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Abstract: Accurate estimation and regular monitoring of soil moisture is very important for many
agricultural, hydrological, or climatological applications. Our objective was to evaluate potential con-
tributions of polarimetry to soil moisture estimation during crop growing cycles using RADARSAT-2
C-band images. The research focused on wheat field data collected during Soil Moisture Active Passive
Validation Experiment (SMAPVEX12) conducted in 2012 in Manitoba (Canada). A sensitivity analysis
was performed to select the most relevant non-polarimetric and polarimetric variables extracted from
RADARSAT-2, and statistical models were developed to estimate soil moisture. In fine, three models
were developed and validated: a non-polarimetric model based on cross-polarized backscattering
coefficient σ0

HV ; a polarimetric mixed model using six polarimetric and non-polarimetric retained
variables after the sensitivity analysis; and a simplified polarimetric mixed model considering only
the phase difference (φHH−VV) and the co-polarized backscattering coefficient σ0

HH . The validation
reveals significant positive contributions of polarimetry. It shows that the non-polarimetric model has
a much larger error (RMSE = 0.098 m3/m3) and explains only 19% of observed soil moisture variation
compared to the polarimetric mixed model, which has an error of 0.087 m3/m3, with an explained
variance of 44%. The simplified model has the lowest error (0.074 m3/m3) and explains 53.5% of soil
moisture variation.

Keywords: soil moisture; multiple linear models; RADARSAT-2; polarimetric decomposition; wheat
growth cycle; SMAPVEX12

1. Introduction

Mechanisms of energy exchange at the Earth’s surface are largely influenced by available
soil moisture [1–3]. On a regional or global scale, measurements of the latter would permit
a better understanding of processes linking terrestrial waters, the estimation of energy and
hydrological balances at the Earth’s surface, quantification of carbon exchanges, and the im-
provement of flood prediction and drought monitoring capabilities [4–6]. Within agricultural
environments, soil moisture is essential information. Its monitoring is necessary to better
understand soil conditions in the field, and to anticipate risks that are linked to moisture
saturation or to drought [7–9]. However, such monitoring can be difficult and costly, given
substantial spatial and temporal variation in soil moisture, which is incurred by the diversity
of soil textures, precipitation regimes or other meteorological or surface characteristics.

Soil moisture can be mapped on a regional scale using data from sensor networks, or
through the inversion of water and energy balance models. The cost, accuracy and mainte-
nance of measurement networks that would enable these methods limit their applicability,
particularly in remote areas [10]. Remote sensing can be used to estimate soil moisture
at different scales by modelling the interaction between soil moisture and microwave
signals [11–13]. Various satellites can contribute to this objective, particularly on a global or
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regional scale, such as Soil Moisture and Ocean Salinity (SMOS) or Soil Moisture Active
Passive (SMAP) missions. Most of these platforms exploit passive microwaves, which have
enabled the development of soil moisture time series on a global scale over more than
forty years [14–16]. Yet, the relatively coarse spatial resolution of these products (≥25 km),
together with their levels of uncertainty, may limit their implementation in agricultural
applications [17–19].

Spatial missions that are equipped with Synthetic Aperture Radar (SAR) have a great
potential for obtaining measurements at spatial resolutions of a few meters, day or night,
regardless of atmospheric conditions [20]. Different radar platforms have been placed
in orbit over the course of the past few decades, including, for example, RADARSAT-1,
RADARSAT-2, the RADARSAT Constellation Mission (RCM) and Sentinel-1. According
to observational conditions in agricultural areas, and the frequency that is used, the radar
signal is highly sensitive to variations in soil moisture, soil roughness as well as vegetation
cover [21]. Furthermore, the main challenge in measuring soil moisture by radar is the
ability to discriminate between the effects of roughness and vegetation on the measured
signal. The relative importance of these effects varies according to the characteristics of
the observed target or the radar sensor’s acquisition parameters, i.e., the polarization, the
angle of incidence or the signal wavelength [22].

Interactions between the target and radar signal can be characterized by the backscat-
tered power of the signal under different polarizations. The resulting linear backscatter
coefficients, regardless of whether they are determined from single or multiple polariza-
tions, have been used to estimate soil moisture in agricultural settings using empirical
or physical models [13,23–26]. Yet, models are often tested under specific validation con-
straints, which do not allow for the effects of dynamic factors, such as vegetation, to be
adequately taken into account. With the increasing availability of data, approaches that are
based upon artificial intelligence or processing of long time series are being increasingly
considered for estimating soil moisture or improving the spatial resolution of products, by
exploiting microwave observations and other multiple data sources [27–29].

Fully polarimetric SAR sensors produce images of complex backscattering acquisitions.
Several relevant variables, which are sensitive to variations in soil and vegetation condi-
tions, can be extracted from polarimetric data. These variables include the co-polarized
phase difference (ΦHH-VV [30]), the co-polarized correlation coefficient (ρHH-VV [25,31]) and
the pedestal height [20,30]. However, their sensitivity is not well known for the complete
growth cycles of different agricultural crops (i.e., entire growing-season duration and devel-
opmental stages that are completed). The use of complex acquisitions can permit signals to
be decomposed into different scattering mechanisms [32–35]. Polarimetric decompositions
have been used in recent studies to invert soil moisture in agricultural environments [36–38].
In these different approaches, substantial challenges remain that are related to the growth
dynamics of the vegetation, which in turn influence the volume component of the signal.
The potential for polarimetry in estimating soil moisture remains to be explored further,
given the limited number of satellites for which polarimetric images are available, together
with the paucity of experimental data covering a wide range of surface conditions.

The current study considers the contributions of both polarimetric variables and linear
backscattering coefficients, i.e., non-polarimetric variables. Our overall objective is to
assess the potential contributions of C-band polarimetry to soil moisture estimation in
agricultural areas throughout the growing season for wheat crops. More specifically, the
study analyzes links between radar variables and agricultural features that are measured
in situ, to identify those features that are most sensitive to soil moisture. Based upon the
sensitivity analysis performed, the study proposes three multiple linear regression models,
with and without polarimetry, to estimate soil moisture. In terms of novelty and principal
contribution, this research proposes the use of polarimetric decomposition and statistical
models for the relatively easy estimation of soil moisture in wheat fields over the growth
season. In particular, the study highlights the most relevant polarimetric variables that are
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required for estimating moisture in cultivated wheat fields. Only polarimetric radar data
are considered in this study.

2. Materials and Methods
2.1. Materials

The study site corresponds to the site that was used in the Soil Moisture Active Passive
Validation Experiment 2012 (SMAPVEX12) campaign [7]. It is located in the trans-boundary
Red River Watershed (Province of Manitoba), in western Canada (Figure 1). The area is
centred on the village of Elm Creek (98◦0′23′′W, 49◦40′48′′N), which is near the provincial
capital of Winnipeg. The study covers an area of about 15 km by 70 km, and consists
mainly of farmland and a few forested areas (dominated by trembling aspen, burr oak and
balsam poplar) [7]. Many annual crops are grown here, including wheat, maize (corn),
soybeans, beans, barley and canola (edible rapeseed), together with perennial land covers
(including grass and alfalfa pastures). Details are available from the dedicated website
(https://smapvex12.espaceweb.usherbrooke.ca/, accessed on 7 October 2023).
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Figure 1. SMAPVEX12 study area and locations of ground surface measurement points (https://smapvex1
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The field data that were used in the study originate from the SMAPVEX12 campaign,
which was conducted 7 June to 19 July 2012 [7]. The data were collected from 55 fields that
were covered by different crops (wheat, soybean, maize, canola, etc.). Soil textures differed
across fields in terms of the proportions of sand, silt and clay, ranging from heavy clays to fine
sandy loams. Several variables were measured in situ, including soil moisture (mv), surface
roughness, dry biomass, crop height and biomass water content. For mv measurements, each
field was sampled at sixteen points, which were distributed along two transects. On each
acquisition date, three measurements were taken at each point to within 6 cm of the surface,
using portable Theta (Delta-T Devices, Burwell, Cambridge, UK) and Hydra (Beaverton, OR,
USA) probes. Volumetric soil moisture that was acquired by the probes was calibrated against
the gravimetric soil moisture measurements of the soil samples that had been collected. At the
same time, additional soil moisture measurements were acquired using automated stations
that had been installed in the study area. These sensors form a permanent network of stations
that is operated by Agriculture and Agri-Food Canada (AAFC). Data were also taken from
temporary networks established by the Manitoba Department of Agriculture, and by the
United States Department of Agriculture (USDA).

This study focuses solely upon wheat fields from the SMAPVEX12 campaign (13 fields
in total). Several data types were taken on this crop during its growth between 11 June
and 18 July 2012, thereby motivating our choice to work on wheat in this research. For
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instance, roughness data (height s, correlation-length l) were measured using a three-meter-
long pin-profilometer in the viewing direction of RADARSAT-2. Mean values found for
wheat fields are, respectively, s = 0.99 ± 0.30 cm, and l = 11.29 ± 4.11 cm. Figure 2 shows
average moisture in the wheat fields (portable probe measurements), the average rainfall
accumulated every six hours, and the average temporal soil moisture profile obtained
from automatic station measurements. Soil moisture is particularly high at the start of
the campaign, due to the rainfall episodes that were recorded. After Julian day 172, fields
gradually dry out until day 188. After this date, a slight moistening occurs until day 196.
Rainfall at the end of the season subsequently increases mv variability.
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Figure 2. Temporal profiles of volumetric soil moisture (mv) measured by portable probes (box-and-
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Figure 3 provides a visual illustration of wheat condition during progressive stages of
its growth, from stem elongation to ripening. Related dry biomass follows a nearly linear
trend from the beginning of the season to ripening (min = 0.105 kg/m2, max = 1.241 kg/m2,
mean = 0.696 ± 0.272 kg/m2). Plant height (h) and water content (VWC) increase almost
linearly, right up to the initiation of heading stage (days 175–180). After this period, h increases
very slightly due to the seed heads, while VWC decreases. Over the entire campaign, h varied
between 29.7 and 106.3 cm, with a mean of 72.2 ± 19.5 cm, while VWC ranged from 0.331 to
3.256 kg/m2, with an average value of 2.136 ± 0.640 kg/m2.
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Figure 3. Photos of wheat plants at different growth stages: (a) stem elongation at day 170;
(b) appearance of spike in sheath and end of stem elongation at day 176; (c) heading at day 189;
(d) ripening at day 198 (https://smapvex12.espaceweb.usherbrooke.ca/, accessed on 7 October 2023).

As part of SMAPVEX12, polarimetric C-band (5.4 GHz) images were acquired by
RADARSAT-2 between 5 June and 13 July 2012, in parallel with field measurements.
The images were taken in fine mode and quad polarization (HH+HV+VH+VV), with a

https://smapvex12.espaceweb.usherbrooke.ca/


Remote Sens. 2023, 15, 4925 5 of 19

maximum spatial resolution of 12 m (Table 1). For each date, several images were taken a
few seconds apart to cover the entire SMAPVEX12 study site.

Table 1. SMAPVEX12 RADARSAT-2 images used in the study.

Date (mm/dd) Julian Day (DOY) Local Time Angle of Incidence (◦)

06/05 157 7:57 a.m. 20–23.6
06/12 164 7:53 a.m. 26.1–29.4
06/12 165 7:15 p.m. 28.4–31.6
06/19 172 7:11 p.m. 23.7–27.2
06/26 179 7:07 p.m. 19–22.7
06/29 181 7:57 a.m. 20–23.6
07/06 188 7:53 a.m. 26.1–29.4
07/06 189 7:15 p.m. 28.4–31.6
07/13 196 7:11 p.m. 23.7–27.2

Complementary auxiliary data were acquired to enable pre-processing of the radar images,
e.g., geometric corrections and ortho-rectification. These include Canadian Vector data (CanVec)
available on the Canadian government platform Geogratis [39]. Vector layers that were
considered are roads, hydrography and vegetation. The CanVec product has a planimetric
accuracy of 10 m. Canadian Digital Elevation Data (CDED) were also acquired, at a scale of
1:50,000. They have a planimetric accuracy of 10 m, and a vertical accuracy of 5 m [40].

2.2. Methods

The approach used in this study was (1) to determine the most sensitive non-polarimetric
and polarimetric variables and (2) to develop statistical models for estimating soil moisture
in wheat fields over the growing season. The various steps in the methodological approach
are summarized in Figure 4.
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2.2.1. Temporal Interpolation of In Situ Measurements

During the SMAPVEX12 campaign, there were situations where delays existed between
satellite overpass and in situ data acquisition times. Analysis of continuous soil moisture
(mv) profiles revealed that the error associated with a 24 h acquisition delay was in the
order of 0.010 m3/m3, which constitutes a very small error. However, on several days when
RADARSAT-2 passed over the study site, the corresponding mv measurement was delayed
by more than 24 h. To correct for the delay and to collect as many data points as possible
for the analysis, we used a temporal interpolation. Thus, for each wheat field, a linear
relationship was established between mv measurements acquired by hand-held probes and
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those of the nearest automated station. This relationship was then used to estimate the
average mv value for the field from the mv values measured by the automated station at
the time of RADARSAT-2 overpass. Only highly significant relationships (p ≤ 0.01) were
considered, to avoid propagating large errors in the soil moisture values considered for
model development (calibration) and validation.

Soil roughness was considered to be constant across the same field throughout the
campaign. Thus, no interpolations were conducted on roughness measurements. Vegeta-
tion measurements (biomass, height, water content) with acquisition delays of less than
one day relative to the corresponding radar image were used without interpolation. Values
were linearly interpolated for time lags that were greater than 1 day. This approach was
justified by the quasi-linear temporal profiles of the various variables that were measured
during the SMAPVEX12 campaign.

2.2.2. Processing of RADARSAT-2 Images

The complete polarimetric description of the RADARSAT-2 signal is provided by the
Sinclair matrix [S], which is composed of complex values (Sij) representing the signal in
incident i and received j polarizations [41]. In linear polarization, i and j are horizontal (H)
or vertical (V). Therefore:

[S] =
[

SHH SHV
SVH SVV

]
(1)

This diffusion matrix can be explained as vectors k or Ω, such that:

k =
1√
2
[SHH + SVVSHH − SVV2SHV]

T (2)

Ω =
[
SHH
√

2SHVSVV

]T
(3)

The covariance [C3] and coherence [T3] matrices for a target then can be calculated as:

[C3] =
〈

Ω·Ω*T
〉
=


〈
|SHH |2

〉 √
2
〈
SHHS*

HV
〉 〈

SHHS*
VV
〉

√
2
〈
SHVS*

HH
〉 〈

|SHV |2
〉 √

2
〈
SHVS*

VV
〉〈

SVVS*
HH
〉 √

2
〈
SVVS*

HV
〉 〈

|SVV |2
〉

 (4)

[T3] =
〈

k·k*T
〉
=

1/2


〈
|SHH+SVV |2

〉 〈
(SHH + SVV)(SHH − SVV)

*
〉

2
〈
(SHH + SVV)S*

HV
〉〈

(SHH − SVV)(SHH + SVV)
*
〉 〈

|SHH−SVV |2
〉

2
〈
(SHH − SVV)S*

HV
〉

2
〈

SHV(SHH + SVV)
*
〉

2
〈

SHV(SHH − SVV)
*
〉

4
〈
|SHV |2

〉
 (5)

where the operator * refers to the conjugate of the complex value and the operator 〈...〉 refers
to the mean value on the target surface. The HH, HV and VV polarised backscattering
coefficients correspond to the diagonal elements of the covariance matrix [C3]. Several
polarimetric variables can be estimated from the complex elements [41]. In this study, linear
backscattering coefficients were obtained from grey levels by calibration using the Look-
Up Tables accompanying RADARSAT-2 products. Covariance and coherency matrices
[C3] and [T3] were generated from the calibrated products, using PolSARpro (version 5),
available in Geomatica software 2016. We then used a Boxcar 7 × 7 filter [42] to reduce
speckle, which can otherwise create biases on variables that are derived from polarimetric
decompositions [43]. This filter was applied to the images of the complex matrix terms [C3]
and [T3], prior to extraction of radar variables that were used in subsequent analyses. A
total of seven non-polarimetric variables were extracted from the filtered covariance matrix
(Table 2). The σ0 values were then converted to amplitudes (dB) using Equation (6):

σ0(dB) = 10·log10 [σ
0
(

cm2/cm2
)]

(6)
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where σ0 is the backscatter coefficient. Polarimetric variables were calculated from coher-
ence and covariance matrices of targets for each image, using PolSARpro. Furthermore, 13
polarimetric variables were extracted, including six that were derived from the Cloude–
Pottier and Freeman–Durden decompositions. Table 2 summarizes the sets of variables
extracted from RADARSAT-2 images for the purposes of this study.

Table 2. List of non-polarimetric and polarimetric variables that were considered in the study.

Non-Polarimetric Variables (dB)

Backscattering coefficient HH (σ0
HH); Backscattering cross-coefficient HV (σ0

HV); Backscattering
coefficient VV (σ0

VV); Channel ratio HH-VV ( σ0
HH − σ0

VV
)
; Channel ratio HV-HH (σ0

HV − σ0
HH);

Channel ratio HV-VV (σ0
HV − σ0

VV); Total backscattering power (PT).

Polarimetric Variables

Co-polarized phase difference (φHH−VV); Complex co-polarized channel correlation (ρHH−VV);
Cross-polarization phase differences (φHH−HV , φVV−HV); Complex cross-polarization channels

(ρHH−HV , ρVV−HV); Pedestal height (HS).

Polarimetric Variables Obtained through Target Decomposition

Cloude–Pottier decomposition: Entropy (H), anisotropy (A), alpha-angle (α);
Freeman–Durden decomposition: Surface component (Ps), Interaction component (Pd), Volume

component (Pv).

Images of the different variables were subjected to a process of geometric correction
and ortho-rectification. This step is necessary to locating study fields precisely and, sub-
sequently, to extract their corresponding values. The operations were performed with
the hybrid model that was proposed by Toutin [44], using DEM (digital elevation model)
and vector data described in Section 2.1 Inclusion of vector files for the roads ensured the
quality of the georeferencing.

2.2.3. Sensitivity Study and Modelling

Once variable values had been extracted from the various fields, a sensitivity study
was conducted to understand the effects of individual contributions of measured soil and
vegetation characteristics on the radar signal, together with the interrelationships between
the different radar variables. Sensitivity was assessed in each case by examining the
correlation coefficient r and its level of statistical significance (p-value). To be considered
for inclusion in model development, non-polarimetric and polarimetric variables had
(1) to exhibit a significant correlation with mv (p < 0.05), and (2) to exhibit no collinearity
with other explanatory radar variables (r < 0.9). This threshold was adopted after several
trials with different r values varying from 0.50 to 0.95. In the event of collinearity, only the
explanatory variable with the highest significant correlation with mv was retained.

Once explanatory radar variables were selected, we proceeded to develop empirical
models to estimate soil moisture and to highlight the contribution of polarimetry. The
general formulation of the proposed multiple linear models is given by Equation (7). These
models use a set of explanatory variables Xi (polarimetric or non-polarimetric) among
those that had been selected during the sensitivity study, such that:

mv = β1X1 + . . . + βiXi + . . . + βpXp + β0 + ε (7)

Calibration coefficients βi were determined by multiple linear regression. A model can
be calibrated with or without an intercept (β0), and an error term ε. Three models were
proposed. The first model is entirely non-polarimetric. It was developed using σ0

HH, σ0
HV

and σ0
VV . The second model was based upon multiple linear regression and constructed with

the set of polarimetric and non-polarimetric variables retained following the sensitivity study.
Finally, the third model was proposed with a view to reducing the number of explanatory
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variables being considered. It was based on stepwise regression, to retain only the most
relevant explanatory polarimetric and non-polarimetric variables.

2.2.4. Calibration and Validation of the Models

We divided the available wheat field observations into two groups. The first group
comprised the training or calibration set, which was used to determine the calibration
coefficients βi of the models, together with their significance levels. The second group was
used for independent validation of the results. Each group covered the widest possible
range of values for the characteristics measured in the fields. To meet this objective, we used
Kolmogorov–Smirnov and t-tests to evaluate the hypothesis that the two sample groups
belonged to the same population and followed similar distributions. Goodness-of-fit of
each model was verified by inspecting residuals of the estimates, especially their normality,
linearity and homoscedasticity (i.e., equality of residual variances). During both phases
(calibration and validation), model strength was assessed using correlation, significance
level (p-value), and root-mean-square error (RMSE) between estimated and measured soil
moisture.

3. Results

This section summarizes the main results found following the application of the
methodological scheme proposed, as shown in Figure 4.

3.1. Temporal Interpolation

This operation was required to obtain in situ soil moisture values in the wheat fields
for several RADARSAT-2 overpasses during the campaign. Overall, the linear interpolation
models were highly significant (Table 3; p < 0.01), with low RMSE errors. Accordingly, the
results were considered sufficiently robust and satisfactory, and were used to increase the
number of soil moisture observations. Sixty observations (eight wheat fields) constituted
the calibration set. The validation set was comprised of 40 observations (5 fields).

Table 3. Statistics of linear interpolation of soil moisture (mv) for each wheat field. A distance of 0 km
indicates that the station is located in the field. r is the correlation coefficient, p-value is the level of
significance of the relationship, RMSE is the root-mean-square error interpolated mv.

Meteorological Station

Field ID Network Distance (km) r p-Value RMSE (m3/m3)

73-1 USDA 1.0 0.871 0.00 0.018
74-1 USDA 0.0 0.929 0.00 0.015
104 USDA 0.0 0.971 0.00 0.027
105 USDA 0.8 0.974 0.00 0.018
31 USDA 0.0 0.912 0.00 0.033
32 Sages 0.0 0.774 0.00 0.062
44 USDA 0.8 0.885 0.00 0.036
45 USDA 0.0 0.875 0.00 0.044
55 USDA 0.0 0.888 0.00 0.037
81 USDA 0.0 0.911 0.00 0.018
85 USDA 3.7 0.716 0.01 0.037
91 USDA 0.0 0.910 0.00 0.020

3.2. Sensitivity Analysis and Variable Selection

Table 4 summarizes the results found. The link is significant between mv and non-
polarimetric variables in general. Yet, some of these variables are also sensitive to the wheat
biomass, height and water content; as well as surface roughness, i-e correlation-length and
height (Table 4). This observation is likewise valid for the polarimetric variables. The phase
difference φHH−VV shows the most significant inverse correlation with mv (R =−0.64, p < 0.05),
but it is also very positively related to wheat height h.
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Table 4. Correlations between non-polarimetric and polarimetric variables derived from RADARSAT-
2 data and agricultural field characteristics, including soil moisture (mv), surface roughness height (s),
surface roughness correlation length (l), vegetation biomass (VB), average wheat height (h) and water
content (VWC). Yellow indicates non-significant (0.05 < p < 0.10), Orange significant (0.01 < p < 0.05)
and Green very significant (0 < p < 0.01) relationships. See Table 2 for definitions of radar variables.

Non-Polarimetric Variables
σ0

HH σ0
HV σ0

VV PT σ0
HH − σ0

VV σ0
HV − σ0

HH σ0
HV − σ0

VV
mv 0.33 0.56 0.53 0.49 −0.24 0.34 0.19
s 0.10 −0.10 0.06 0.08 0.02 −0.23 −0.20
l −0.22 0.20 0.03 −0.09 −0.22 0.48 0.20

VB −0.07 −0.18 −0.25 −0.15 0.20 −0.10 0.10
h −0.27 −0.35 −0.52 −0.42 0.28 −0.10 0.13

VWC −0.15 −0.30 −0.34 −0.25 0.20 −0.12 0.06
Non-Polarimetric Variables

ρHH−HV φHH−HV ρHH−VV φHH−VV ρVV−HV φVV−HV HS
mv 0.00 −0.06 −0.02 −0.64 −0.01 0.06 0.33
s −0.08 −0.02 0.12 0.25 0.04 0.07 −0.28
l 0.22 0.14 −0.04 −0.11 0.21 −0.13 0.40

VB −0.25 −0.03 −0.16 0.41 −0.15 0.13 −0.10
h −0.26 0.09 −0.24 0.53 −0.17 −0.01 −0.04

VWC −0.19 0.05 −0.17 0.14 −0.23 0.08 −0.10
Variables from Target Decomposition

H A α Ps Pv Pd

mv 0.29 −0.34 0.01 0.13 0.50 −0.14
s −0.26 0.25 −0.08 0.22 −0.12 0.21
l 0.35 −0.21 0.09 −0.42 0.19 −0.26

VB −0.07 0.10 0.36 −0.12 −0.12 0.03
h −0.01 0.06 0.35 −0.33 −0.25 0.00

VWC −0.07 0.16 0.24 −0.09 −0.22 0.01

Based on Table 4, we can count a dozen potentially interesting variables for estimating
soil moisture. By discarding backscattering ratios (linked to backscattering coefficients)
and taking into account collinearities (PT vs. σ0

HH , entropy H vs. pedestal height HS, PV
vs. σ0

HV
)
, we retained six variables for the development of multiple linear models. These

are three non-polarimetric variables (σ0
HH , σ0

HV and σ0
VV) and three polarimetric variables

(φHH−VV, HS and A).

3.3. Non-Polarimetric Model

This model was developed in two iterations. The first calibration simultaneously
considered the three backscattering coefficients (σ0

HH , σ0
HV andσ0

VV). It permitted the de-
velopment of a preliminary model referred to as 3_Sigma. Analysis showed that the only
terms of this 3_Sigma model that demonstrated significance were the intercept and σ0

HV
(Table 5). We conducted a second calibration that considered these two terms. The resulting
non-polarimetric model (denoted Sigma_Hv) is well conditioned, given that its residuals
satisfy normality and homoscedasticity assumptions (Table 5, Figure 5). RMSE error is
0.095 m3/m3, and all terms are significant (Table 5). For the remainder of the study, only
the Sigma_Hv model is considered as a non-polarimetric model and compared to other
models that were developed.
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Table 5. Parameters of empirical linear models based solely upon non-polarimetric variables. Model
3_Sigma includes intercept and all three back-propagation coefficients (σ0

HH , σ0
HV , σ0

VV). Model
Sigma_Hv is based only on significant variables (p < 0.05); i.e., the intercept and σ0

HV . βi are the
regression coefficients (see general formulation in Equation (7)), r is the correlation coefficient, and
RMSE is the root-mean-square error.

Model Number of Fields Number of
Observations r RMSE (m3/m3) Variable βi Standard Error p-Value

3_Sigma 8 60 0.59 0.096 (Intercept) 1.101 14% 0.000
σ0

HH 0.001 793% 0.900
σ0

HV 0.047 29% 0.001
σ0

VV −0.001 −1426% 0.944

Sigma_HV 8 60 0.60 0.095 (Intercept) 1.153 14% 0.000
σ0

HV 0.050 18% 0.000
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Figure 5. Residual values associated with Model Sigma_Hv based on the variable σ0
HV (Table 5);

frequency counts by residual class are compared with a normal distribution with same mean and
SD (left-hand panel); close fit of residuals to the 1:1 line in the probability plot suggests the error
distribution is normal (middle panel); inspection of residuals vs. predicted values indicate no trends
or associations between the two (right-hand panel).

3.4. Models Based upon Non-Polarimetric and Polarimetric Variables

The first model that was developed is based upon multiple regression that considers all
six non-polarimetric and polarimetric variables, which were selected during the sensitivity
analysis (Section 3.2). This model is referred to as a mixed polarimetric model or MixPol
in the text. All βi coefficients obtained for the MixPol model are significant (p < 0.05), as
indicated in Table 6. Its RMSE error (0.078 m3/m3) is lower than that of Sigma_Hv and,
likewise, its correlation is higher (r = 0.77 vs. r = 0.60). The histogram of residuals and the
normal probability plot, together with observed homoscedasticity in the distribution of
residuals (vs. predicted mv), indict that MixPol is well conditioned (Figure 6a).

Table 6. Coefficients of multiple linear regression (i.e., MixPol model) and simplified stepwise
regression SPol model.

Model Number of Fields Number of
Observations r RMSE (m3/m3) Variables βi Std. βi Standard Error p-Value

MixPol

8

60 0.77 0.078 σ0
HH 0.107 0.129 16% 0.000

σ0
HV −0.117 −0.177 −23% 0.000

σ0
VV 0.057 0.076 34% 0.005

φHH−VV −0.003 −0.057 −24% 0.000
Hs 2.072 0.082 15% 0.000
A −1.637 −0.067 −36% 0.008

SPol
8

60 0.71 0.084 Intercept 0.662 0.662 12% 0.000
σ0

HH 0.036 0.043 26% 0.000
φHH−VV −0.004 −0.076 −14% 0.000
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The major drawback of the MixPol model is the large number of variables. Thus, we
developed a second model combining the two categories of variables by applying stepwise
regression, to reduce the number of the variables, while maintaining a level of performance
similar to that of the MixPol model. The simplified model that was obtained, denoted
the SPol model, contains a non-polarimetric variable (σ0

HH) and a polarimetric variable
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(φHH−VV). According to the distribution of the residuals, it is well conditioned, and all its
coefficients are highly significant. RMSE error (0.084 m3/m3) and the correlation (r = 0.714)
are comparable to those obtained with the six-variable MixPol model (Table 6; Figure 6b).

3.5. Validation of Models

The three models were validated using observations from the five independent wheat
fields that were reserved for validation (see Section 2.2), totaling 40 observations. Figure 7
shows the comparison of measured and estimated soil moisture values. The non-polarimetric
model (Sigma_Hv) exhibits the poorest performance (RMSE = 0.098 m3/m3), compared to
the polarimetric models MixPol and Spol (RMSE range: 0.074 m3/m3 to 0.087 m3/m3).
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Following validation, we established average temporal profiles of soil moisture esti-
mated by the three models on all wheat fields, and we compared them to averages of in
situ measurements (Figure 8). The three models exhibit negative residual bias after the start
of the campaign until flowering, and positive bias during grain development and ripening.
The behavior of this bias appears to be consistent with wheat growth stages, suggesting
a residual influence of land cover on model performance. Overall, the non-polarimetric
model exhibits the greatest biases and, therefore, seems more sensitive to the presence of
vegetation than do the polarimetric models.
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4. Discussion
4.1. Match between Satellite Observation and Ground Measurements

This study benefited from the scope of the SMAPVEX12 campaign [7], with the advan-
tage of covering the principal stages of wheat growth in terms of in situ measurements and
polarimetric RADARSAT-2 images. Yet, environmental conditions during the campaign
influenced the dynamics of vegetation development and soil characteristics. In fact, signifi-
cant rainfall occurred at the beginning of the campaign, resulting in higher soil moisture.
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Thereafter, subsequent bouts of rain were rare. Consequently, the fields dried up while the
wheat shoots were growing. This coincidence incurred significant negative correlations
between soil moisture and biomass, and soil moisture vs. crop height, thereby influencing
the measured radar signal.

Moreover, for more than half of the fields that were overflown by the satellite, soil
moisture was measured in the field with a lag with respect to date of acquisition of the
nearest RADARSAT-2 image. Instead of discarding these values, we used a temporal
interpolation method to estimate soil moisture during the missing flyover times. This
gap-filling method, which was based upon a linear relationship that was specific to each
field, took advantage of the regular hourly measurements that had been acquired by the
automated stations. Interpolation proved to be very robust, with errors being sufficiently
small (mostly < 0.04 m3/m3, Table 3) as not to influence the development of soil moisture
estimation models. Overall, the availability of RADARSAT-2 close to ground measurements
time during the SMAPVEX12 field works was limited, thus reducing the number of samples
considered in the development of the models proposed. Also, with the limited dataset,
using approaches such as machine learning methods is difficult to envisage.

4.2. Sensitivity Analysis

The sensitivity analysis that was carried out reveals a significant relationship between
soil moisture and backscattering in the three linear polarizations (Table 4). Although it
is generally admitted that backscattering coefficients are sensitive to soil moisture, it is
important to notice that the relations could be influenced by many factors such as soil type,
conditions, roughness, level of humidity, vegetation, etc. Sensitivity of σ0

HV to mv, which
is the highest found here, depends upon the stage of field crop development (figure not
shown). Indeed, mv is responsible for most of the backscatter signal (RHV = 0.62) between
the start of the campaign (day 157) and the start of grain development (around day 180).
The linkage between σ0

HV and soil moisture is known for bare soils (e.g., Oh [24], semi-
empirical model). Bare soils contributions are dominant at the first stages of wheat growth
period. In addition, wheat fields may show discernable rows during their growth stages,
thus allowing possible contributions of underlying ground, as well as double bounce and
volume scattering. From grain development until the end of the campaign (day 201), dry
biomass increases with the development of the plant head and is responsible for most of the
signal σ0

HV (correlation of 0.56 vs. 0.34 for soil moisture). These observations are supported
by literature reports, given that the change in backscattering dynamics with the appearance
of the heads had already been observed for co-polarized linear channels [45–47].

At the level of polarimetry, the phase difference φHH−VV showed the strongest sensitiv-
ity to mv. φHH−VV contains information related to the microwave propagation path [47,48].
In general, over agricultural fields, the backscattered signal could have a variety of co-
polarized phase difference values, due to many factors related to soil and crop (type,
structure, density and growing stage). φHH−VV will account for the propagation difference
occurring during the travel of the signal through the vegetation volume, and the process
will be largely influenced by the orientations of the crop elements. Jagdhuber [49] provides
more insights on the impact of φHH−VV and indicates that its contribution can be hardly
neglected in situations where media are strongly oriented. Indeed, neglecting φHH−VV
means that the vegetation volume structure is randomly oriented, and anisotropies are
quite inexistent. This may not be fair for crops like wheat with vertical stalks favorable to
dihedral scattering creating variations in φHH−VV [38]. The total φHH−VV may be a complex
variable that can have three primary phase difference components due to two-way propaga-
tion through the vegetation layer, Fresnel reflection by soil surface, and bistatic scattering by
stalks [50]. This is exacerbated in canopies with a standing structure (such as wheat), where
the distribution of φHH−VV values becomes important. In this study, a negative correlation
is observed between φHH−VV and soil moisture, while positive correlations were found
with surface roughness, as well as wheat biomass and height. This translates to a clear
contribution of the surface, but also to the presence of significant volume scattering and
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double bounce [50,51]. This latter may be due to the penetration of one of the polarizations
between the rows in the wheat fields [52,53]. Consequently, a direct physical interpretation
of the relationships between φHH−VV and the different surface properties, including soil
moisture, may not be straightforward, and could require a modelling framework.

After φHH−VV, the volume power Pv, which is derived from the Freeman–Durden
decomposition, also shows a significant correlation with mv. Yet, the strong correlation of Pv
with soil moisture, rather than with vegetation characteristics, appears paradoxical. It could
be explained by the fact that Ps was obtained by inversion of the Bragg scattering model; ac-
cording to its formulation, the Bragg model ignores the effects of ground depolarization [48].
In all cases, Pv was discarded because of its collinearity with σ0

HV (r = 0.97).
Among the variables derived from the Cloude–Pottier decomposition, only anisotropy

and pedestal height were retained. The sensitivity of anisotropy to mv indicates that the
dielectric properties of the soil contribute to the radar signal as a secondary scattering
mechanism [48]. Pedestal height also exhibits a significant link with mv. Yet, just like the
anisotropy, it is influenced by the roughness of the ground surface. The α-angle strongly
depends upon the vegetation, rather than on mv. Therefore, this variable was not retained.

4.3. Selection of SAR Parameters for Empirical Models

This study aims to evaluate and analyze various SAR variables to characterize soil
moisture. No priority was established a priori for the selection of absolute values of the
backscattering powers, ratios between channels or polarimetric variables. The strategy
was to evaluate the contributions of all potential variables that can be extracted from radar
polarimetric images to estimate soil moisture. The six variables that were retained following
the sensitivity analysis made it possible to propose three statistical models for estimating
soil moisture in the wheat fields from RADARSAT-2 data (Tables 5 and 6, Figures 5 and 6).
(1) For non-polarimetric case, the 3_Sigma model was first developed using the three
backscattering coefficients (σ0

HH , σ0
VV , σ0

HV), then the simplified Sigma_HV model was
derived by stepwise regression to provide similar performance with only σ0

HV as a variable.
(2) For the polarimetric case, although the MixPol model obtained satisfactory retrieval
results, the major drawback was the large number of variables. Thus, we developed a
simplified model by applying stepwise regression to reduce the number of input variables,
while maintaining a similar performance as the MixPol model. Thus, it was expected that
the SPol model shows a similar performance as the MixPol. Therefore, the similarities
between the results of polarimetric models (MixPol and Spol) or between those of the
non-polarimetric models (3_Sigma and Sigma_HV) is due to the strategy adopted rather
than the limitations of data and should not be misinterpreted. Overall, the metrics obtained
using only non-polarimetric variables are weaker compared to MixPol and SPol. This
shows the valuable contribution of polarimetric variables. For instance, in the SPol model,
the stepwise regression retained only σ0

HH and polarimetric φHH−VV. The possible physical
explanation is that while σ0

HH contains the effects of both soil moisture and vegetation,
φHH−VV may account for the vegetation contribution. Therefore, its introduction into the
model may help to reduce the effects of the vegetation and allow soil moisture retrieval.

In the validation process using the independent dataset, the non-polarimetric model
Sigma_Hv, which only depends upon σ0

HV , made it possible to estimate mv with an RMSE
error of 0.098 m3/m3, while explaining only 19% of its variance (Figure 7). The HV channel
alone summarizes redundant soil moisture information that is contained in the HH and VV
channels reasonably well [47]. The dominant contribution of soil at the first stages of the
field campaign could explain why σ0

HV stands out as the main variable in the Sigma_HV
model in our study. Recent research by Wang et al. [54], using a more complex approach
than our study, over the same SMAPVEX12 study area, also shows the predominant role
of σ0

HV in characterizing the crops and estimating soil moisture. Even if the results that
were obtained were statistically significant, the non-polarimetric model would not perform
well. Indeed, on the same validation dataset, the MixPol model produced an RMSE of
0.087 m3/m3 and explained almost twice (36.2%) as much of the mv variance. The SPol
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model demonstrates the best performance during validation, with an RMSE of 0.074 m3/m3,
and an explained variance of 53.5% (see Figure 7, Section 3.5). Superior performance of
the simplified model, compared to the polarimetric mixed model, could be explained by
the inclusion of a small number of variables (i.e., 2 vs. 6), which would serve to reduce
the standard error that is associated with the calibration coefficients βi, thereby increasing
model robustness.

Although the SMAPVEX12 campaign covered a large range of soil moisture variations,
we faced some limitations in this study in terms of data samples, due partly to the reduced
number of Radarsat-2 images collected during the field campaign as close as possible
to ground variables measurements. In future works, we will calibrate and validate the
developed empirical models using the largest number of experimental datasets as possi-
ble, including SMAPVEX12, SMAPVEX16-MB and other international field campaigns.
Calibration/Validation could be also improved by performing better spatial distribution
analysis in order to tackle the high spatial variability of soil moisture. The actual paper
considered only radar data. Other Earth observation data, such as optical data vegetation
indices, could be included in future works.

4.4. Bias and Application of the Developed Models

Most of non-polarimetric and polarimetric variables are sensitive to growth stages.
For example, variables φHH−VV in MixPol and Spol models depend greatly on scattering
mechanisms between the underlying soil and wheat canopy, which has vertical stalks.
At the beginning of the field campaign bare soil was dominant. However, as the plant
grows, the co-polarized backscattering tends to augment due to the combination of surface
and dihedral scattering, while the cross-polarized backscattering tends to increase with
vegetation volume scattering. These dynamics can influence the models’ behaviors. By
examining the temporal profiles of estimated values of mv (Figure 8), a negative residual
bias can be observed for all models, from the start of the campaign to the stage of grain
development, after which the bias then becomes positive. This complex response could be
explained by estimates of calibration coefficients βi that were associated with backscattering,
which were too low at the start of the campaign, and too high at the end of the campaign
(vegetation effects). A potential improvement would be to identify a polarimetric variable
that could weight backscattering effects by phenological stage.

The application of the models on other different sites makes it possible to better
evaluate their performance. The results that were obtained here, in terms of RMSE, are
comparable to those reported by different studies using more complex methods [36,47,55].
They nevertheless remain lower than the precision target of 0.04 m3/m3, generally targeted
and considered suitable for hydrological applications [11]. Part of the problem is inherent
in the use of the C band, whose limitations are known in the presence of vegetation. The
latter dominates the signal, although it remains sensitive to soil moisture during wheat
growth. The approach could be applied using the L-band, which is characterized by better
penetration depth.

4.5. Comparison with Recent Studies

The current paper developed multiple linear regression models to retrieve soil mois-
ture. Compared to the physical models, the major limitation of these empirical models is
the dependence of the coefficients (Equation (7)) on data characteristics. In most cases, the
coefficients need to be calibrated in order to be used in other study sites or different SAR
data types. Also, the number of data samples available for this study was relatively limited,
which prohibited the development of approaches such as machine learning algorithms,
and also restricted further validation. The limited number of samples considered was due
to the constraints to having close Radarsat-2 and ground observations, as soil moisture
is a dynamic variable that changes rapidly both spatially and temporally. Despite these
limitations, the results found remain robust and comparable to many other studies with
more complex approaches. We show below in Table 7 results reported by various studies
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over the SMAPVEX12 area. Most of them consider L-Band data, theoretically more sensi-
tive to soil moisture than the RADARSAT-2 data we used. Different approaches are also
considered. For instance, with the development of machine learning and deep learning,
remote sensing data are being efficiently analyzed and modelled to retrieve geophysical
parameters such as soil moisture. In Zhao et al. [56], the farmland surface soil moisture
was retrieved by applying feature optimization and machine learning to the radar and
optical data. The Random Forest (RF) algorithms using full-polarimetric RADARSAT-2 and
Sentinel-2 provided the best retrieval performance with the coefficient of determination
R2 = 0.64 and a root mean square error (RMSE) = 0.0264 cm3/cm3, in comparison with
other machine learning algorithms such as neural network, generalized regression neural
network, support vector regression (SVM), back propagation neural network and extreme
learning machine. Similarly, the superior retrieval performance of the RF model was ob-
served by Dong et al. [57] using Sentinel-1 radar data over the Tibetan Plateau. In Nguyen
et al. [58], the extreme gradient-boosting regression obtained the best performance with R2

= 0.891 and RMSE = 0.0875 cm3/cm3, using Sentinel-1, Sentinel-2 and ALOS Digital Surface
Model. In Singh and Gaurav [59], the ANN model obtained the most robust statistical
metrics with R2 = 0.64 and RMSE = 0.040 cm3/cm3, using Sentinel-1/2 and SRTM digital
elevation model (DEM).

Table 7. Comparison of statistical metrics obtained using MLR and machine learning models over
different study areas.

Models Comparison
Statistical Metrics between Retrieved and Measured mv

References
R2 RMSE (m3/m3)

Our MLR 0.54 0.074–0.087

Gradient-boosting regression 0.891 0.0875 Nguyen et al. [58]

ANN 0.64 0.040 Singh and Gaurav [59]

Random Forest 0.64 0.0264 Zhao et al. [56]

0.753 (Asc)/0.671 (Des) 0.045 (Asc)/0.049 (Des) Dong et al. [57]

Polarimetric decomposition 0.49 0.12 Wang et al. [60]

In addition to machine learning, polarimetric decomposition techniques were used to
retrieve soil moisture over the SMAPVEX12 site. Wang et al. [60] analyze the polarimetric
decomposition to isolate surface and dihedral scattering components for retrieving the
soil moisture of the SMAPVEX12 site, resulting in R2 = 0.49 RMSE = 0.12 cm3/cm3 for the
wheat fields. Thus, compared to polarimetric decomposition approaches for multiple crops,
our current MLR models for wheat fields obtained better statistical metrics.

5. Conclusions

This study assessed the contribution of polarimetry to soil moisture estimation in
wheat fields, using RADARSAT-2 C-band images and in situ soil and vegetation mea-
surements taken during the SMAPVEX12 campaign. The C-band radar signal exhibited
sensitivity to soil moisture levels in the wheat fields during the growth cycle. This sensi-
tivity is particularly reflected through cross-polarization backscatter σ0

HV , and the phase
difference (φHH−VV). The use of explanatory non-polarimetric and polarimetric variables
that explained the greatest variation made it possible to develop three statistical models:
(1) a one-variable non-polarimetric model variable (σ0

HV), (2) a polarimetric mixed model
including three non-polarimetric and three polarimetric variables, and (3) a simplified
two-variable polarimetric mixed model (φHH−VV , σ0

HH). Validation of the results demon-
strated a significant positive contribution of polarimetry, since the two polarimetric models
had lower errors (RMSE, range: 0.074 m3/m3 to 0.084 m3/m3, vs. 0.098 m3/m3), and
explained two- to three-fold times greater variation in the observed soil moisture than
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did the non-polarimetric model. A much more pronounced residual bias is present in the
temporal soil moisture profile that was estimated by the non-polarimetric model, com-
pared to the polarimetric models. In turn, this bias depends upon the growth stages of the
wheat. Future work could improve models by integrating phenology (progressive plant
development stages) into a variable weighting the effect of backscattering under changing
vegetation cover, to minimize biases that were observable prior to and following wheat
heading. Using L-band instead of C-band information could also help improve results.
Future works could include the test of all three models using the L-band fully polarimetric
data of the upcoming NASA-ISRO Synthetic Aperture Radar (NISAR) mission (launch date
in 2024). The analyses carried out here could lead to the development or improvement of
more robust semi-empirical or physical models, whose inversion could be used to estimate
soil moisture.
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