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Abstract: The traditional three-dimensional (3D) magnetotelluric (MT) forward modeling using
Krylov subspace algorithms has the problem of low modeling efficiency. To improve the compu-
tational efficiency of 3D MT forward modeling, we present a novel geometric multigrid algorithm
for the finite element method. We use the vector finite element to discretize Maxwell’s equations in
the frequency domain and apply the Dirichlet boundary conditions to obtain large sparse complex
linear equations for the solution of EM responses. To improve the convergence of the solution at low
frequencies we use the divergence correction to correct the electric field. Then, we develop a V-cycle
geometric multigrid algorithm to solve the linear equations system. To demonstrate the efficiency
and effectiveness of our geometric multigrid method, we take three synthetic models (COMMEMI
3D-2 model, Dublin test model 1, modified SEG/EAEG salt dome model) and compare our results
with the published ones. Numerical results show that the geometric multigrid algorithm proposed in
this paper is much better than the commonly used Krylov subspace algorithms (such as SOR-GMRES,
ILU-BICGSTAB, SOR-BICGSTAB) in terms of the iteration number, the solution time, and the stability,
and thus is more suitable for large-scale 3D MT forward modeling.

Keywords: magnetotelluric; 3D; forward modeling; vector finite element method; geometric multigrid
method

1. Introduction

Magnetotelluric (MT) is a geophysical exploration method that uses the natural elec-
tromagnetic (EM) field as the source and obtains the underground electrical structure by
observing the mutually orthogonal EM field components at the earth surface [1,2]. This
method has been widely used in mineral and hydrocarbon exploration [3–5], geothermal
detection [6], groundwater exploration [7], prediction of earthquake precursors [8], and
studies of deep electrical structures [9].

Fast and accurate three-dimensional (3D) MT forward modeling is the key to the
inversion and interpretation of MT data. The numerical methods commonly used in the EM
simulation mainly include the integral equation method (IE) [10,11], the finite difference
method (FD) [12–14], the finite volume method (FV) [15,16] and the finite element method
(FE) [17,18]. Currently there are several tools available [14,19,20]. The FE method has
the advantages of high accuracy, flexibility and applicability for complex underground
structures. In particular, the vector FE method has now become the mainstream method of
numerical EM simulation, for it can effectively solve the problem of pseudo-solutions in
node FE method [21–27].

The most time-consuming part in MT forward modeling is the solution of linear
equations system. This means that the key to improving the efficiency of forward modeling
is to shorten the time for the solution of the linear equations system. The methods for
solving the linear equations include the direct methods and the iterative ones. The direct
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methods obtain the solution of the equations system through finite algebraic operations.
The common direct solvers include MUMPS, PARDISO, SuperLU, etc. Scholars have used
different direct methods in the solution of the linear equations system in 3D MT forward
modeling [17,24,28,29]. The advantage of direct methods is their robustness, but they
require a lot of computer memory and thus are only suitable for small to medium-sized
problems. The iterative methods start from a given initial value and iteratively approach
the exact solution that requires far less computer memory than the direct methods. The
commonly used iterative algorithms are generally based on Krylov subspaces, such as
the biconjugate gradient stabilized method (BiCGSTAB) [30], the quasi-minimal residual
method (QMR) [31], the generalized minimal residual method (GMRES) [32], etc. Since
the condition number of the linear equations system obtained by discretizing the Maxwell
equation system is generally very large, it is necessary to use preconditioning techniques to
reduce the condition number of the coefficient matrix, such as the Jacobi preconditioning
(Jacobi) [33], the successive over relaxation preconditioning (SOR) [34], the incomplete LU
factorization preconditioning (ILU) [31]. As the frequency decreases, the convergence of
the iterative methods will deteriorate, and a divergence correction technique is generally
required to improve the convergence of the iterative algorithm [35–37]. Due to the large
number of null spaces in the curl-curl operator involved in solving the equation for the
electric field, even with preconditioning and divergence corrections, the convergence is still
very slow. With an increasing model scale, the number of iterations and solution time will
increase sharply, the traditional iterative algorithms have difficulty in handling large-scale
3D MT modeling problems.

The multigrid algorithm (MG) is one of the most effective iterative methods for solving
large-scale linear equations. It has the advantages of fast convergence, and its convergence
is independent of the grids [38]. This method includes geometric multigrid (GMG) [39–44]
and algebraic multigrid (AMG) [45–48]. The geometric multigrid uses geometric informa-
tion from nested grids to construct operational operators. It is straightforward to implement.
It requires less memory and has advantages over algebraic multigrid in problems using
structured grids. The algebraic multigrid uses the system matrix information to construct
operators. It has strong versatility and is suitable for structured and unstructured problems.
However, it needs an expensive setup, both in time and memory [49]. Mulder (2006, 2008)
used the geometric multigrid method as an independent solver and a preprocessing opera-
tor for BICGSTAB to solve the EM equations discretized by the finite volume (FV) method;
it has good convergence under uniform grids, but the convergence rate decreases under
the stretched grid [39,40]. Koldan et al. (2014) used the algebraic multigrid method as the
preprocessing operator for the Krylov subspace method and effectively reduced the time
for 3D EM simulation based on the nodal FE method [45]. Jaysaval et al. (2016) used the
geometric multigrid as the preconditioner for BICGSTAB to solve the large linear equations
system generated by discretizing the frequency-domain Maxwell’s equations for the FD
method on the Lebedev grid [41]. Li et al. (2016) used the geometric multigrid method
combined with the magnetic field divergence correction to solve 3D EM modeling problems
using FD on Yee’s grids [42]. Yao et al. (2021) used the FGMRES method with algebraic
multigrid preconditioning to solve the global EM induction using the FE method based on
the magnetic vector potential and electric scalar potential [48]. Guo et al. (2022) proposed a
geometric multigrid algorithm based on a four-color Gauss-Seidel smoothing algorithm for
3D MT forward simulation by the FD method [43]. Pan et al. (2022) developed an improved
extrapolation cascade multigrid method (iEXCMG) to solve the large linear equations
system generated by FE discretization of Maxwell’s equations based on EM potentials on
non-uniform orthogonal grids [44].

At present, the research on the multigrid method in EM forward modeling mainly
focuses on using it as a preconditioning technique to accelerate the solution of the Krylov
subspace iterative method. This does not take full advantage of the multigrid method.
Moreover, most current studies combine the multigrid method with numerical simulations
using the FD and FV methods. Although there are reports on multigrid methods used in
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node FE for solving the electric field, the magnetic vector, and the electric scalar potentials,
there are few reports on the multigrid algorithm for the solution of the curl-curl equations
of the electric field using the vector FE method. Since the vector FE method can effectively
avoid the pseudo-solutions of the nodal FE method and the curl-curl equation for the
electric field has fewer unknowns than the vector-scalar potential equation, we develop
in this paper an efficient 3D MT forward modeling method by combining the geometric
multigrid method with the vector FE method for solving the curl-curl equation of the
electric field.

In the sequence, we first introduce the methodology for 3D MT forward modeling,
including the governing equation, the vector FE discretization and the calculation of
impedance apparent resistivities and phases, then we use divergence correction to improve
the convergence of the iterative solution. After that, we develop the geometric multigrid
algorithm to solve the linear equations system. Finally, we verify the accuracy of the
algorithm with a three-layer model and test the numerical performance of the algorithm
with three typical synthetic models.

2. Methods
2.1. 3D MT Forward Modeling

Assuming a time dependence of eiωt and ignoring the displacement current, we get
Maxwell’s equations in the frequency-domain, i.e.,

∇× E = −iωµ0H, (1)

∇×H = σE + Jp, (2)

where ω is the angular frequency, E is the electric field, and H is the magnetic field,
µ0 = 4π × 10−7 H/m is the vacuum magnetic permeability, σ is the conductivity, Jp is the
source current density.

We divide the total field into the primary and secondary parts, E = Ep + Es, H = Hp + Hs,
then substitution into Equations (1) and (2) yields

∇× Es = −iωµ0Hs, (3)

∇×Hs = σEs + Jp, (4)

where Jp = (σ− σ0)Ep = σaEp is the new source term, σ0 is the background conductivity,
σa = σ− σ0 is the abnormal conductivity.

Taking the curl on both sides of (3) and substituting (4) into it, we obtain the curl-curl
equation for the secondary electric field in the frequency-domain, i.e.,

∇×∇× Es + iωµ0σEs = −iωµ0σaEp. (5)

To ensure the unique solution of Equation (5), we adopt the Dirichlet boundary conditions:

Es|Γ = 0. (6)

To solve the EM field from Equations (5) and (6), we discretize the computational
domain into multiple hexahedral elements and put the electric field components on the
edges [50], so that the electric field within each element can be written as

Ee =
12

∑
i=1

Ne
i Ee

i , (7)

where Ne
i represents the vector interpolation basis function at the i-th edge in the ele-

ment [21], Ee
i represents the tangential electric field at the same edge.
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Taking the dot product of Equation (5) with a vector basis function and applying the
first vector Green’s Theorem, we obtain the weak form of Equation (5), namely.∫

V
(∇×N · ∇ × Es + iωµ0σN · Es)dv =

∫
V

(
−iωµ0σaN · Ep

)
dv, (8)

where V denotes the computational domain. Substituting Equation (7) into (8) and integrat-
ing, we get the linear equations system for each element, i.e.,

12

∑
i=1

Esi

∫
V
(∇×N) · (∇×N) + iωµ0σN ·N dv =

12

∑
i=1

EPi

∫
V
(−iωµ0σaN ·N)dv. (9)

Equation (9) can be rewritten in a matrix format, i.e.,

Aeee = be, (10)

where Ae denotes the coefficient matrix corresponding to element e, be is the source vector,
ee is the secondary electric field at the edge of the element. From Equations (9) and (10),
we obtain

Ae =
∫

V
(∇×N) · (∇×N) + iωµ0σN ·Ndv, (11)

be =
12

∑
i=1

EPi

∫
V
(−iωµ0σaN ·N)dv. (12)

Assembling the matrix equations of all elements, we get the final linear equations
system for the secondary electric field, i.e.,

Ae = b, (13)

where A is the coefficient matrix, b is the source term, and e denotes the unknown secondary
electric fields. Solving Equations (13), we obtain the secondary electric field at each edge.
The secondary electric fields at receiving points are calculated by interpolation using
Equation (7). By adding the secondary and the primary field, we get the total field. Then,
the magnetic field can be calculated by using Faraday’s law, i.e.,

H =
1

iωµ
∇× E. (14)

After obtaining the EM fields E1
x,E1

y,H1
x ,H1

y for x-polarization mode and E2
x, E2

y, H2
x ,

H2
y for y-polarization mode, we can calculate the MT impedance tensor by

Z =

[
Zxx Zxy
Zyx Zyy

]
, (15)

where the components can be written as

Zxx =
E1

x H2
y−H1

y E2
x

H1
x H2

y−H1
y H2

x
, Zxy = E2

x H1
x−H2

x E1
x

H1
x H2

y−H1
y H2

x
,

Zyx =
E1

y H2
y−H1

y E2
y

H1
x H2

y−H1
y H2

x
, Zyy =

E2
y H1

x−H2
x E1

y

H1
x H2

y−H1
y H2

x
.

(16)

Finally, we can calculate the apparent resistivities and phases by

ρij =

∣∣Zij
∣∣2

ωµ0
, ϕij = arg

(
Zij
)
, i, j = x, y. (17)
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2.2. Divergence Correction

When solving the curl-curl equation for the electric field by the iterative method, the
solution process converges slowly as the frequency decreases. This is because the item
iωµσE in the curl-curl equation becomes less important. This results in the divergence-free
condition for the current density specified by Maxwell’s equations not being satisfied in
the iterative process [51]. Therefore, we need to enforce the divergence-free condition by
solving the following Poisson’s equation for the static potential ϕ [35–37], i.e.,

∇ · (σ∇ϕ) = −∇ · J. (18)

Note that in the solution of Equation (5), we use the vector FE method and assume the
divergence-free vector basis function. Since the conductivity is constant within each cell,
there is no accumulated charges inside the cell when the current passes through. Thus, in
each cell Equation (18) can be simplified to

∇ · (σ∇ϕ) = 0. (19)

On the interface of adjacent cells with different conductivities, there exists

n̂ ·
(
σi∇ϕi − σj∇ϕj

)∣∣sij = n̂ ·
(
σiEsi − σjEsj + σaiEpi − σajEpj

)
, (20)

where i,j denote two adjacent cells. We adopt the Dirichlet boundary conditions and set the
potential ϕ on the boundary to zero ϕ|Γ = 0.

To use the nodal FE method to solve Equation (19), we write the potential ϕ as

ϕ =
Nnode

∑
n=1

ϕnun, (21)

where ϕn is the potential at the node, un is the node basis function, Nnode is the number of
nodes in each element.

Using the Galerkin method to solve for the potential, we substitute Equation (21)
into (19), multiply both sides by the node basis function uk, and integrate within the cell
and obtain

Nnode

∑
n=1

∫
V

um∇ · (σ∇un)dvϕn = 0. (22)

Applying the first scalar Green’s theorem, for the i-th cell, we have∫
Vi

um∇ · (σi∇un)dv = −
∫

Vi
σi∇um · ∇undv +

∫
Si

σium∇un · n̂ds, (23)

where σi is the conductivity of the i-th cell. Using the interior boundary condition (20), the
surface integral in the above equation can be written as∫

Si
σium∇un · n̂dsϕn =

∫
Si

um
(
σiEsiNi + σaiEpiNi

)
· n̂ds, (24)

where Ni denotes the vector interpolation basis functions. Combining Equations (22)–(24),
we obtain

Nnode

∑
n=1

ϕn

∫
V

σ∇um · ∇undv =
N

∑
j=1

(
Esj

∫
S

σumN j·n̂ds + Epj

∫
S

σaumN j · n̂ds
)

, (25)

where N denotes the number of edges in the current cell. Equation (25) can be written in a
matrix format, i.e.,

Dp = t, (26)
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where Dmn =
∫

V σ∇um · ∇undv,pn = ϕn,tm =
N
∑

j=1

(
Esj
∫

S σumN j · n̂ds + Epj
∫

S σaumN j · n̂ds
)

and m, n = 1, . . . , Nnode.
After obtaining the scalar potential ϕ, the electric field can be corrected by the follow-

ing equation
enew = eold −∇ϕ. (27)

Using the divergence correction in Equation (27), the divergence-free condition is
enforced. When solving Equation (13), we can apply the divergence correction every few
iterations to speed up the iterative solution process.

2.3. Multigrid Algorithm

The multigrid algorithm is not a single method; it is essentially an iterative scheme.
Firstly, the high-frequency errors are eliminated by smoothing iterations on the fine grid.
Then, the remaining low-frequency errors are transferred to a coarser grid, where the errors
will become high-frequency again and can be effectively eliminated by several smoothing
iterations. By repeating this process until the pre-designed coarsest grid, the scale of the
problems to be solved will become very small, so that we can achieve the solution quickly
by a direct solver. Finally, the solution is interpolated step by step from the coarsest grid
to the fine one to correct the solution for the fine grid. This is the so-called coarse grid
correction strategy that is the core of the multigrid algorithm.

There are many cycle structures for the multigrid algorithm to convert between coarse
and fine grids. The commonly used cycle structure includes V-cycle, W-cycle, and FMV
cycle, as shown in Figure 1. The cycle structure is selected according to the complexity of
the problem. Based on the large number of numerical tests, the performance differences
between V-cycle, W-cycle, and FMV cycle are not very obvious. The V-cycle has the
characteristics of simple implementation and small calculation amount, so we use it in our
following model calculations.
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We take the simplest two-level multigrid V-cycle as an example to illustrate the
calculation process of the multigrid method (k and k-1 represent the step sizes of the fine
grid and coarse grid, respectively).

1. Pre-smoothing: n1 times of smoothing iterations on the fine grid to obtain the approx-
imate solution ẽk of Equation (13) Akek = bk. In this step, the high-frequency errors
are eliminated, but the low-frequency errors remain.

2. Compute residual: The residual vector rk corresponding to the approximate solution
ẽk on the fine grid is calculated by rk = bk −Akẽk.

3. Restriction: Using the restriction matrix Rk−1
k to project the residual vector rk onto the

coarse grid, i.e., bk−1 = Rk−1
k rk.

4. Solve the residual equation: Solving the residual equation Ak−1ek−1 = bk−1 on a
coarse grid and obtain ẽk−1.
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5. Prolongation: Using the prolongation matrix Pk
k−1 to project ẽk−1 onto the fine grid

µ̃̃µ̃µk = Pk
k−1ẽk−1(Prolongation matrix is the transposition of the restriction matrix).

6. Coarse grid correction: Correcting the solution vector obtained on the fine grid in
step 1) ẽk = ẽk + µ̃̃µ̃µk.

7. Post-smoothing: The coarse grid correction brings new errors, so we use n2 times of
smoothing iterations on Akek = bk to eliminate them.

The above process illustrates the complete iteration for the two-level multigrid V-cycle.
Steps 1–7 are repeated until the convergence is achieved. The two-level grid may not satisfy
the needs in practice, so we need to use more grid levels. Algorithm 1 summarizes the
pseudo-code of the V-cycle multigrid algorithm for general cases.

Algorithm 1. V-cycle multigrid method for the solution of Ae = b: MG(Ak,ek,bk,k)

1: Input: level k, bk and initial guess ek, the coefficient matrix Ak−i(i = 0, 1, 2, . . . , k−1).
2: Output: the updated solution ek

3: if (k = 1) then
4: Exactly solve ẽk ← Akek = bk by a direct solver
5: else
6: Pre-smoothing: n1 times of smoothing iterations on ẽk ← Akek = bk by complex BiCGStab
7: Compute residual: rk = bk −Ak ẽk

8: Restriction: bk−1 = Rk−1
k rk

9: Recursion: MG(Ak−1, ek−1, bk−1, k−1)
10: Prolongation: µ̃̃µ̃µk = Pk

k−1ẽk−1

11: Correct: ẽk = ẽk + µ̃̃µ̃µk

12: Post-smoothing: n2 times of smoothing iterations on ẽk ← Akek = bk by complex BiCGStab
13: end if

The geometric multigrid needs nested grids to construct operational operators. In
this paper, we adopt a two-dimensional (2D) semi-coarsening strategy [52,53] to obtain a
series of nested grids. Refer to Figure 2, the mesh coarsening is performed only in x- and
y-direction, while the mesh in z-direction is kept unchanged. This can avoid the influence
of the mesh stretching in the z-direction on the convergence of the solution. Although the
semi-coarsening strategy increases the solution cost on the coarse grid, it can improve the
overall convergence and increase computational efficiency.
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Figure 2. Semi-coarsening scheme. (a) Grid of size 8 × 8 × 8; (b) grid of size 4 × 4 × 8; (c) grid of
size 2 × 2 × 8. The diagram shows the process of two semi-coarsening, the first semi-coarsening
changes grids from 8 × 8 × 8 to 4 × 4 × 8, the second semi-coarsening changes grids from 4 × 4 × 8
to 2 × 2 × 8. Semi-coarsening is only performed on grids in x- and y-direction, while the grids in
z-direction remain unchanged.

The performance of the multigrid method depends on the smoother, the restriction
matrix, and the prolongation matrix that need to be chosen appropriately for the vector
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FE method using structured hexahedral mesh. In this paper, we use as smoother the
preconditioned bi-conjugate gradient stabilizer (BiCGSTAB). For the restriction matrix, we
calculate its elements via the integration of vector FE basis functions [54], i.e.,

Rij =
∫
L f

j

Nc
i · dl, (28)

where L f
j denotes j-th edge in the fine grids, Nc

i denotes the interpolation basis function
corresponding to the i-th edge in the coarse grids. Moreover, we define the transposition of
the restriction matrix as the prolongation matrix. As an example, we take a simple 2D grid
to illustrate the construction of the restriction matrix. Refer to Figure 3, the four fine grids
are coarsened into one grid. Assuming that the 1-th edge in the coarse grid is the boundary
edge, then the corresponding restriction matrix containing the boundary conditions can be
written as

Rk−1
k =


0 0 0 0 0 0 0 0 0 0 0 0
0 0 1

4
1
4

1
2

1
2 0 0 0 0 0 0

0 0 0 0 0 0 1
2

1
4 0 1

2
1
4 0

0 0 0 0 0 0 0 1
4

1
2 0 1

4
1
2

 (29)
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Figure 3. Diagram of restriction operator (Refer to [54]). (a) Fine grid; (b) coarse grid. We take edge
2 at the coarse grid as an example. Edge 2 on the coarse grid is contributed by edges 3, 4, 5, and 6
on the fine grid, with weights of 1/4, 1/4, 1/2,1/2. The restriction matrix constructed by all edge
weights is shown in Equation (29).

3. Numerical Experiments

In this part, we test the performance of our MG algorithm for 3D MT forward modeling.
First, we design a three-layered model to check the accuracy of our algorithm by comparing
the numerical results with the analytical solutions. Then, we take the typical COMMEMI
3D-2 model, Dublin test model 1, modified SEG/EAEG salt dome model to test numerical
performance of our algorithm in terms of the numerical precision, the convergence, the iter-
ation number, and the consumption of memory and CPU time. For comparison purposes,
the commonly used Krylov methods of SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB are
also implemented. To accelerate the convergence, we apply the divergence correction to all
solvers. All calculations are run on an Intel(R) Xeon(R) Gold 6154 @ 3.00 GHz processor
with 128 G RAM and Ubuntu 18.04.

3.1. Algorithm Verification

In this section, we validate the accuracy of the MG algorithm developed in this paper
by a layered geoelectric model shown in Figure 4. The computational domain is discretized
into 48 × 48 × 59 cells (Includes12 air layers), with a uniform discretization of 1000 m
in the horizontal direction and non-uniform discretization in the vertical direction. The
frequency ranging from 104 to10−4 Hz is considered for our modeling. The numerical
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results are compared with the analytic solutions and shown in Figure 5. As can be seen
from the figure, the maximum relative error of the apparent resistivity is 4.37% and the
maximum relative error of the phase is 2.26%. This validates our multigrid algorithm.
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3.2. COMMEMI 3D-2 Model

In this section, we use the COMMEMI 3D-2 model [55] to test the accuracy and
computational efficiency of our algorithm. Figure 6 shows the geometry and the resistivity
distribution of the model. We divide the computational domain into 128 × 128 × 64
grids with 15 air layers in the z-direction. In the x- and y-directions, we divide the model
uniformly with a grid size of 1.25 km, while in the z-direction we set the grid size for
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the first layer to be 100 m and increase the sizes for the rest of the layers by multiplying
the sizes of the previous layers with a constant larger than 1.0. The whole computational
domain has a size of 160 km × 160 km × 230 km. we choose three frequencies of 0.1, 0.01,
and 0.001 Hz for our modeling and assume a 6-level MG grid (except for the two small
models in the test of different grid scales that have 4 and 5 levels of grid, respectively).
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To verify the accuracy of our algorithm, we compare our MG results with those of
Pan et al. [44]. Figure 7 shows the apparent resistivity and phases along the survey line
y = 0 at 0.1, 0.01, and 0.001 Hz for the COMMEMI3D-2 model. It is seen that our results
match well those of Pan et al. [44]. From Figure 7, we can also see that the apparent
resistivity curve has a sudden change at −20 km, 0 km, and 20 km in the x-direction along
the survey line y = 0. This clearly reflects the resistivity changes at these locations. Moreover,
the x-polarization mode shows variations more obviously than the y-polarization mode.
This is because in the x-polarization mode, the current perpendicular to the interfaces is
continuous, so the electric field and the apparent resistivity calculated from it gets a sudden
jump at the interfaces.

Figure 8 shows the convergence curves of SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB
and our MG algorithm for COMMEMI3D-2 model respectively at 0.1, 0.01 and 0.001 Hz. It
is seen that for all three frequencies, the MG algorithm has the least iterations and fastest
convergence, with the convergence curves decreasing rapidly in a straight line in the
single logarithmic coordinate. The residual of the traditional Krylov subspace algorithms
(SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB) decreases rapidly at the beginning, but
then become slower as the iteration proceeds. Among the traditional iterative algorithms,
the SOR-BICGSTAB works the best. Table 1 shows the comparison of computational
performance of different iterative algorithms. The convergence threshold is set to be 10−7.
It is seen that for the three frequencies, all algorithms reach the convergence accuracy.
The number of iterations and solution time of the MG method are much smaller than
those of other algorithms. Specially, in comparison to other algorithms, the time for the
MG solution is reduced by 59–82% (2.4–5.6 times faster) for frequency 0.1 Hz, 81–85%
(5.3–6.8 times faster) for frequency 0.01 Hz, and 81–89% (5.3–9.1 times faster) for frequency
0.001 Hz. In terms of memory consumption, the MG algorithm is slightly larger than the
traditional Krylov subspace algorithms (SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB).
This is because our method needs to store the coefficient matrices, the restriction matrices,
and the interpolation matrices for multiple levels of grids. Considering the computation
time and memory requirements, our multigrid algorithm is still the preferred choice for 3D
MT modeling.
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Figure 7. Apparent resistivities and phases calculated for the COMMEMI3D-2 model at frequencies
of 0.1, 0.01, and 0.001 Hz for the survey line y = 0. (a,e,i) and (b,f,j) are respectively the apparent
resistivities and phases for the frequencies of 0.1, 0.01, 0.001hz in x-polarization mode, while (c,g,k)
and (d,h,l) are respectively the apparent resistivities and phases for the same frequencies in the
y-polarization mode. The red lines represent the MG results, while the blue squares represent the
results from Pan et al. [44].

Table 1. Computational performance of SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB, and MG
algorithm for COMMEMI3D-2 model in x- and y-polarization modes at 0.1, 0.01 and 0.001 Hz.

Grid Size
(DoFs)

Frequency
(Hz) Method

x-Polarization y-Polarization

Error Iterations CPU
Time(s)

Memory
(GB) Error Iterations CPU

Time(s)
Memory

(GB)

128 × 128 × 64
(3,211,584)

0.1

SOR-GMRES 9.9 × 10−8 896 827.73 8.8 9.8 × 10−8 504 456.86 8.8
ILU-BICGSTAB 1.0 × 10−7 1071 1073.77 9.3 9.6 × 10−8 597 591.95 9.3
SOR-BICGSTAB 9.9 × 10−8 483 692.75 7.6 9.3 × 10−8 473 658.21 7.6

Multigrid 4.4 × 10−8 8 191.96 12.4 6.2 × 10−8 8 188.56 12.4

0.01

SOR-GMRES 9.9 × 10−8 1266 1184.26 8.8 9.8 × 10−8 1011 918.75 8.8
ILU-BICGSTAB 9.9 × 10−8 1278 1312.25 9.3 9.8 × 10−8 978 986.08 9.3
SOR-BICGSTAB 9.9 × 10−8 765 1115.31 7.6 9.8 × 10−8 831 1189.06 7.6

Multigrid 4.6 × 10−8 7 194.23 12.4 5.1 × 10−8 7 174.43 12.4

0.001

SOR-GMRES 9.9 × 10−8 1045 970.54 8.8 9.9 × 10−8 1031 933.31 8.8
ILU-BICGSTAB 9.8 × 10−8 1612 1642.76 9.3 9.3 × 10−8 1064 1067.97 9.3
SOR-BICGSTAB 9.9 × 10−8 943 1365.88 7.6 9.4 × 10−8 766 1097.89 7.6

Multigrid 2.0 × 10−8 6 179.58 12.4 3.7 × 10−8 6 176.96 12.4
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Figure 8. Convergence curves of SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB, and our MG
algorithm for the COMMEMI3D-2 model at 0.1, 0.01 and 0.001 Hz. The computation is conducted on
the grid of size 128 × 128 × 64, with a DoF of 3211584.

To further test the computational efficiency of our algorithm at different grid scales,
we used MG, SOR-GMRES, ILU-BICGSTAB, and SOR-BICGSTAB algorithms to solve
the problem at different grid scales of 24 × 24 × 24, 48 × 48 × 33, 128 × 128 × 50, and
256 × 256 × 128. Figure 9 shows the comparison of the time for the solution. It is seen that
our MG algorithm is faster than other iterative algorithms at different grid scales for x- and
y-polarization modes at all frequencies. With increasing unknowns, the advantage of MG
algorithm becomes more obvious. This indicates that the MG algorithm presented in this
paper is more suitable for large scale MT modeling problems.
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Figure 9. Comparison of computational time for SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB,
and MG algorithm for COMMEMI3D-2 model in x- and y-polarization modes at 0.1, 0.01, and
0.001 Hz. The residual threshold is 10−7. The computation is conducted respectively on the grids of
24 × 24 × 24, 48 × 48 × 33, 128 × 128 × 50, 256 × 256 × 128, with the number of unknowns being
45,000, 239,169, 2,516,274, 25,428,608, respectively.
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3.3. Dublin Test Model 1

We use the Dublin test model 1 (DTM1) [56] to further test the effectiveness of our
algorithm in this section. Referring to Figure 10, there are three abnormal bodies with
resistivities of 10, 1, and 10,000 Ω·m embedded in a uniform half-space of 100 Ω·m. The
detailed parameters of the abnormal bodies are shown in Table 2. We divide the computa-
tional domain into 128 × 128 × 64 grids and in the z-direction we assume 15 air layers. In
the x- and y-directions, we divide the model uniformly with a grid size of 2.5 km, while in
the z-direction we set the grid size for the first layer to 100 m and increase the sizes for the
rest of the layers by multiplying the sizes of the previous layers with a constant larger than
1.0. The whole computational domain has a dimension of 320 km × 320 km × 330 km. We
choose three frequencies of 0.1, 0.01 and 0.001 Hz for our modeling. Similar to previous
models, we assume a 6-level MG grid (except for the two small models in the test of
different grid scales that have 4 and 5 levels of grid, respectively).
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Figure 10. Diagram of DTM1 model (refer to [56]). (a) Looking from positive to negative x; (b) looking
from negative to positive x; (c) plane view. Three abnormal bodies are embedded in a uniform half-
space of 100 Ω·m. The dimensions and resistivities of the abnormal bodies are listed in Table 2.

Table 2. Dimensions and resistivities of three abnormal bodies in DTM1 model.

Abnormal Body x (km) y (km) z (km) Resistivity
(Ω·m)

Body1 −20~20 −2.5~2.5 5~20 10
Body2 −15~0 −2.5~22.5 20~25 1
Body3 0~15 −22.5~2.5 20~50 10,000

To study the advantages of our algorithm, we check first the accuracy of our algo-
rithm against the results provided by the MTNet (Available at: http://www.mtnet.info/

http://www.mtnet.info/workshops/mt3dinv/2008_Dublin/dublin_forward.html
http://www.mtnet.info/workshops/mt3dinv/2008_Dublin/dublin_forward.html
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workshops/mt3dinv/2008_Dublin/dublin_forward.html, accessed on 11 January 2023).
The results of the MTNet were obtained by different algorithms [13,57–59]. Figure 11 shows
the apparent resistivities and phases along the survey line x = 0 at 0.1, 0.01 and 0.001 Hz
for DTM1 model. It is seen that the results of our method match those of the MTNet; the
changes of the apparent resistivity curves are consistent with the real resistivity changes
along the survey line.
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Figure 11. Apparent resistivities and phases calculated for the DTM1 model at frequency of 0.1, 0.01
and 0.001 Hz along the survey line x = 0. (a,e,i) and (b,f,j) are respectively the apparent resistivities
and phases for the frequencies of 0.1, 0.01, 0.001hz in x-polarization mode, while (c,g,k) and (d,h,l)
are respectively the apparent resistivities and phases for the same frequencies in the y-polarization
mode. The red lines display the results of our MG algorithm, while the orange triangles, purple
stars, green crosses, and the blue squares display the results calculated using the code developed by
Mackie et al. [13], Siripunvaraporn et al. [57], Farquharson et al. [58] and Nam et al. [59], respectively.

Figure 12 shows the convergence curves of SOR-GMRES, ILU-BICGSTAB, SOR-
BICGSTAB and our MG algorithm. It is seen that for all 3 frequencies, our MG algorithm
has the fewest iterations and fastest convergence, with the convergence curve decreas-
ing rapidly in a straight line in the single logarithmic coordinate. In comparison, the
residuals of the traditional Krylov subspace algorithms (SOR-GMRES, ILU-BICGSTAB,
SOR-BICGSTAB) decrease rapidly at the beginning but become slower as the iterations
proceeds. Table 3 shows the computational performance comparison of different algo-
rithms. The convergence threshold is set to 10−7. It is seen that for the three frequencies, all
algorithms achieve convergence. The number of iterations and solution time of the MG
method are much smaller than those of other algorithms. For the present DTM1 model, the
solution time for our MG method is reduced by 56–72% (2.3–3.5 times faster) for frequency

http://www.mtnet.info/workshops/mt3dinv/2008_Dublin/dublin_forward.html
http://www.mtnet.info/workshops/mt3dinv/2008_Dublin/dublin_forward.html
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0.1 Hz, 63–83% (2.7–5.8 times faster) for frequency 0.01 Hz, and 71–86% (3.5–7.0 times
faster) for frequency 0.001hz in comparison to other algorithms. Like the previous models,
the MG algorithm takes a slightly larger memory than the traditional Krylov subspace
algorithms (SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB).
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Figure 12. Convergence curves of SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB and our MG
algorithm for DTM1 model at 0.1, 0.01 and 0.001 Hz. The computation is conducted on the grid of
size 128 × 128 × 64, with a DoF of 3,211,584.

Table 3. Computational performance of SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB and our MG
algorithm for DTM1 model in x, y-polarization modes at 0.1, 0.01 and 0.001 Hz.

Grid Size
(DoFs)

Frequency
(Hz) Method

x-Polarization y-Polarization

Error Iterations CPU
Time(s)

Memory
(GB) Error Iterations CPU

Time(s)
Memory
(GB)

128 × 128 × 64
(3,211,584)

0.1

SOR-GMRES 9.9 × 10−8 655 595.17 8.8 1.0 × 10−7 690 624.80 8.8
ILU-BICGSTAB 9.9 × 10−8 394 390.36 9.3 9.2 × 10−8 427 427.79 9.3
SOR-BICGSTAB 7.1 × 10−8 375 507.54 7.6 9.9 × 10−8 430 590.76 7.6

Multigrid 1.8 × 10−8 7 170.25 12.4 5.0 × 10−8 7 176.25 12.4

0.01

SOR-GMRES 9.9 × 10−8 876 802.80 8.8 9.9 × 10−8 930 860.56 8.8
ILU-BICGSTAB 9.7 × 10−8 540 549.23 9.3 7.6 × 10−8 591 595.35 9.3
SOR-BICGSTAB 9.9 × 10−8 720 1007.60 7.6 9.7 × 10−8 924 1285.80 7.6

Multigrid 1.1 × 10−8 7 186.63 12.4 4.7 × 10−8 8 223.00 12.4

0.001

SOR-GMRES 9.9 × 10−8 649 597.36 8.8 1.0 × 10−7 711 661.19 8.8
ILU-BICGSTAB 9.8 × 10−8 717 751.10 9.3 7.5 × 10−8 1101 1152.78 9.3
SOR-BICGSTAB 7.4 × 10−8 551 764.54 7.6 1.0 × 10−7 552 769.51 7.6

Multigrid 1.1 × 10−8 6 171.40 12.4 4.8 × 10−8 6 165.05 12.4

To further study the computational efficiency of our algorithm at different grid
scales, we use MG, SOR-GMRES, ILU-BICGSTAB and SOR-BICGSTAB algorithms for
solving the problem at different scales of 24 × 24 × 24, 48 × 48 × 33, 128 × 128 × 50,
256 × 256 × 128 grids. Figure 13 shows the solution time. It is seen that our MG algorithm
is faster than other iterative algorithms at different grid scales for x- and y-polarization
modes at all frequencies. With increasing unknowns, the advantage of our MG algorithm
become more obvious. This confirms again that the MG algorithm is more suitable for large
scale modeling problems.
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Figure 13. Comparison of computational time for SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB and
our MG algorithm for DTM1 model in x, y-polarization modes at 0.1, 0.01 and 0.001 Hz. The residual
threshold is set to 10−7. The computation is conducted on the grids of 24 × 24 × 24, 48 × 48 × 33,
128 × 128 × 50, 256 × 256 × 128, with the DoFs of 45,000, 2,391,69, 2,516,274, 25,428,608.

3.4. Modified SEG/EAEG Salt Dome Model

Finally, we test the effectiveness of our MG algorithm via a model modified from the
SEG/EAEG salt dome proposed by Aminzadeh et al. [60]. Refer to Figure 14, a complex
abnormal body of 5Ω·m is embedded in a uniform half-space of 100 Ω·m. We divide the
computational domain into 128 × 128 × 88 grids, with 13 air layers in the z-direction. A
uniform grid spacing of 6km is applied in the x- and y-directions, while in the z-direction
we take the same division as in previous models. The whole computational domain has
a size of 768 km × 768 km × 768 km. We choose three frequencies of 0.1, 0.01, and 0.001
Hz for our modeling. The MG grid level is 6 (except for the smallest model in the test of
different grid scales that has 5 levels of grids).
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has a resistivity of 5 Ω·m, while the uniform half-space has a resistivity of 100 Ω·m.

Figure 15 shows the comparison of our MG results with those of the ModEM developed
by Kelbert et al. [14]. From the apparent resistivities and phases at the survey line y = 0, one
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can see that our results agree well with those of ModEM. The curves of apparent resistivities
fit well with the low-resistivity anomalous body. At high frequencies, the amplitudes of
the apparent resistivities are small, and they gradually increase with decreasing frequency.
This is due to the fact that the anomalous body is buried in deep earth, so the low frequency
signal is more influenced by the deep conductor.
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Figure 15. Apparent resistivities and phases calculated for the modified SEG/EAEG salt dome model
at frequency of 0.1, 0.01 and 0.001 Hz for the survey line y = 0. (a ,e,i) and (b,f,j) are respectively
the apparent resistivities and phases for the frequencies of 0.1, 0.01, 0.001hz in x-polarization mode,
while (c,g,k) and (d,h.l) are respectively the apparent resistivities and phases for the same frequencies
in the y-polarization mode. The red lines display the results of our MG algorithm, while the blue
squares display the results calculated by ModEM developed by Kelbert et al. [14].

Figure 16 shows the convergence curves of SOR-GMRES, ILU-BICGSTAB, SOR-
BICGSTAB and our MG algorithm for the modified SEG/EAEG salt dome model at 0.1,
0.01, and 0.001 Hz with 128 × 128 × 88 grids. It is seen that for all three frequencies,
our MG algorithm has the fewest number of iterations and fastest convergence, with the
convergence curve decreasing rapidly in a straight line in the single logarithmic coordinates.
In comparison, the traditional Krylov subspace algorithm SOR-GMRES, ILU-BICGSTAB,
SOR-BICGSTAB decreases rapidly at the beginning and become slower as the iterations
proceed. Among the traditional iterative algorithms, the SOR-BICGSTAB works the best at
0.1Hz, while the ILU-BICGSTAB works the best at 0.01 and 0.001 Hz. Table 4 shows the
comparison of the computational performance of different iterative algorithms. The conver-
gence threshold is set to 10−7. It is seen that for the three frequencies, all algorithms achieve
convergence. As the frequency decreases, the number of iterations and solution time of
SOR-GMRES, ILU-BICGSTAB and SOR-BICGSTAB change differently, while the number
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of iterations and the solution time of the MG method does not change obviously with the
frequency. The number of iterations and solution time of the MG method are much smaller
than those of other algorithms for all frequencies. In comparison to other algorithms, our
MG method reduces the solution time by 59–74% (2.4–3.9 times faster) for frequency 0.1 Hz,
61–82% (2.6–5.6 times faster) for frequency 0.01hz, and 73–88% (3.7–8.8 times faster) for
frequency 0.001hz. In terms of memory, we draw the similar conclusion that our MG algo-
rithm consumes a slightly larger memory than the traditional Krylov subspace algorithms
(SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB).
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Figure 16. Convergence curves of SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB and our MG
algorithm for the modified SEG/EAEG salt dome model at 0.1, 0.01 and 0.001 Hz. The computation
is conducted on the grid size of 128 × 128 × 88, with a DoF of 4,403,544.

Table 4. Computational performance of SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB and our MG
algorithm for the modified SEG/EAEG salt dome model in x, y-polarization modes at 0.1, 0.01 and
0.001 Hz.

Grid Size
(DoFs)

Frequency
(Hz) Method

x-Polarization y-Polarization

Error Iterations CPU
Time(s)

Memory
(GB) Error Iterations CPU

Time(s)
Memory

(GB)

128 × 128 × 88
(4,403,544)

0.1

SOR-GMRES 9.9 × 10−8 774 1020.68 12 1.0 × 10−7 751 993.38 12
ILU-BICGSTAB 9.7 × 10−8 780 1146.60 12.6 9.8 × 10−8 820 1213.46 12.6
SOR-BICGSTAB 9.5 × 10−8 411 842.82 10.3 9.8 × 10−8 389 767.28 10.3

Multigrid 6.0 × 10−8 8 316.55 17 5.5 × 10−8 8 315.13 17

0.01

SOR-GMRES 1.0 × 10−7 1298 1736.92 12 1.0 × 10−7 1372 1841.99 12
ILU-BICGSTAB 9.1 × 10−8 577 848.64 12.6 9.9 × 10−8 678 997.28 12.6
SOR-BICGSTAB 9.7 × 10−8 757 1545.95 10.3 9.7 × 10−8 708 1459.48 10.3

Multigrid 2.8 × 10−8 8 330.03 17 3.5 × 10−8 8 329.34 17

0.001

SOR-GMRES 1.0 × 10−7 1983 2651.39 12 1.0 × 10−7 1988 2634.64 12
ILU-BICGSTAB 9.7 × 10−8 891 1345.04 12.6 9.6 × 10−8 738 1136.72 12.6
SOR-BICGSTAB 9.7 × 10−8 1283 2685.95 10.3 9.4 × 10−8 1175 2487.30 10.3

Multigrid 4.1 × 10−8 7 306.69 17 2.3 × 10−8 7 307.84 17

To test the computational efficiency of our algorithm at different grid scales, we use
MG, SOR-GMRES, ILU-BICGSTAB and SOR-BICGSTAB algorithms to solve the problem
at different grid scales of 32 × 32 × 16, 64 × 64 × 32, 128 × 128 × 64, 256 × 256 × 132.
Figure 17 shows the solution time. It is seen that the MG algorithm is faster than other
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iterative algorithms at different grid scales for x- and y-polarization modes at all frequencies.
With increasing unknowns, the advantage of our MG algorithm becomes more obvious. In
particular, when the grid size is 256 × 256 × 132 (the number of unknowns is 26,219,140),
the ILU-BICGSTAB in the y-polarization mode at frequency 0.001 Hz does not converge
when the maximum number of iterations of 10,000 is reached. In contrast, our MG method
converges after several iterations, and the solution time is much smaller than that of
ILU-BICGSTAB and the other two iterative algorithms.
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SOR-

BICGSTAB 
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Multigrid 4.1 × 10−8 7 306.69 17 2.3 × 10−8 7 307.84 17 
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Figure 17. Comparison of computational time for SOR-GMRES, ILU-BICGSTAB, SOR-BICGSTAB
and our MG algorithm for the modified SEG/EAEG salt dome model in x, y-polarization modes at
0.1, 0.01 and 0.001 Hz. The residual threshold is 10−7. The computation is conducted on the grid size
of 32 × 32 × 16, 64 × 64 × 32, 128 × 128 × 64, 256 × 256 × 132, with the number of unknowns being
53,328, 409,760, 3,211,584, 26,219,140, respectively.

4. Conclusions

Using the nested structured grids, the BiCGSTAB smoother, the V-cycle structure,
and the restriction operator that considers the boundary condition, we have successfully
developed an efficient geometric multigrid algorithm for the improvement of efficiency
in 3D MT forward modeling. The accuracy verification and numerical experiments for
different models showed that while maintaining accuracy, our MG algorithm has much
higher efficiency and more stable solution performance than the traditional Krylov sub-
space algorithms (SOR-GMRES, ILU-BICGSTAB and SOR-BICGSTAB). For the well-known
COMMEMI 3D-2, Dublin test 1, and modified SEG/EAEG salt dome models commonly
used in the MT community, our MG method enhances the computational efficiency up to
nine times. This improvement gets obvious especially at low frequencies. In addition, when
the grid size gets bigger, the advantage of our MG algorithm becomes more prominent.
All these assure that the geometric multigrid algorithm proposed in this paper can be
effectively used for large scale MT forward modeling and especially for future MT data
inversion for complex models. This will be our future research focus.
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