involves NIR and G bands [63]. GNDVI was
shown to have a larger dynamic range than the NDVI, strong sensitivity to chlorophyll
concentration across vegetation [63], and was successfully employed to study biodiversity
and alien species [32,64]. SAVI was also introduced as a modification of NDVI, yet this
index aimed to reduce soil brightness influences from spectral vegetation indices involving
R and NIR wavelengths [65]. This correction is made by introducing the L factor into the
index, which is set at 0.5 when there is little or intermediate vegetation [65]. SAVI was
shown to be the most important spectral indices in predicting alien species distribution in
arid ecosystems [66], aridity that also characterises dune systems.

GNDVI =
NIR − G
NIR + G

(1)

SAVI =
NIR − R

NIR + R + L
× (1 + L) with L = 0.5 (2)

HIS, multispectral indexes (GNDVI and SAVI, which we refer to simply as multi) and
DSM data were all rescaled between the values of 0 and 255 [34,67] to reduce potential
errors in the classification algorithm due to the different units of measurement of the
variables.

Calibration and validation data were produced though photointerpretation of the
original RGB image at a resolution of 5 cm. After masking artificial infrastructures (e.g.,
buildings or previously built-up areas, construction sites, roads, etc.) all recognisable
Carpobrotus plants were manually interpreted on video with the help of QGIS 3.28 (https:
//www.qgis.org/, accessed on 17 November 2022), distinguishing between the flowers
and green parts of the plant. In this way, we obtained a dataset able to depict the whole
plant (i.e., Total plant), the green parts only (i.e., Green), and the flowers (i.e., Flowers).

2.5. Carpobrotus Modelling

We ran a total of 27 classification models, combining three different sets of RS variables
(i.e., HIS + DSM, Multi + DSM, HIS + Multi + DSM), the different parts of the plant (i.e.,
Total plant, Green portions, and Flowers), and incremental calibration areas (i.e., 20–30–40%
of the whole area). Specifically, calibration was implemented using incremental belts of the
study area starting from the centre (i.e., 20–30–40% of the whole area), while the remaining
portions were used for model validation (i.e., 80–70–60% of the whole area).

For every model, we generated the basic units for the classification by image segmen-
tation of the original RGB orthomosaic using a geographic object-based image analysis
approach (GEOBIA) [34,68]. Specifically, we used the large scale mean shift (LSMS) algo-
rithm implemented in the open–source software Orfeo Toolbox for image classification [69].
The LSMS is a non-parametric, iterative clustering algorithm that groups image regions
based on spatial and spectral proximity into homogeneous segments. The algorithm needs
three parameters for optimal performance: spatial radius (sr), defining the maximum
Euclidean spatial distance between pixels to be grouped in the same polygon; range radius
(rr), the maximum Euclidean spectral distance between pixels to be grouped in the same
polygon; and minimum segment size (ms), the minimum number of pixels per segment to
define a polygon. We optimised the selection of segmentation parameters using an iterative
algorithm. Initially, we created all possible combinations of the three LSMS parameters
considering the following ranges: sr 1–14, rr 1–14, and ms 30–140 for total and green parts
of Carpobrotus and rs 1–10, rr 1–10, and ms 10–50 for flowers. These values have been

https://www.qgis.org/
https://www.qgis.org/
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chosen based on previous literature [30,34,68,70] to account for the different sizes of the
plant’s parts. From this set of combinations, we selected a random 20% and used it as an
initial screening by performing the segmentation of the original RGB orthomosaic over the
largest training area (40%). Then, we selected only the five combinations of LSMS parame-
ters that gained the highest internal validation metric (mean balanced accuracy 0.835 ±
0.077) and we repeated the previous step. At the end of the process, we identified the best
LSMS parameters per each model. Subsequently, the optimised segments were classified
Carpobrotus presence when at least 50% of the pixels in them had been photo-interpreted as
Carpobrotus, while the remaining segments were classified as absences.

Subsequently, for each model, 20% of the whole segment was used for calibration
using random forest (RF), a machine learning regression/classification algorithm that
works by constructing a large number of decision trees to generate spatial classifications
and predictions [15,34,71]. We used the method ‘ranger’ as RF algorithm, implemented in
the ‘caret’ R package [72]. RF classification models were optimally-tuned through internal
10-fold cross validation [73]. Specifically, the number of uncorrelated decision tress (Ntree)
was set to 1000, while we tested for the highest accuracy in terms of optimal split rules
and for the number of variables randomly selected at each node of decision trees (Mtry,
ranging from two to the max number of variables within each model). The Gini index for
classification (impurity) was used to assess variable importance. Finally, the calibrated
model was projected on the test areas.

The accuracy of the models was quantified by assessing model predictions against
the Carpobrotus presence-absence segments on the test areas (i.e., that were held out from
the model calibration). In particular, given the strong class imbalance occurring between
Carpobrotus presence and absence segments, we chose to rely on the balanced accuracy (BA)
as an overall predictive performance metric. BA is an unbiased metric ranging from 0 to 1
and it is computed as the arithmetic mean between the true positive rate (sensitivity) and
the true negative rate (specificity). BA values below 0.5 can be considered as indicating
a random prediction. BA was shown to be a reliable metric when there is a strong class
imbalance in several binary classification scenarios, including with remote sensing data [74–
76]. From a computational point of view, BA is equivalent to true skill statistics (TSS),
which is the sum of sensitivity and specificity minus one, and as a consequence, TSS can
also assume negative values [77,78]. BA values can be computed from TSS by a simple
linear equation (BA = 1

2 × TSS + 1
2 ).

Lastly, we assessed which factor (i.e., the combination of RS variables, the part of the
plant analysed, and the percentage of the training area) was more decisive in influencing
BA values by fitting a linear model that included BA as the response variable and the
different factors and their combinations as covariates. The residuals of this model were
checked for linearity and homoscedasticity. All statistical analyses were performed using R
version 4.2.1. [79] using packages ‘caret’ [72], ‘SegOptim’ [80], and ‘terra’ [81].

3. Results

The results for the LSMS optimization can be seen in Figure 4. The parameters
were very similar with regard to the analysis of the plant in its entirety (Total), with few
differences depending on the type of variables used. In particular, sr was optimal between
1 and 2, rr between 10 and 12, and ms between 110 and 150. The analysis on the green parts
of the plant alone (Green), on the other hand, resulted in a change about rr, which was
lower (between 2 and 4) when multispectral data were present in the dataset, while sr and
ms were comparable at Total. Finally, the case of flowers showed the greatest variability
with different results depending on the type of dataset used and characterised above all by
higher sr values, up to 10 in the case of Multi + DSM.
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significantly increased the BA for Flowers (BA 0.530 ± 0.010 compared to 0.513 ± 0.006 with 
HIS + DSM and similar to 0.530 ± 0.022 for HIS + Multi + DSM; Figure 5; Table 1).  

Figure 4. Graphical representation of optimised LSMS segmentation parameters. The x and y axes
represent spatial radius (sr) and range radius (rr), respectively, while the point size is given by
minimum segment size (ms). The points are also coloured according to the different parts of the plant
analysed and bear the labels for the variable dataset used for optimisation.

The highest balanced accuracy values were gained for both Total (BA 0.689 ± 0.006)
and Green parts (BA 0.686 ± 0.007) using the combination of HIS + Multi + DSM, which
was marginally better than HIS + DSM (BA 0.677 ± 0.008 and 0.680 ± 0.005 for Total and
Green parts, respectively), although differences were not significant (Figure 5; Table 1).
Multi + DSM showed the lowest BA values (BA 0.565 ± 0.012 and 0.575 ± 0.014 for Total
and Green parts, respectively), although the model highlighted that this set of variables
significantly increased the BA for Flowers (BA 0.530 ± 0.010 compared to 0.513 ± 0.006
with HIS + DSM and similar to 0.530 ± 0.022 for HIS + Multi + DSM; Figure 5; Table 1).

The factor that most affected BA was the part of the plant analysed, with comparable
values between the Total and the Green parts, while average values were significantly
lower by a factor of 0.16 for the Flowers. Regarding the type of data used to calibrate the
models, the results show no significant difference between HIS + DSM and HIS + Multi +
DSM, while the results obtained by Multi + DSM were significantly lower, reducing BA by
0.11. Finally, despite some differences visible in Figure 5, the differences due to the size of
the calibration area were not statistically significant.
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Figure 5. Outcomes of the assessment of the 27 models expressed as balanced accuracy (BA).

Table 1. Results of the linear model using balanced accuracy (BA) as the response variable and the
dataset factors of variable (Set), plant part (Part) and percentage of calibration area (Cal. Area) as
covariates. Values are reported as mean estimate and 95% confidence interval. Only the interactions
between the factors that were found to significantly affect BA are shown. The reference levels are
HIS + DSM for Set, Total for Part and 30% for Cal. Area. Significance is reported as *** p < 0.001.

Mean 95% CI

Set Multi + DSM −0.112 *** −0.131, −0.093
Set HIS + Multi + DSM 0.012 −0.007, 0.031

Part Green 0.003 −0.016, 0.022
Part Flowers −0.164 *** −0.183, −0.145
Cal. Area 30% −0.001 −0.012, 0.010
Cal. Area 40% 0.002 −0.009, 0.013

Set Multi + DSM:Part Green 0.007 −0.020, 0.034
Set HIS + Multi + DSM:Part Green −0.005 −0.032, 0.022

Set Multi + DSM:Part Flowers 0.129 *** 0.102, 0.156
Set HIS + Multi + DSM:Part

Flowers 0.005 −0.022, 0.032

Constant 0.677 *** 0.662, 0.692

Observations 27
R2 0.984

Adjusted R2 0.974
Residual Std. Error 0.012 (df = 16)

F Statistic 98.114 *** (df = 10; 16)

Considering the original RGB image and the manual photointerpretation, it can be
appreciated that all three models tend to correctly predict the presence of Carpobrotus in
larger areas (Figure 6). The main shape of the largest Carpobrotus patches was identified
by all three models. At the same time, it can be seen that all models tended to predict as
Carpobrotus, a group of plants visible in the bottom right-hand corner, which are, however,
other species (Figure 6). Finally, it can be seen that the HIS + DSM and especially Multi +
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DSM models, identified many patches—especially very small ones—as Carpobrotus, a trend
that was visually less pronounced in the HIS + Multi + DSM model.
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Figure 6. Example image showing results of the prediction of total Carpobrotus using the intermediate
training area (30%) and the datasets HIS + DSM, Multi + DSM, and HIS + Multi + DSM. All images
have the same scale, while the different colours are used only to aid visualization. The original
orthomosaic at 5 cm resolution is shown in the top left, while the manual photointerpretation is visible
in the top right. The figure shows a typical Carpobrotus patch surrounded by bare sand and other
dune vegetation. Compared with the original RGB mosaic and manual photointerpretation, several
parts of the image were misinterpreted as Carpobrotus, especially by the models based on HIS + DSM
and Multi + DSM, while HIS + Multi + DSM retained the overall shape of the Carpobrotus patch.

In terms of variable importance (Figure 7), when using HIS + DSM data, intensity (INT)
was the most important variable in predicting both Total and Green parts, while saturation
(SAT) was predominant for Flowers. Concerning the Multi + DSM dataset, the importance
of the variables was comparable between the different parts of the plant, with GNDVI
marginally more important than SAVI. Finally, for the more complex dataset, HIS + Multi +
DSM, intensity, saturation and GNDVI each contributed 1/5 of the importance of the overall
variables in the case of Total and Green parts, while GNDVI was more relevant in the case
of Flowers. Although DSM was the only variable included in all models, its importance
was always marginal, exceeding 25% only in the case of Flowers in Multi + DSM.
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4. Discussion
4.1. On the Best Set of Variables to Predict the Presence of Carpobrotus

Balanced accuracy (BA) is one of the most robust metrics when class imbalance is
present in the data [74,82]. As the average of sensitivity and specificity, BA is an unbiased
metric ranging between 0 and 1 that outperforms classic metrics such as overall accuracy
or Kappa with imbalanced data [82]. In our case, the class imbalance was conspicuous, as
absences were more than 50 times more abundant than presences for Total and Green parts,
and up to 4000 times for Flowers. Moreover, when the target species (e.g., an invasive alien
plant) covers only a small portion of the studied area and there is no interest in mapping
other classes, general agreement metrics (such as overall accuracy and Kappa) can be
misleading [39,83].

Our results showed that the highest BA was reached by using a combination of RGB-
derived variables along with data derived from multispectral sensors, with only a partial
contribution from terrain morphology (DSM).

Both intensity and saturation were important variables in explaining the presence of
Carpobrotus, while in comparison, for Acacia saligna (Labill.) H.L.Wendl. (Fabaceae) hue
was more important in the absence of flowers, and saturation during flowering [34]. In
general, even simple RGB images without the contribution of multispectral data have been
shown to be viable instruments in detecting IAPs when the ultra-high-definition of UAVs
is available [37,39,84,85]. Nevertheless, the integration of multispectral-derived indexes
improved the prediction, as was also shown for other IAPs [34,39,85–87]. Even though
NDVI was used in several cases [34,38,40,68,87], we used a modified version of NDVI based
on near-infrared and green bands rather than near-infrared and red bands. This index
(GNDVI) contributed to improving our predictions, and was also shown to be an effective
and promising predictor when dealing with direct and indirect effects of invasive species, as
it has even been used in monitoring vegetation health following invasion of pests [40,88,89].
Mallmann et al. found that spectral indexes that have a biochemical purpose, such as
GNDVI, were the most effective in predicting the presence of invasive trees such as Psidium
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guajava L. (Myrtaceae) and Ligustrum lucidum W.T.Aiton (Oleaceae; [32]). Similarly, GNDVI
was shown to be a good predictor for monitoring the invasive Acacia mangium Willd.
(Fabaceae) given its capability to differentiate active photosynthetic vegetation from other
surface types, such as bare soils [33].

In contrast with previous research, DSM did not substantially contribute to discrimi-
nating Carpobrotus from the surrounding vegetation. Given its creeping habit, Carpobrotus
does not rise substantially above the surrounding vegetation and at least based on our
results, it does not appear to be particularly correlated with areas of higher or lower dune
morphology. Moreover, invasion from Carpobrotus has been shown to homogenize horizon-
tal vegetative cover [90]. In comparison, DSM was shown to be an important predictor for
invasive trees, especially when flowers are not present, as the tree-like habitus raises the
plants above the surrounding vegetation [34]. Accordingly, DSM was shown to be pivotal
in discriminating between trees and shrubs [68] and even for identifying weeds from crops
in precision agriculture applications [44].

Deriving BA from TSS values, in predicting the presence of the invasive alien Acacia
saligna using UAV images, Marzialetti et al. reached values between 0.77 and 0.82 in pre-
flowering and between 0.83 and 0.88 in flowering plants [34]. These BA values were larger
than we achieved with Carpobrotus, but the differences in life-form and plant size must
be considered.

Hamylton et al. used UAV-derived imagery at a spatial resolution of 3 cm and machine
learning (convolutional neural network) to map the presence of a tussock native species
(Lomandra longifolia Labill., Asparagaceae) introduced following invasive alien species
eradication operations [91]. Their approach (which also compared pixel-based and manual
digitisation techniques) produced optimal results using machine learning, highlighting
the advantages of the latter approach in mapping individual plants [91]. Although our
results also showed that a machine learning approach is appropriate for a species such
as Carpobrotus, it should be borne in mind that a species such as L. longifolia forms very
well-defined patches in terms of shape and size compared to a creeping herbaceous species
such as Carpobrotus.

UAV was also used to monitor the invasive climbing vine Mikania micrantha Kunth.
(Asteraceae) that forms large and compact patches on the cliffs of a small island off the
southern coast of China [37]. Using only an integrative approach of 2D and 3D RGB
imagery, Wu et al. demonstrated that, despite limited spectral information, ultra-high reso-
lution UAV mosaics could effectively improve texture effectiveness in invasive mapping
plants [37], a result that was not matched in our case although the morphology of our
dunes was much less articulated than the steep walls of an island. The area under inves-
tigation was a sector of central Italy on the Thyrrenian coast (41.909461◦N, 12.148823◦E,
Passoscuro, Fiumicino, Rome; Figure 2). In this area, it is possible to recognise the typ-
ical dune zonation characterised by strong environmental gradients from the coastline
inland that contribute to the formation of a sequence of habitats, many of which are of
conservation importance [3,13,14]. In spite of the presence of a well-formed dune structure,
the Passoscuro area has also been subject to tourist exploitation, encouraging a strong
colonisation of alien species, in particular Carpobrotus [41].

4.2. On the Prediction of the Whole Plant or Its Vegetative/Reproductive Parts

We implemented an iterative procedure to optimize the segmentation of an herbaceous
IAP such as Carpobrotus, which led to consistent results, especially regarding the whole
plant or only the green parts. The LSMS algorithm implemented in Orfeo Toolbox is
designed for the segmentation of very high resolution images by returning a segmented
image that contains the radiometric mean and variance of each band [68]. There is still
comparatively scarce literature on LSMS applied to UAV images [34,68], especially on an
extremely fine scale as the one we adopted. The three optimized parameters (spatial radius,
range radius, and minimum segment size) can be considered functional to image smoothing
(based on spatial detail), segmentation (based on spectral detail) and merging of segments,
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respectively [68,80,86]. In more detail, the spectral radius is the spectral signature distance
between the bands and is expressed in radiometric units based on the Euclidean distance
between the spectral signature values of the pixels [68]. De Luca et al. found that the optimal
range radius for segmenting cork oak woodlands was six, because lower values led to
over-segmentation and higher values to under-segmentation [68]. Marzialetti et al., instead,
used a value of five for segmenting the invasive alien species Acacia saligna [34]. Both cases
can be compared to our study as they used LSMS segmentation based on UAV images,
yet they were both based on segmenting larger objects such as trees. The segmentation
of smaller objects such as Carpobrotus plants led to results that varied according to the
dataset used and the parts analysed. In particular, Carpobrotus flowers are showy and
comparatively large for Aizoaceae, with a mean reported diameter of 7 cm [49], but can
reach up to 12 cm in their invasive areas [92]. However, single flowers could be reduced
to one or two pixels even with our 5 cm spatial resolution, resulting in inconstant LSMS
parameters according to the dataset used and poorer results in terms of the performance of
the models.

4.3. On the Minimum Size of the Training Area

Photointerpretation was carried out over the entire area to obtain the best overview
of the calibrated model using machine learning to optimise and automate the procedure
and minimising manual digitisation. In fact, although expert-based photointerpretation is
certainly one of the best approaches, it is undoubtedly also one of the most time-consuming
and operationally demanding compared to semi-automatic machine-learning-based clas-
sification systems, thus it is necessary to identify an optimal trade-off between the two
methods depending on the study system [85,87,91,93]. Consequently, identifying the
minimum area where manual digitisation should be carried out appears to be of great
importance. Values of training objects ranging between 22% and 30% of the total surveyed
area have been reported in literature when dealing with invasive plants [39,44], although in
the case of larger plants (such as trees) this value can be as low as 2% [34]. In our case, we
found that the effect of incrementing the training data from 20% to 40% was not significant.
Therefore, especially when the area to be monitored is very large and the effort required
for photointerpretation is to be reduced, values of approximately 20% may be adequate
to calibrate optimal models. However, it seems more prudent and in line with previous
literature on herbaceous plants to recommend the intermediate threshold of 30%.

4.4. Remarks on Previous RS Research on Carpobrotus and Some of Their
Biological/Ecological Features

Carpobrotus can have severe negative effects on invaded ecosystems [53,54] and, as it
happens also with other alien species on sandy beaches, its presence may have detrimental
effects on ecosystem services [3,11,16]. Thus, effective and low-cost early detection strate-
gies by means of RS remain pivotal for containing IAPs [29,34–36], including Carpobrotus.
Yet, research on Carpobrotus through remote sensing is limited. Some studies used field
collected surveys on dune ecosystems invaded by Carpobrotus and explored them by means
of remote sensing data. Marzialetti et al. used field data of dune communities (both invaded
and not-invaded by Carpobrotus) in order to explore whether spectral diversity can provide
reliable information for monitoring floristic diversity even in ecosystems altered by plant
invasions [48]. Similarly, Malavasi et al. used data from field surveys to explore the effect
of high-resolution optical imagery and three-dimensional topographic models obtained
from LiDAR on the presence of five IAPs, including Carpobrotus [41].

However, studies aimed at directly surveying Carpobrotus by remote sensing are
still very few, especially regarding the use of UAVs, and in this respect, our contribution
represents a turning point. Bogdan et al. studied the population size of Carpobrotus invading
cliffs in Israel [49]. On a smaller area (about 2 ha) but with a higher spatial resolution
(35 mm), Bogdan et al. used UAV images to study the population size of Carpobrotus
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through manual digitizing of the main patches during two years of observation, in order to
develop parameters for a demographic model [49].

Underwood et al. used hyperspectral imagery derived from an airborne visible/infrared
imaging spectrometer to map Carpobrotus edulis and another invasive grass (Cortaderia ju-
bata (Lemoine) Stapf, Poaceae) along the central coast of California [47,50]. Although the
approach of Underwood et al. gave very encouraging results, especially since the hyper-
spectral data made it possible to more accurately identify the presence of water in succulent
leaves, their method was at a larger spatial scale (4.5 m) and resulted primarily in classifying
habitats with different degrees of Carpobrotus invasion rather than individual plants [47].
Moreover, it must be taken into account that the use of aircrafts is more expensive and
requires greater technical experience when compared to UAVs, which are light, inexpensive
and require minimal experience to operate [29,36,49,60].

Looking at the predictive comparison of the different models applied to a typical
Carpobrotus patch, neither HIS + DSM nor Multi + DSM was able to provide sufficient
discriminatory power to distinguish consistently between Carpobrotus and other vege-
tation with a similar spectral response. This effect was remarkably less evident with
HIS + Multi + DSM, despite the BA values not being much higher than HIS + DSM. On a
mere visual inspection of HIS + Multi + DSM results, plants of Carpobrotus were identified
correctly in most cases.

Carpobrotus is a difficult species to map and, especially when vegetation is dense,
individual plants may be hard to identify even with expert-based manual digitizing [49].
Given its growth habit and the complexity of discriminating between taxa and hybrids,
Carpobrotus plants tend to vary both in shape and colour, depending on age and site
disturbance [53,54]. Typical plants growing under ideal conditions form an almost circular
shape, progressing from the centre to the edges and reaching peak growth when the plants
are about 50 years old [94]. As the plants age, the older branches in the middle die off and
become greyish, sometimes leaving only a torus of active vegetation (see Figure 1). Similarly,
young leaves tend to have brighter colours, while older plants become more yellowish
according to a change in light use efficiency, also considering that Carpobrotus shows a
facultative C3-CAM photosynthetic strategy [54,95,96]. Moreover, some colour differences
have also been attributed to the species (i.e., C. edulis vs. C. acinaciformis [53,54]). Given
Carpobrotus strong propensity toward clonal reproduction over seed dispersal [52,53,95],
even a few plant fragments can give rise to new patches. In disturbed environments, there
can thus be numerous small patches of Carpobrotus [54], often without flowers, making
them difficult to identify. In addition, because Carpobrotus depletes dune vegetation and,
consequently, also the presence of dune-stabilizing species such as Thinopyrum junceum (L.)
Á.Löve and Calamagrostis arenaria (L.) Roth subsp. arundinacea (Husn.) Banfi, Galasso &
Bartolucci [53,54,97], individual Carpobrotus plants can often appear fragmented or masked
because they have been covered by sand after adverse weather events.

Considering all the above information regarding the particular challenges posed by
Carpobrotus, the results of this study represent an excellent trade-off for a mapping protocol
that is rapid, inexpensive, and can be easily repeated over time (e.g., before and after
management or eradication programs). In addition, the results provided by the UAV can be
seen as a solid basis to extend IAP monitoring to satellite data with metric spatial resolution,
such as PlanetScope [38,98], or even satellites that can achieve sub-metric resolution such
as WorldView-2 or Pleiades 1B PMS [39,40].

5. Conclusions

Given its ecology and the peculiar features of its growing environment, the case of
mapping the presence of Carpobrotus through UAV images presented some challenges and
limitations. Yet, our study represents the first comprehensive contribution to mapping
Carpobrotus in dune ecosystems using an integrative approach of image segmentation,
photointerpretation, and classification using machine learning based on UAV images. Our
results allowed us to determine that a mapping protocol using UAVs must take into account
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the following factors: (a) results offered by a synergistic presence of RGB and multispectral
data (i.e., HIS + Multi + DSM) improve Carpobrotus prediction, offering better BA values
and presence maps more congruent with photointerpretation, although results based only
on RGB-derived data were not significantly different from those including multispectral
information; (b) prediction of flowers does not appear robust when compared with the
whole plant and green parts alone at a 5 cm spatial resolution, thus we recommended
considering the whole plant, thus facilitating identification and mapping even during
periods when the plant is not in anthesis; and (c) we found no significant differences due to
the size of the training area, so even a training area corresponding to 20% of the total area
appears adequate for building the models, although we recommend a more conservative
threshold of 30%.
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