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Abstract: Mapping potential landslides is crucial to mitigating and preventing landslide disasters
and understanding mountain landscape evolution. However, the existing methods to map and
demonstrate potential landslides in mountainous regions are challenging to use and inefficient.
Therefore, herein, we propose a method using hot spot analysis and convolutional neural networks
to map potential landslides in mountainous areas at a regional scale based on ground deforma-
tion detection using multitemporal interferometry synthetic aperture radar. Ground deformations
were detected by processing 76 images acquired from the descending and ascending orbits of the
Sentinel-1A satellite. In total, 606 slopes with large ground deformations were automatically detected
using hot spot analysis in the study area, and the extraction accuracy rate and the missing rate are
71.02% and 7.89%, respectively. Subsequently, based on the high-deformation areas and potential
landslide conditioning factors, we compared the performance of convolutional neural networks with
the random forest algorithm and constructed a classification model with the area under the curve
(AUC), accuracy, recall, and precision for testing being 0.75, 0.75, 0.82, and 0.75, respectively. Our
approach underpins the ability of interferometric synthetic aperture radar (InSAR) to map potential
landslides regionally and provide a scientific foundation for landslide risk management. It also
enables an accurate and efficient identification of potential landslides within a short period and under
extremely hazardous conditions.

Keywords: mapping potential landslide; InSAR; hot spot analysis; convolutional neural network

1. Introduction

Landslides are widespread natural disasters that occur worldwide, causing extensive
losses in terms of economic and natural resources as well as human lives [1]. Long-term
records suggest that landslide disasters increase due to climate changes and population
growth [2]. Hence, accurate prediction of landslide occurrence is crucial to reduce the
damages and losses caused by landslides. According to the entire process of a slope failure,
the process can be divided into three stages: stable stage (stable slope), weak-stable stage
(potential landslide), and failure stage (landslide failure) [3]. Potential landslides, including
unstable slopes and reactivated ancient landslides, are the essential evolutionary stage of
landslide failure [4]. Therefore, identifying and mapping potential landslides is the premise
of landslide monitoring and early warning at a regional scale.

Field investigation based on expert knowledge is the fundamental method among the
various existing methods for identifying potential landslides [5]. The obvious deformation
signs (e.g., cracks, scarps, and infrastructure damage) can be obtained on the potential
landslides, reflecting the kinematic pattern of slopes [6,7]. The topographic, geomorphic,
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geological, and hydrological conditions of slopes were manually analyzed in the field to
determine the slope state by summarizing the relationship between these condition factors
and failed landslides [5]. However, manual investigation for large-scale or steep mountain-
ous regions is unfeasible, and the identification result is subjective, relying on expertise [8].
Landslide susceptibility assessment enables the construction of the relationship between
landslide condition factors and landslide occurrence based on spatial data and a geographic
information system (GIS) [9] using physics-based models, viewpoint-driven models, statis-
tical models, and machine learning models [10–12]. Machine learning is an ideal technique
for addressing big-data spatial analyses and can solve non-linear geo-environmental is-
sues [13]. However, the selection of optimal models and preparation of spatial databases
regarding landslides and conditioning factors may influence the accuracy, reliability, and
applicability of the assessments [14]. In addition, based on the landslide susceptibility
result, a reliable spatial location and extent of potential landslide identification is still a
challenging task [13]. In order to identify potential landslides quantitatively, the stability
analysis of slopes was employed [3,15]. Because the geometry of the slope, physical proper-
ties of the material composition, and failure mechanism of the slope are considered [16], the
obtained stability number is accurate. However, the method is unsuitable for large-scale
monitoring and the calculated process is complex. Therefore, using earth observations to
detect and map reliable potential landslides on a large scale has become necessary.

In recent years, the use of multitemporal interferometric synthetic aperture radar
(multitemporal InSAR) has become the most efficient way to detect ground deformations
and map potential landslides at a regional scale because of the cost effectiveness of the
technique and its ability to cover vast areas and handle high-frequency and high-precision
surface displacement measurements [17,18]. Furthermore, the multisource synthetic aper-
ture radar (SAR) data and the satellite images obtained from the Sentinel-1 mission of the
European Space Agency help perform multitemporal interferometry (MTI), focusing on
the mapping of potential landslides [19]. However, mapping potential landslides based
on surface displacement needs visual interpretation to delineate the boundaries of the
high-deformation areas and field investigations to verify the potential landslides, which
is complex and time-consuming [20]. Although some research has proposed methods to
identify potential landslides using InSAR deformation results [20], these methods focus
on the relationship between deformation and potential landslides, which neglects the
effect of geological factors. There are still challenges restricting the efficiency of potential
landslide mapping at the regional scale, including (i) mapping slopes with large deforma-
tion automatically instead of visual interpretation and (ii) demonstrating that the ground
deformation was caused by potential landslides.

Thus, this study aimed to develop an approach combining remote sensing, GIS, and
deep learning (DL) methods. We chose Guide-Xunhua Basin in the upper reaches of
the Yellow River as our study area, which is prone to severe geohazards [21]; therefore,
the number of potential landslides in the area is high. We used MTI and 76 Sentinel-1A
data acquisitions to detect ground deformation and conducted a detailed field survey to
collect the data required to prepare the potential landslide inventory. We performed hot
spot analysis to generate slope polygons with large ground deformations. The potential
landslide inventory and a convolutional neural network (CNN) were used to construct a
classification model for potential landslide identification.

2. Study Area

The upper reaches of the Yellow River, located at the transitional zone between the
Loess Plateau and the Qinghai-Tibet Plateau, have experienced approximately 508 historical
landslides [22]. The terrain inclines from the northwest to the southeast, and the landform
of the study area is composed of hilly, mountain, plain, and intermountain basin, and is
layered with altitude ranging from 4421 m to 1837 m [23]. Because of the uplift of the
Qinghai–Tibet Plateau and the erosion of the Yellow River and its tributaries, high-relief
and steep slopes have been formed in the area. The tectonic framework of the region is



Remote Sens. 2023, 15, 4951 3 of 29

characterized by NW–SE-trending faults dominated by the Lajishan Fault and Xi Qinling-
Jishishan Fault [23]. The study area comprised a 15 km buffer zone along both sides of the
Yellow River from Guide County to Xunhua County (Figure 1).
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Figure 1. Location of the study area. (a) Geographical location of the Yellow River; the red and green
polygons indicate the area covered by Sentinel-1A; the black star denotes the location of the study
area. (b) The geographic and topographic settings of the study area.

The lithology of the study area is mainly Paleogene and Neogene sandstones and
mudstone and the Quaternary sediments, characterized by heavy weathering [24]. The
climate of the study area is semi-arid with a dry and windy spring, a short and cool summer,
a wet and rainy autumn, and a long and dry winter [25]. Rainfall is mainly experienced in
summer and autumn with an annual average precipitation of ~342 mm, an evaporation
rate of ~1689 mm, and low vegetation development on both sides of the banks [24,25].

Therefore, the interplay of neotectonics activities, the erosion of the Yellow River and
its tributaries, high relief and steep slopes, and cold and semi-arid climate make the study
area susceptible to debris flows and landslides [22]. In addition, many giant landslides
and reservoir landslides developed in the study area, like Xijitan landslide [26], Garang
landslide [27], and Lijia Gorge III landslide [23], which have seriously threatened the lives
of residents and the safe operation of hydropower stations.

3. Data and Methods

In this paper, the used approach is illustrated where the MTI technique, hot spot
analysis, and CNN algorithm are combined to construct a model for potential landslides
classification as shown in Figure 2. Firstly, the surface ground deformation rate was
obtained from descending and ascending orbits using MTI techniques. Subsequently, hot
spot analysis was employed to detect high ground deformation areas automatically. The
high ground deformation areas were determined as modeling databases based on field
investigation and remote sensing images. The potential landslide classification model was
constructed to analyze the relationship between selected factors and potential landslides
based on random forest (RF) and CNN algorithms. Finally, the performance of classification
models is evaluated and compared, and a new approach to automatically classify and map
potential landslides can be constructed.
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Figure 2. The flowchart of the proposed methodology.

3.1. Ground Deformation Detection Using MTI

MTI can be used with multiple SAR images to detect surface ground deformations
and identify potential landslides, which can be applied to long time scales with low
temporal decorrelation [19]. We used interferometric point target analysis (IPTA) in our
study. IPTA can identify the target points with high quality and a particular density [28].
These target points maintain stable scattering characteristics for a long time and are called
persistent scatterers (PSs). Spectral diversity and amplitude dispersion can be used to
select the PSs. After the initial selection of PS candidates, the differential interferograms
are calculated by simulating the unwrapped interferometric phase based on the initial
baselines and the available DEM. Then, a two-dimensional regression analysis is taken and
height corrections, linear deformation rates, quality measures, residual phases, and the
unwrapped interferometric phase are obtained to improve the phase model. Finally, the
atmospheric phase delay can be derived from the residual phase using spatial and temporal
filtering, and the non-linear deformation is obtained [29,30]. The core idea of IPTA is the
stepwise and iterative improvement of different parameters, including baseline refinement,
atmospheric phase filter, height correction, and point list extension [28].

Herein, 39 descending Sentinel-1A images of path 135 taken between 16 January 2020
and 28 April 2021 and 37 ascending Sentinel-1A images of path 128 taken between 4 January
2020 and 28 April 2021 were collected from the European Space Agency. The SAR image
coverage of the descending and ascending orbit datasets were shown in Figure 1a. Then,
71 (69) interferograms were generated with a perpendicular baseline threshold of 160 m
and a temporal baseline of 30 days in the descending (ascending) orbit dataset (Figure 3).
A reference point was selected to remove the residual terrain phase, which had a coherence
value > 0.8 and was located within a stable region as determined by field investigation
(Figure 1). The 1 arc-second (30 m) shuttle radar topography mission data obtained from the
United States Geological Survey were used to remove the topographic phase and geocode
the InSAR products. Precise orbit data from the European Space Agency were used to
correct the orbit error. In the study, we processed the IPTA technology using GAMMA
software (v20210701).
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Figure 3. Spatial–temporal baselines of the generated interferograms. The numbered points represent
SAR images and lines are the interferometric pairs used to form interferograms. (a) Descending orbit
dataset. (b) Ascending orbit dataset.

3.2. Hot Spot Analysis

Hot spot analysis methods including Getis-Ord Gi* statistics and kernel density esti-
mation were used herein. The Getis-Ord Gi* statistics can be used to evaluate the spatial
association within a specified distance of features [31]. If a feature point has a high (low)
value and is surrounded by other feature points with high (low) values within a certain
distance, the statistically significant hot (cold) spot can be obtained. This process is the
same as manually identifying the potential landslides based on InSAR results. For each
single CT at a site i and other CT at a site j, the Gi* can be calculated as follows [32]:

Gi∗ =
∑n

j=1 wi,j ∗ xj −
–
X∑n

j=1 wi,j

S∗

√
[n ∑n

j=1 w2
i,j−
(

∑n
j=1 wi,j

)2
]

n−1

(1)

where xj is the line-of-sight (LOS) velocity of each interferometric point target (IPT); wi,j
is the spatial weight with 1 for all CTs within a specified distance of CT i and 0 for other

CTs including the CT i itself; n is the total number of IPTs within the scale distance d;
–
X

is the mean value of the entire IPT velocity; and S is the standard deviation of the whole
IPT velocity. After Getis-Ord Gi* statistics, the Z score (standard deviation) and p-value
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(independence probability) of each IPT can be calculated. The larger the Z score, the more
intense the clustering of high values [31].

To better visualize the location of hot spots, the kernel density estimation was per-
formed taking the Z score as the weighting factor. The kernel density estimation calculates
the density of the features in their neighborhood by fitting a smoothly tapered surface. The
kernel density estimation can be expressed as follows [33,34]:

Density =
1

d2

n

∑
i=1

[
3
π

pi(1− (
x− xi

d
)2)2] (2)

where d is the search radius; x− xi is the distance from each calculating pixel to IPT i;
n is the total number of IPTs; and pi is the weighting factor for each IPT. Thereafter, a
smooth density map, which converts a large amount of IPTs into several hot spots, was
obtained and the mass movement area was highlighted using the Spatial Statistics Tools in
ArcGIS v10.6.

3.3. Modeling Algorithms

Conventional machine learning (RF) and deep learning (CNN) algorithms were ap-
plied in the current study to map potential landslides. These techniques are briefly de-
scribed in this section.

3.3.1. CNN Model

A CNN is a biologically inspired DL technique that demonstrates outstanding perfor-
mance for landslide prediction modeling and feature extraction, unlike traditional machine
learning [35]. The architecture of the used CNN architecture is shown in Figure 4, which
refers to the LeNet-5 [36]. The novel CNN model comprises multiple layers of neurons,
including input, convolution, pooling, fully connected, and output layers [37,38]. The input
layer comprises several neurons, each representing a modeling factor [39]. The convolution
layer can extract various feature maps related to the target using convolutional kernels
with different weights and biases [35,40]. The activation function following the convolution
layer is used to present nonlinear relationships, and the rectified linear unit (ReLU) function
is the most common and effective activation function [41]. The pooling layer can reduce the
dimensionality of feature maps to decrease the number of parameters and computational
complexity. The widely used pooling operation is max pooling, which can compute the
peak values of the local unit patches in the feature maps while the pooling operation retains
the essential information [37]. The fully connected layer is connected to the output layer,
which comprises two neurons and functions as a classifier that categorizes landslides as
potential and non-potential landslides [35]. All the parameters in the CNN algorithm are
optimized based on the ideas of back propagation and stochastic gradient descent, which
are iteratively updated to minimize the loss value [37].

This study implements the CNN model based on Kears with TensorFlow as a backend.
In the CNN structure, the input layer can be made into a 14 × 1 array format, which
refers to the number of input features. The number of channels of the convolutional layer
was set to 14, which means that 14 feature maps can be extracted. The kernel size of the
convolutional layer was set to 2 × 1. A max-pooling layer with the pooling size of 2 × 1 is
added after the convolutional layer. The fully connected layer with 20 neural units follows
the previous pooling layer. In addition, a dropout operation at a rate of 0.2 is employed in
the fully connected layer to reduce any substantial overfitting [42]. The Adam optimizer
is employed with standard b values of 0.01, and the learning rate was set as 0.001. The
categorical cross-entropy loss function is applied with the number of epochs set as 500.
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3.3.2. RF Model

RF is an ensemble learning method of training multiple independent decision trees
based on different data subsets and combining several decision trees for classification [43].
The operating process of the RF algorithm is shown in Figure 5. First, a large number of
unrelated training subsets are constructed using the bagging sampling technique to select
samples in playback randomly [44]. Based on the training subsets, n decision trees can be
established, which combine into the final random forest. The output of the random forest is
determined by decision tree voting, which can avoid the weak classification of minority
trees. RF model has shown strong robust and accurate performance in processing complex
data [45].
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In this study, the Scikit-Learn package in Python was used to develop the RF model.
The RF model is composed of 50 binary decision trees, which are constructed using the clas-
sification and regression tree (CART) model [46]. The Gini coefficient minimization is used
as a criterion to split nodes, and the depth of the CART is set as 3 to avoid overfitting. RF
has a high tolerance for outliers and noise, and high prediction accuracy and stability [44].
Therefore, we selected RF as one of our models to compare the performance of potential
landslide identification with CNN.

3.4. Modeling Factors

The selection of factors for modeling depends on the assumption that the development
of potential landslides is subjected to the same environments as the previous landslides [47].
According to field investigation, data analysis, and previous researches, multiple modeling
factors including geomorphologic, topographic, hydrological, geological, and human activ-
ity are determined [48–50]. Hence, potential landslide conditioning factors were selected as
initial modeling factors including slope, aspect, plan curvature, profile curvature, elevation,
topographic wetness index (TWI), stream power index (SPI), topographic position index
(TPI), terrain ruggedness index (TRI), lithology, land use, InSAR time series trend, and
distance to faults, rivers and roads. It is well known that rainfall is an important factor
that triggers landslides. However, this factor is not considered in this study because the
variability of rainfall data along the study area is not clear as the study area covers only a
small area.

3.4.1. Discretizing of Continuous Data

The discretizing continuous data can effectively and substantially increase the perfor-
mance of the model [51]. ChiMerge is a supervised method for continuous data discretiza-
tion [52]. In the algorithm, each distinct value of a continuous variable is assumed as an
independent interval, and then χ2 statistic is tested for whether the adjacent intervals to
be merged or not. If the χ2 statistic for adjacent intervals is smaller than the predefined
threshold, adjacent intervals are merged because they are assumed statistically similar [53].
In the study, this algorithm was applied to automatically determine the best threshold value
which can reduce the impact of statistical noise and increase the stability of the classification
model [54]. So, the continuous causal factors (elevation, slope, and so on) were discretized
into small intervals based on the ChiMerge algorithm.

3.4.2. Topographic and Geomorphic Factors

In this study, the Advanced Land Observing Satellite (ALOS) Digital elevation model
(DEM) with 12.5 m resolution, downloaded from the Alaska Satellite Facility (ASF) Dis-
tributed Active Archive Center (DAAC) was used to create the topographic factors. The
slope, aspect, elevation, plan curvature, profile curvature, and TPI were extracted through
spatial analysis with GIS software.

Slope is often considered as one of the most important factors affecting slope stabil-
ity [55], which can affect the stress distribution of the slope [48]. As the slope increases, the
driving forces, and the probability of landslide hazard also increase. The slope map of the
study area is shown in Figure 6a. Based on the ChiMerge algorithm, the slope was divided
into eight classes: 0–2◦, 2–9◦, 9–15◦, 15–19.5◦, 19–21.6◦, 21.6–21.8◦, 21.8–39◦, and >39◦.

Aspect indicates the direction of the slope [56], reflecting the amount of exposure
to sunlight, soil moisture, and precipitation, which leads to different land cover, water
evaporation, and weathering [57]. The aspect map produced from DEM is shown in
Figure 6b. The aspect was divided into eight classes: north (0–22.5◦, 337.5–360◦), northeast
(22.5–67.5◦), east (67.5–112.5◦), southeast (112.5–157.5◦), south (157.5–202.5◦), southwest
(202.5–247.5◦), west (247.5–292.5◦), and northwest (292.5–337.5◦).
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Elevation is another factor for understanding the landslide behavior, which is the
general altitude of land above the mean sea level [58]. The degree and type of erosion and
the concentration of human activities always vary with elevation, which causes landslides
to spread in a certain range of elevations [59]. The elevation ranges from 1837 m to 4421 m
as shown in Figure 6c. A total of eight categories were obtained: <1990 m, 1990–2354 m,
2354–2362 m, 2362–2447 m, 2447–2473 m, 2473–2493 m, 2493–4277 m and >4277 m.

Plan curvature is defined as the curvature of a contour line formed by the intersection
of the terrain surface with a horizontal plane which is used to measure the shape of the
curve [55], and profile curvature is defined as the curvature of a kinked line formed by
intersecting the earth’s surface with a vertical plane, which is the direct reflection of geo-
metric characteristics of slope profile [49]. The former usually has a direct impact on the
convergence and dispersion of surface runoffs [60] while the latter material has an impact
on deposition by managing the acceleration or deceleration of these materials on slope [50],
which were selected as landslide conditioning factors as shown in Figure 6d,e. Plan
curvature was arranged into eight categories: <−5.39 × 10−3, −5.39 × 10−3–−2.38×10−4,
−2.38 × 10−4–6.17 × 10−5, 6.17 × 10−5–1.01 × 10−4, 1.01 × 10−4–9.6 × 10−4, 9.6 × 10−4–
1.72 × 10−3, 1.72 × 10−3–4.3 × 10−3, and >4.3 × 10−3. In the same way, eight categories
of profile curvature values were generated: <−8.6 × 10−3, −8.6 × 10−3–−2.7 × 10−3,
−2.7 × 10−3–−1.8× 10−3,−1.8× 10−3–−1.7× 10−3,−1.7× 10−3−3.7× 10−5, 3.7 × 10−5−
6.9 × 10−4, 6.9 × 10−4−3.5 × 10−3, and >3.5 × 10−3.

TPI was used to describe the slope position of a topographic feature, which can indicate
the difference between the focal cell elevation and the mean elevation of all cells in the
neighborhood [61]. Positive values typically represent the location higher than surrounding
areas, values near zero are flat areas and negative values represent lower areas [62]. The
TPI has been calculated as follows [63]:

TPI = M0 −
∑n−1 Mn

n
(3)

where M0 is the elevation of the middle point, Mn is the elevation of the grid, and n is the
total number of points employed in the evaluation. The TPI map is shown in Figure 6f
and the TPI values were reclassified as being <−11.4, −11.4–−4.5, −4.5–−4.2, −4.2–−3.9,
−3.9–−3.5, −3.5–−0.85, −0.85–6.2, and >6.2.

TRI was used to illustrate the amount of elevation difference between the surface and
surrounding area [64], which can describe the effect of erosion in the hydrological processes.
The TRI was considered as a morphometric measure which describes the heterogeneous
condition of a land surface [65]. The TRI was calculated using the following equation [66]:

TRI =
√∣∣∣x∣∣∣(max2 −min2

)
(4)
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where max and min represent the highest and lowest values within a 3 × 3 cell window,
respectively. The TRI map is shown in Figure 6g. The TRI values were reclassified as being
<0.4, 0.4–1.6, 1.6–2.2, 2.2–3.3, 3.3–4.1, 4.1–5.2, 5.2–6.5, and >6.5.

3.4.3. Hydrological Factors

Hydrological factors also play an important role in the occurrence of landslides. The
change in hydrological environment will change the pore water pressure in the slope
and reduce the shear strength of the slope. At the same time, variations of hydrological
conditions will continuously erode the slope, and make the slope unstable.

SPI can be employed to measure the erosive power of flowing water on the surface [67].
A stream with a high flow power will erode the surrounding slopes much more along the
direction of flow. As a result of the abrasion of the slope, the stability of the slope will
deteriorate and the slopes will become more sensitive to landslides [68]. SPI was computed
using the following formula [69]:

SPI = AS × tanβ (5)

where AS and β are the specific basin area and the local slope gradient (in degrees),
respectively. The SPI map is shown in Figure 6h. The SPI values were divided into
eight classes, such as <1.4, 1.4–20.6, 20.6–45.0, 45.0–1397.3, 1397.3–2523.5, 2523.5–2730.0,
2730.0–31,158.0, and >31,158.0.

TWI is another vital landslide conditioning factor used for the assessment of the
wetness at any given point of the catchment area [70]. TWI was computed using the
following formula [71]:

TWI = ln
(

α

tanβ

)
(6)

where α is the cumulative upslope area draining through a point (per unit contour length)
and tanβ is the angle of slope at the point. The TWI is a physically based index of the effect
of local topography on rainfall runoff patterns, areas of potentially increased soil moisture,
and ponding areas [72]. TWI can be used to reflect the spatial distribution of soil saturation
in response to a rainfall of a specified duration [73]. The TWI map is shown in Figure 6i.
And the TWI values were reclassified as being: <4.2, 4.2–5.8, 5.8–5.9, 5.9–6.4, 6.4–6.8, 6.8–6.9,
6.9–10.6, and >10.6.

The distance to rivers is regarded as one of the most crucial factors in landslide
occurrence. Rivers contribute to the instability of the slopes by scouring the slope toes and
saturating the materials on the slopes [48]. It can be perceived that the relationship between
distance to rivers and slope stability has a negative correlation [74]. The river distribution
map of the study area was extracted from Google Earth high-resolution images and then
was digitized in ArcGIS (Figure 6j). The distance to rivers in the study area was grouped
into eight classes, including 0–41.4 m, 41.4–85.0 m, 85.0–1657 m, 1657–1688 m, 1688–2041 m,
2041–5449 m, 5449–10,154 m, and >10,154 m.

3.4.4. Geological Factors

The geological factors including lithology and distance to faults were considered as
landslide conditioning factors to reflect the effect of the geological process on landslide
development.

The lithology of an area will have a significant effect on landslide occurrence [75].
The obvious distinctions of lithological units were reflected in physical and mechanical
characteristics including type, strength, degree of weathering, durability, density, and
permeability [76]. In terms of the lithology, a total of thirteen groups were obtained in the
study area according to the 1:500,000 geological map from the China Geological Survey.
According to the rock weakness, the lithology was divided into four classes: hard (granite,
gneiss of Proterozoic Era), sub-hard (sandstone, siltstone, and slate of Triassic, and sand-
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stone, siltstone, and mudstone of Cretaceous), sub-soft (glutenite, sandstone, siltstone, and
silty mudstone of Paleogene and Neocene), soft (sediments of Quaternary) [77] (Figure 6k).

The presence of structural discontinuities including faults, fractures, folds, joints, and
shear zones plays an important role in decreasing the rock strength and causing land-
slides [78]. In the study area, the distribution of faults includes Lajishan Fault, Jianzhadong
Fault, Dehenglong Fault, Songba Fault, Zhamashan Fault, Wendudasi Fault, and Xi Qinling-
Jishishan Fault [79].

Therefore, the distance to faults was regarded as a potential indicator of the landslides.
For this research, the faults distribution map (Figure 6j) was also obtained from a 1:500,000
geological map and the distance to faults in the study area was grouped into eight classes,
including 0–6.6 m, 6.6–1208 m, 1208–2001 m, 2001–2073 m, 2073–7768 m, 7768–9542 m,
9542–13,071 m, and >13,071 m.

3.4.5. Human Activity Factors

In some mountainous regions, the establishment of roads is accompanied with in-
tense engineering activities such as cutting slopes or removing vegetation which lead to
the change in original geological conditions and weakening the natural support of rock
slopes [76]. In this study, the distance to road was used to reflect the influence of construct-
ing roads. For this research, the road lines were digitized from Google Earth high-resolution
images into GIS (Figure 6j). According to the ChiMerge algorithm, the distance to roads in
the study area was grouped into eight classes, including 0–766 m, 766–795 m, 795–1227 m,
1227–1304 m, 1304–2352 m, 2352–4604 m, 4604–10,983 m, and >10,983 m.

Land use has been a significant predisposing factor for landslide prediction because
different vegetation has different root cohesions and hydrological conditions [80], which can
prevent soil erosion and enhance slope stability. The land use map was extracted from the
Environmental Systems Research Institute (Esri) 2020 Land Cover in 10 m resolution [81],
and the land use map of the study area comprises eleven major groups including water,
trees, grass, flooded vegetation, crops, scrub/shrub, built area, bare ground, and snow/ice
(Figure 6l).

3.4.6. IPTA Time Series Deformation Trend

The time series deformation trend can represent different styles of ground defor-
mation which are related to different slope movement processes and can also provide
useful information on slope dynamics [82,83]. In this study, PS-Time, a free statistical
software for time series analysis [84], was used to classify the deformation trend into three
types: uncorrelated, linear, and non-linear. Uncorrelated time series trends usually denote
random fluctuations of displacements around zero and typically indicate no significant
movement [84]. A linear trend presents ground displacements at a constant rate, which can
indicate the processes of creep, slope erosion, and natural subsidence [84]. A non-linear
trend usually represents a change in the displacement rate which can be regarded as a
consequence of landslide processes [82] and should be paid more attention. For the research,
the proportions of each trend in a high-deformation area were used as modeling factors.

4. Results
4.1. Ground Deformation Detection Using InSAR Technology

Figure 7 shows the mean displacement rate map obtained from the datasets collected
from the descending and ascending orbits of Sentinel-1A. We optimized the coherence
threshold (0.7) to balance the coverage density and ground deformation quality of the IPTs.
The IPTs (930,193) obtained from the descending orbit covered the study area (approxi-
mately 3516 km2) with an average density of 264 IPTs km−2, and the IPTs (811,419) obtained
from the ascending orbit covered the study area with an average density of 230 IPTs km−2.
The displacement was along the direction of radar line-of-sight (LOS) with the negative
values (marked in red) indicating that the surface moved away from the satellite and the
positive values (marked in blue) indicating that the surface moved toward the satellite.
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Previous studies have demonstrated that the statistical characteristics of all IPT dis-
placement rates indicate the stability threshold of potential landslide mapping. The velocity
thresholds used to distinguish potential landslides are case-specific and depend on the
mechanical properties of the failed material, failure mechanism, sensor measurement
precision, and investigation objectives [19]. Herein, approximately 95% of the measured
displacement rates were between −10 and +10 mm/y with the largest displacement rate
exceeding ±300 mm/y. Most of the slopes with large deformations, which indicate the
reactivation of many historical landslides, were distributed in the mountain areas of the
Qunke–Xunhua section [25,26]. We demonstrated the results of MTI measurements using a
ground movement survey conducted on slopes with large displacement rates. The results
show that ground movements (e.g., cracks, fissures, scarps, and fragmented surfaces) are
rarely discovered on slopes with displacement rates below ±10 mm/y and that most
of the ground movements investigated are on slopes with displacement rates exceeding
±10 mm/y. Therefore, the stability threshold was taken as ±10 mm/y when mapping
potential landslides.
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4.2. Extraction of Potential Landslide Candidates via Hot Spot Analysis

We performed hot spot analysis to process the ground deformations obtained using
MTI and automatically map the areas with clustered IPTs whose displacement rates ex-
ceeded ±10 mm/y. First, we calculated the Gi* index taking the displacement rate of the
IPTs as the weighting factor, which could reflect the clustered and random patterns of IPTs
with large displacement rates [33,85]. In order to obtain an easier and more straightforward
visualization of the clustering of high positive and low negative velocity, we estimated the
kernel density of the Gi* index to produce hot spot maps indicating slopes with ground
deformations exceeding the stability threshold, which all represent the location of high
ground deformation (Figure 8).

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 30 
 

 

ground deformations exceeding the stability threshold, which all represent the location of 
high ground deformation (Figure 8). 

 
Figure 8. The hot spot maps of the study area derived from Getis-Ord Gi* statistics and kernel den-
sity estimation. (a) Hot spot map obtained from descending Sentinel-1A dataset; (b) hot spot map 
obtained from ascending Sentinel-1A dataset. Red hot spots indicate the clustering of high velocity 
moving towards the sensor whereas blue cold spots imply the clustering of high velocity moving 
away from the sensor. 

After that, we generated the potential landslide candidates (PLCs) using the classifi-
cation tools of ArcGIS to convert each cell of a raster into a polygon. Finally, 606 PLCs 
were mapped based on ground deformations obtained from both the ascending and de-
scending orbits of Sentinel-1A (Figure 9). In hot spot analysis, the search radius setting 
required to calculate the Gi* index, which determines the boundary between stable and 
unstable areas, is crucial. Unsuitable values could produce large or fragmented polygons. 
The search radius was 200 m, considering that the study area had experienced primarily 
medium and large historical landslides and that the medium spatial resolution of Sentinel 
1A images was approximately 14 m × 4 m. The method is effective for extracting PLCs 
when the number of IPTs in an area is large. 

In order to evaluate the extraction accuracy of high-deformation areas quantification-
ally, the visual interpretation results of high-deformation areas based on field surveys and 
Google Earth images are compared with the hot spot analysis extraction results. The ex-
traction accuracy and missing rate of overall PLCs are 71.02% and 7.89%, respectively. 

Figure 8. The hot spot maps of the study area derived from Getis-Ord Gi* statistics and kernel
density estimation. (a) Hot spot map obtained from descending Sentinel-1A dataset; (b) hot spot map
obtained from ascending Sentinel-1A dataset. Red hot spots indicate the clustering of high velocity
moving towards the sensor whereas blue cold spots imply the clustering of high velocity moving
away from the sensor.

After that, we generated the potential landslide candidates (PLCs) using the classifica-
tion tools of ArcGIS to convert each cell of a raster into a polygon. Finally, 606 PLCs were
mapped based on ground deformations obtained from both the ascending and descending
orbits of Sentinel-1A (Figure 9). In hot spot analysis, the search radius setting required to
calculate the Gi* index, which determines the boundary between stable and unstable areas,
is crucial. Unsuitable values could produce large or fragmented polygons. The search
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radius was 200 m, considering that the study area had experienced primarily medium and
large historical landslides and that the medium spatial resolution of Sentinel 1A images
was approximately 14 m × 4 m. The method is effective for extracting PLCs when the
number of IPTs in an area is large.
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In order to evaluate the extraction accuracy of high-deformation areas quantification-
ally, the visual interpretation results of high-deformation areas based on field surveys
and Google Earth images are compared with the hot spot analysis extraction results. The
extraction accuracy and missing rate of overall PLCs are 71.02% and 7.89%, respectively.
Figure 10a shows the extraction result of the Xijitan landslide, which is partly reactivated.
In the visual evaluation, most reactivated areas have been extracted, with the extraction
accuracy rate and missing rate being 86% and 2%, respectively. Figure 10b shows the
extraction result of the unstable slope where the scarp and secondary landslides have
been developed, where the extraction accuracy rate and missing rate are 90% and 9.8%,
respectively. The extraction error is induced by the boundary discontinuity, but the ma-
jority of the high-deformation areas has been extracted, which can satisfy the extraction
requirements. Therefore, this approach can extract the location of high-deformation areas
with high accuracy, which is an effective way of extracting high ground deformation areas
from a large number of target points.

4.3. Modeling Process
4.3.1. Preparation of Potential Landslide Inventory

Ground deformation generated using InSAR is not the only factor that can be used to
assess the state of slopes and map potential landslides. The slow millimeter to centimeter
(per year) ground surface deformations may arise from different causes and may not reflect
shear movements or landslide occurrences [19,86]. Thus, the polygons mapped using hot
spot analysis should be accurately interpreted in the investigation of potential landslides.
The detailed field survey of each polygon has been effective in many previous studies [18].
However, its efficiency is low, and it will not be appropriately useful in an emergency.

The successful application of the classification model depends on the availability of
a detailed and reliable potential landslide inventory map. Thus, the state of the PLCs
mapped using hot spot analysis should be accurately determined to train and test the clas-
sification model. Combining field investigation and optical image interpretation, obvious
deformation signatures were identified as evidence to judge the state of PLCs. As shown in
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Figure 11a1 and a2, obvious cracks and scarps were observed on the road at the trailing
edge of the slope, which indicates the active state of the slope. Some ancient landslides also
show reactivated features of secondary landslides and fresh cracks (Figure 11b1 and b2).
Figure 11c1 and c2 show PLCs with no suitable terrain conditions for the development
of landslides [87]. The surface deformation may be caused by human activities of land
cultivation and engineering construction, so these areas cannot be identified as a potential
landslide. Although some PLCs satisfy the terrain conditions for landslide development,
obvious deformation signatures were not observed in the field investigation, and the high
deformation was induced by natural slope erosion (Figure 11d1 and d2).
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We investigated 299 potential landslides, of which 35 were reactivated large ancient
landslides and others were on unstable slopes in the study area (Figure 12). Amounts
of 224 potential landslides and 213 non-potential landslides were selected for use in the
modeling dataset, and 70% of the completed inventory was set as the training sample,
while the remaining 30% was set as the testing sample. Other potential and non-potential
landslides were included in the validation dataset used to optimize the model parameters.
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4.3.2. Selection of Conditioning Factors

Before constructing the model, selecting proper positive landslide conditioning factors
is essential because factors with noise or poor quality may negatively impact potential
landslide spatial prediction results [88]. In the present case study, the multicollinearity and
prediction abilities of the selected conditioning factors were quantified by applying the
Pearson correlation coefficient [89] and Information Gain Ratio (IGR) [90], respectively.

The Pearson correlation coefficient can be used to measure the linear correlation
between two variables. The Pearson correlation coefficient can be calculated as follows [89]:

γ =
∑n

i=1

(
xi −

–
x
)

∑n
j=1

(
yj −

–
y
)

√
∑n

i=1

(
xi −

–
x
)2

∑n
j=1

(
yj −

–
y
)2

(7)

where n is the sample size, xi and yj represent the variable values for Xi and Yj,
–
x and

–
y

are the mean value of X and Y. The value of γ is between −1 and +1, the positive of which
means the positive linear correlation, and the negative of which means the negative linear
correlation between two factors [91]. In this study, a value of γ greater than 0.7 indicates
a high level of collinearity between two factors, which should be removed from model
building [92]. Figure 13 shows the correlation coefficients among the 17 initial conditioning
factors. According to the correlation analysis, there appears a strong positive correlation
between slope and TRI (γ = 0.90), a positive correlation between profile curvature and TPI
(γ = 0.72), and a negative correlation between non-linear and linear (γ = −0.94). Therefore,
the TRI, TPI, and linear trend were excluded from the conditioning factors.
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The IGR was used to determine the importance of selected conditioning factors.
The conditioning factors with a high information gain rate mean that they form a good
prediction. Additionally, the low and null predictive ability of factors must be eliminated
to obtain a result with higher accuracy [93]. Given that a training datum D consists of n
input samples, n(Li, D) is the number of samples in the training datum D belonging to the
class Li (potential landslide, non-potential landslide). The entropy needed to classify D is
calculated as

Info(D) = −∑2
i=1

n(Li , D)

|S| log2
n(Li , D)

|S| (8)

The amount of information that needs to split D into (D1, D2, · · · , Dm) regarding the
conditioning factor A is estimated as

Info(D, A) = ∑m
j=1

Sj

|S| Info(D) (9)

The IGR for a certain potential landslide conditioning factor A is computed as

IGR(D, A) =
Info(D)− Info(D, A)

SplitInfo(D, A)
(10)

where SplitInfo represents the potential information generated by dividing the training
data S into m subsets. SplitInfo is calculated as

SplitInfo(D, A) = −∑m
j=1

∣∣Dj
∣∣

|D| log2

∣∣Dj
∣∣

|D| (11)



Remote Sens. 2023, 15, 4951 20 of 29

After removing the TRI, TPI, and linear trend, the importance of each factor in the
modeling was quantitatively calculated using IGR; the results are shown in Figure 14. The
results show that the non-linear tread has the highest predictive capability with a value
of 0.0689, which demonstrates that the non-linear deformation tread is associated with
landslide movement. Other factors, including slope (AM = 0.0678), land use (AM = 0.0668),
uncorrelated tread (AM = 0.057), and SPI (AM = 0.0412) show high predictive capability.
Although the distance to faults (AM = 0.0152), elevation (AM = 0.0158), distance to roads
(AM = 0.0163), and TWI (AM = 0.0165) have a low effect on potential landslide classification,
the contribution of these factors is positive. Finally, the 14 potential landslide conditioning
factors were selected to establish the model.
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4.3.3. Model Performance Evaluation Index

Validating the performance of models is an essential step to attest to the effectiveness
and scientific value of the classification models [94]. The validation samples were not used
to construct the potential landslides classification model, so they were employed to verify
the performance of the classification model. The accuracy, recall, precision, and the area
under the curve (AUC) of the receiver operating characteristic (ROC) curve were applied
to assess the performance of the potential landslide classification model.

The accuracy can measure the accuracy of the prediction result of the potential and
non-potential landslide. The recall shows the percentage of potential landslides correctly
classified in the potential landslide dataset. The precision implies the percentage of potential
landslide of correctly predicted in the total number correctly classified datasets [95]. The
accuracy, recall, and precision were calculated using the following equation [95,96]:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Recall =
TP

TP + FN
(13)

Precision =
TP

TP + FP
(14)
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FPR =
FP

FP + FN
(15)

where True Positive (TP) means the areas classified potential landslides observed potential
landslides, True Negative means the areas classified non-potential landslides observed non-
potential landslides, False Positive means the areas classified potential landslides observed
non-potential landslides, and False Negative means the areas classified non-potential
landslides observed potential landslides. The ROC curve can reflect the corrections between
false positive rate (FPR) (Equation (15)) and true positive rate (TPR) (also recall). If the ROC
curve is nearest to the upper left corner, the model will have higher goodness-of-fit and
excellent accuracy [97]. The value of AUC can be used to quantitatively reflect the accuracy
of model performance with higher values indicating a better predictive capability of the
model [44].

4.4. The Potential Landslides Classification Model

Although hot spot analysis enables to extract PLCs automatically, classifying potential
landslides effectively is still difficult. Landslide susceptibility mapping (LSM) in a GIS-
integrated environment can predict the locations of landslide occurrences by analyzing
landslide conditioning factors [16]. Based on the assumptions that potential landslides in
a typical area can develop on slopes with common geotechnical behaviors and identical
conditioning factors, we applied the advantages of LSM to construct a classification model
for potential landslide mapping based on PLCs produced by hot spot analysis.

We constructed a classification model for classifying potential landslides using the
CNN and RF algorithms with optimized parameters to link potential landslides to the
14 conditioning factors. Testing the classification model was essential to verify its effective-
ness and scientific value [94]. We assessed the model performance using the test samples
from the potential landslide inventory.

The performance of the established models is shown in Table 1. Compared with the
RF model, the accuracy, precision, and recall of CNN are 0.75, 0.75, and 0.82, respectively,
which indicates the CNN model has stronger predictive capability on the test dataset. The
ROC curve of the models is shown in Figure 15. The AUC of RF and CNN are 0.73 and 0.75,
respectively. A high AUC value (0.75) indicates that the performance of the classification
model is satisfactory [95].

Table 1. Performance of the models with the test dataset.

Models Accuracy Precision Recall AUC

RF 0.67 0.64 0.74 0.73
CNN 0.75 0.75 0.82 0.75

The main aim of the study is to identify as many potential landslides as possible,
because potential landslides are very likely to evolve into landslide geohazards, which
would cause great losses of lives and properties, and the cost of identifying errors is very
low. Recall denotes the ability of a model to find out all the positive samples, so a high
recall value means that all potential landslides have been detected, regardless of how many
objects have been mistakenly classified as potential landslides [98,99]. Therefore, the recall
of the potential landslide prediction model being 0.82 means the performance of the model
can meet our potential landslide identification purpose.

The evaluation result demonstrates that the CNN model is more suitable for establish-
ing a potential landslide classification model. The convolution layer of the CNN model can
not only consider the features of the current position, but also take into account the features
within a certain range of the surrounding neighbors [100], which is consistent with the
first law of geography [101], and is also the reason why the CNN performs well in many
geographic problems [102].
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5. Discussion
5.1. Advantages of the Approach

Reviewing existing researches about InSAR monitoring and potential landslide map-
ping at a regional scale, investigators require a lot of time and effort to delineate high-
deformation areas and identify the potential landslides [2,18,103]. Compared with the
traditional methods used in potential landslide investigation and mapping, the automatic
approach we proposed combines the GIS spatial analysis, DL method, and MTI technique
based on the strategy of LSM. The approach can improve the efficiency of potential landslide
mapping and expand the capacity of InSAR for geohazard mitigation significantly.

On the one hand, delineating high ground deformation areas derived from InSAR
results is vital in mapping potential landslides over a large scale. However, the dominant
method in this process is still manual interpretation through human–computer interaction,
which is time-consuming and labor-consuming [104]. Other researchers used object-based
image analysis (OBIA) to extract high ground deformation areas [105], but the modeling
process has high requirements regarding the segmentation scale and the used features,
implying that multiple experiments and practical experience are needed to obtain optimal
results [106], limiting the applicability of the OBIA method. In addition, directly using
InSAR deformation may ignore the effect of sparse IPTs with large deformation velocities
induced by data-processing errors, which can be excluded during visual interpretation. In
this study, applying a hot spot map is similar to the characteristic of manually delineating
high ground deformation areas, which only identifies clustering high ground deformation
and helps decrease the effect of data-processing error.

On the other hand, the state of slopes was determined manually based on field
investigation and has to consider the relationship between topographic, geomorphic,
geological, and hydrological conditions and landslide occurrence [5]. LSM relies on models
to establish this relationship and is used to predict the landslide-prone areas [12–14].
However, using a landslide inventory map before assessing landslide susceptibility in
practice means that the landslide database was composed of historical landslides [107]. The
landslide conditioning factors extracted from historical landslides cannot reflect the original
topographic and geomorphic conditions, which would result in inaccurate prediction
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results of potential landslides. The proposed method absorbs the advantage of LSM, but
the method focuses more on PLCs as objects, making the identification more accurate.

Therefore, we attempted to combine the advantages of field investigation, InSAR
technology, and landslide susceptibility to build the potential landslide classification model
based on InSAR technology. The high ground deformation areas were automatically
extracted using the hot spot analysis which absorbed the advantages of InSAR technology
and can save a lot of time and labor. The potential landslide classification model can
express the expert experience as a deep learning algorithm taking potential landslides as a
training database and can accurately and efficiently classify the state of the slope accurately
and efficiently.

5.2. Limitations and Further Directions of the Approach

Some limitations regarding InSAR deformation monitoring, high ground deformation
extraction, and landslide condition factors selection may affect the final identification
results. To generate detailed PLCs using hot spot analysis, an accurate velocity map with
sufficiently dense IPTs covering all the considered slopes must first be prepared. Due to the
influence of SAR imaging geometry and microwave electromagnetic characteristics, the
application of InSAR technology in landslide monitoring is still limited by factors such as
geometric distortion caused by terrain fluctuations, uncorrelated noise generated by dense
vegetation cover, and atmospheric delay errors caused by water vapor changes [108]. The
visibility of the target area to satellite sensors depends on the combination of local slope
direction and the acquisition geometry and mode of satellite sensor LOS [109]. The caused
geometric distortions, including layover, foreshortening, and shadow, can be improved
using ascending and descending data monitoring [110]. Many advanced InSAR processing
methods and other improved methods continue to emerge, such as distributed scatterer (DS-
InSAR) technology [111], stacking InSAR [112], and phase-decomposition-based persistent
scatterer (PS) InSAR (PD-PSInSAR) technology [113], which enabled a higher density of
measurement points in areas with complex topographic environment conditions [114]. In
case of very fast displacements, the temporal coherence decreases leading to the loss of
measurement points [19]. D-InSAR and offset tracking can be used to obtain deformation
areas [115]. The Generic Atmospheric Correction Online Service (GACOS) atmospheric
delay products provide a new approach for the atmospheric correction of repeat-pass
InSAR, which can improve the accuracy of InSAR deformation monitoring [116]. Moreover,
the L band has more penetration than the C band in landslide deformation monitoring
under high vegetation cover, which can better resist the effects of decoherence and obtain
higher quality deformation results [117].

Although hot spot analysis is an ideal method to highlight the high-deformation
area, the extracted boundaries are incomplete with most high-deformation areas extracted,
while the boundaries are inconsistent with the manual delineation. Relying on the surface
geomorphological features (e.g., scarps, sliding masses, and bulging toes) reflected on opti-
cal images [118], the boundaries of high-deformation areas can be determined. Semantic
segmentation deep learning model is a typical application in computer vision that aims
to annotate every pixel within imagery with a specific semantic label [119]. Combining
hot spot map with high-resolution optical images enables the more accurate extraction of
boundaries of high-deformation areas. This process is similar to providing geomorphic
features for researchers to delineate boundaries of high-deformation areas. The modeling
factors should represent all the influences related to landslide development in the modeling
process. Therefore, the modeling factors have to be selected after considering historical land-
slide mechanisms, study area characteristics, and the availability of geospatial databases.
The precipitation, earthquake, or other triggering factors should be considered as critical
factors for modeling [14]. Moreover, the spatial resolution of the DEM is important to
derive topographic variables used in landslide classification. More precise DEM can be
obtained based on unmanned aerial vehicle (UAV) or other high-precision sensors. The
spatial resolution impacts the sensitivity and availability of the morphological features of
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slope objects and the memory storage and computational load associated with modeling.
All the variables generated from the DEM are used to assess the local geomorphological
characteristics of the hill slopes at a mesoscale. The balance between satisfactory model
performance and practical computing time could be determined based on the magnitudes
of recent landslides [16].

Additional methods for monitoring ground deformation, applying semantic segmen-
tation deep learning models, experimenting DEM scale effects, and conditioning factors of
the training model should be developed in the future. The proposed method has proven
applicability in automatically mapping potential landslides and provided significant practi-
cal outcomes.

6. Conclusions

This paper presents a new approach to map regional-scale potential landslides auto-
matically based on MTI, hot spot analysis, and DL in a 15 km buffer zone on both sides of
the Yellow River from Xunhua County to Guide County of Qinghai Province, China. Our
principal conclusions are as follows.

The 39 descending orbit and 37 ascending orbit Sentinel-1A images from 4 January 2020
to 28 April 2021 were processed by IPTA technique to generate the ground displacement
rates to support the extraction of high deformation. The maximum displacement rate
exceeded 300 mm/y was detected in the study area. The extraction accuracy rate and the
missing rate of extracting the boundaries of high-deformation areas via hot spot analysis
are 71.02% and 7.89%, respectively, indicating the effectiveness of hot spot analysis in
this process. Combining the investigated potential landslide inventory and the selected
potential landslide conditioning factors, the potential landslide classification model was
constructed based on CNN and RF algorithms. The compared result demonstrated that the
CNN algorithm has a better classification performance, where the AUC, accuracy, recall,
and precision for testing are 0.75, 0.75, 0.82, and 0.75, respectively.

The proposed method expands the application of InSAR technology, reduces the
time, economic and labor costs associated with the potential landslide mapping process,
and provides a strategic basis to automatically map potential landslides in large regions.
Though some problems associated with the method need to be resolved in the future, our
result can provide insights for delineating potential landslides automatically and provide
valuable information for landslide disasters mitigation and risk management.
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