Assessment of Active Ground Subsidence in the Dibrugarh and Digboi Areas of Assam, Northeast India, Using the PSInSAR Technique
Abstract
:1. Introduction
2. Tectonic Setting of the NE Himalayan Region
3. Geological Background
4. Past Earthquake Records
5. Materials and Methods
6. Result and Interpretation
6.1. PSInSAR Velocities of the Digboi Area
6.2. PSInSAR Velocities of the Dibrugarh Area
7. Discussion
8. Conclusions
- We analyzed a total of 69 SENTINEL 1A images in the Digboi and Dibrugarh regions. The overall result is that the active ground subsidence that occurred between 2015 to 2022 is ~5 mm/yr,
- The Digboi region shows maximum subsidence due to the depletion of subsurface resources (groundwater and hydrocarbon) in the region. The active deformation caused by hidden subsurface faults is also an important factor responsible for ground subsidence.
- Our analysis suggests that ~22 mm/yr surface deformation occurred over the course of four years. The contour pattern makes it evident that while ~75% of the study region exhibits a mean ground deformation of ~5 mm/yr, the southern portion of the study area experiences an increase in deformation of 10 mm to 22 mm/yr.
- For the year 2020, a mean surface deformation of around 17 mm/yr was observed. The contour pattern makes it evident that while 75% of the study region exhibits a mean surface deformation of 5 mm/yr, the southern portion of the study area experiences an increase in deformation of 10 mm to 17 mm/yr.
- For a portion of the year 2015, the Dibrugarh region saw a mean surface deformation of 24 mm/yr, with an increasing deformation tendency at a rate of 16 mm to 24 mm/yr towards the southern half of the research area.
- For the years 2019 and 2020, an average deformation rate of 23 mm/yr was observed. While in the year 2021 and 2022average deformation of 12 mm/yr and 11 mm/yr was observed.
- Several vertical or nearly vertical faults are causing the subsidence to gradually increase. There are a number of N–S- and NE–SW-trending transverse faults in the Dibrugarh region, which are to blame for the region’s continuous sinking.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Li, J.; Zhang, Z.; Ni, S. Long-term groundwater variations in Northwest India from satellite gravity measurements. Glob. Planet. Change 2014, 116, 130–138. [Google Scholar] [CrossRef]
- Malik, K.; Kumar, D.; Perissin, D. Assessment of subsidence in Delhi NCR due to groundwater depletion using TerraSAR-X and persistent scatterers interferometry. Imaging Sci. J. 2019, 67, 1–7. [Google Scholar] [CrossRef]
- Kothyari, G.C.; Kandregula, R.S.; Kotlia, B.S.; Lakhote, A.; Swamy, K.V.; Pathak, V.; Chauhan, G.; Thakkar, M.G. Palaeoseismic investigations along the Kachchh Mainland Fault: A comprehensive review and new insights of the past earthquakes in the Kachchh basin, Western India. Quat. Int. 2021, 599, 184–209. [Google Scholar] [CrossRef]
- Kothyari, G.C.; Joshi, N.; Taloor, A.K.; Malik, K.; Dumka, R.; Sati, S.P.; Sundriyal, Y.P. Reconstruction of active surface deformation in the Rishi Ganga basin, Central Himalaya using PSInSAR: A feedback towards understanding the 7th February 2021 Flash Flood. Adv. Space Res. 2022, 69, 1894–1914. [Google Scholar] [CrossRef]
- Dumka, R.K.; SuriBabu, D.; Kotlia, B.S.; Kothyari, G.C.; Prajapati, S. Crustal deformation measurements by global positioning system (GPS) along NSL, western India. Geod. Geodyn. 2022, 13, 254–260. [Google Scholar] [CrossRef]
- Dumka, R.K.; Prajapati, S.; SuriBabu, D.; Swamy, K.V.; Kothyari, G.C.; Malik, K. GPS and InSAR Derived Evidences of Intra-Basin Stress and Strike-Slip Tectonics in the Vicinity of 2001 (M7. 7) earthquake, Kachchh, western India. Geol. J. 2023, 58, 683–699. [Google Scholar] [CrossRef]
- Dumka, R.K.; Suribabu, D.; Narain, P.; Kothyari, G.C.; Taloor, A.K.; Prajapati, S. PSInSAR and GNSS derived deformation study in the west part of Narmada Son Lineament (NSL), western India. Quat. Sci. Adv. 2021, 4, 100035. [Google Scholar] [CrossRef]
- Chen, F.; Lin, H.; Zhang, Y.; Lu, Z. Ground subsidence geo-hazards induced by rapid urbanization: Implications from InSAR observation and geological analysis. Nat. Hazards Earth Syst. Sci. 2012, 12, 935–942. [Google Scholar] [CrossRef]
- Grebby, S.; Orynbassarova, E.; Sowter, A.; Gee, D.; Athab, A. Delineating ground deformation over the Tengiz oil field, Kazakhstan, using the Intermittent SBAS (ISBAS) DInSAR algorithm. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 37–46. [Google Scholar] [CrossRef]
- Das, G. Geology of Assam-Arakan Region. QJ Geol. Min. Metall. Soc. India 1977, 49, 1–54. [Google Scholar]
- Dasgupta, S.; Mukhopadhyay, M.; Nandy, D.R. Active transverse features in the central portion of the Himalaya. Tectonophysics 1987, 136, 255–264. [Google Scholar] [CrossRef]
- Nandi, D.R. Geodynamics of Northeastern India and the Adjoining Regions; ABC Publication: Kolkata, India, 2001. [Google Scholar]
- Kayal, J.R. Microearthquake Seismology and Seismotectonics of South Asia; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Kayal, J.R.; Arefiev, S.S.; Baruah, S.; Hazarika, D.; Gogoi, N.; Gautam, J.L.; Tatevossian, R. Large and great earthquakes in the Shillong plateau–Assam valley area of Northeast India Region: Pop-up and transverse tectonics. Tectonophysics 2012, 532, 186–192. [Google Scholar] [CrossRef]
- Lahiri, S.K.; Sinha, R. Tectonic controls on the morphodynamics of the Brahmaputra River system in the upper Assam valley, India. Geomorphology 2012, 169, 74–85. [Google Scholar] [CrossRef]
- Sharma, S.; Baruah, S. Modelling of the Kopili fault based on slip rate, moment rate and seismic activity in Mikir hills plateau of northeastern India. Geomat. Nat. Hazards Risk 2017, 8, 1157–1172. [Google Scholar] [CrossRef]
- Bhadran, A.; Girishbai, D.; Mero, A. Liquefaction susceptibility of dibrugarh master plan area, assam—A case study. In Proceedings of the International Conference EGCON, Virtual, 9–11 December 2021. [Google Scholar]
- Devrani, R.; Singh, V.; Mehta, M.; Ramanathan, A.L. Assessing sediment pulse during an extreme hydrological event in the Alaknanda Basin, Northwestern Himalaya, India. J. Geol. Soc. India 2021, 97, 48–54. [Google Scholar] [CrossRef]
- Bhatt, U.S.; Walker, D.A.; Raynolds, M.K.; Bieniek, P.A.; Epstein, H.E.; Comiso, J.C.; Polyakov, I.V. Recent declines in warming and vegetation greening trends over pan-Arctic tundra. Remote Sens. 2013, 5, 4229–4254. [Google Scholar] [CrossRef]
- Malik, K.; Kumar, D.; Perissin, D.; Pradhan, B. Estimation of ground subsidence of New Delhi, India using PS-InSAR technique and Multi-sensor Radar data. Adv. Space Res. 2022, 69, 1863–1882. [Google Scholar] [CrossRef]
- Usai, S. A least squares database approach for SAR interferometric data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 753–760. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, T. Repeat-pass SAR interferometry with partially coherent targets. IEEE Trans. Geosci. Remote Sens. 2011, 50, 271–280. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, Z.; Lin, H. Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers. ISPRS J. Photogramm. Remote Sens. 2012, 73, 58–67. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Colesanti, C.; Ferretti, A.; Novali, F.; Prati, C.; Rocca, F. SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1685–1701. [Google Scholar] [CrossRef]
- Bürgmann, R.; Hilley, G.; Ferretti, A.; Novali, F. Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis. Geology 2006, 34, 221–224. [Google Scholar] [CrossRef]
- Nagel, N.B. Compaction and subsidence issues within the petroleum industry: From Wilmington to Ekofisk and beyond. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 3–14. [Google Scholar] [CrossRef]
- Yerkes, R.F.; Castle, R.O. Seismicity and faulting attributable to fluid extraction. Eng. Geol. 1976, 10, 151–167. [Google Scholar] [CrossRef]
- Fielding, E.J.; Blom, R.G.; Goldstein, R.M. Rapid subsidence over oil fields measured by SAR interferometry. Geophys. Res. Lett. 1998, 25, 3215–3218. [Google Scholar] [CrossRef]
- Kandregula, R.S.; Kothyari, G.C.; Swamy, K.V.; Kumar Taloor, A.; Lakhote, A.; Chauhan, G.; Malik, K. Estimation of regional surface deformation post the 2001 Bhuj earthquake in the Kachchh region, Western India using RADAR interferometry. Geocarto Int. 2022, 37, 5249–5277. [Google Scholar] [CrossRef]
- Lakhote, A.; Thakkar, M.G.; Kandregula, R.S.; Jani, C.; Kothyari, G.C.; Chauhan, G.; Bhandari, S. Estimation of active surface deformation in the eastern Kachchh region, western India: Application of multi-sensor DInSAR technique. Quat. Int. 2021, 575, 130–140. [Google Scholar] [CrossRef]
- Chang, C.P.; Wang, C.T.; Chang, T.Y.; Chen, K.S.; Liang, L.S.; Pathier, E.; Angelier, J. Application of SAR interferometry to a large thrust deformation: The 1999 M w = 7.6 Chichi earthquake in central Taiwan. Geophys. J. Int. 2004, 159, 9–16. [Google Scholar] [CrossRef]
- Oštir, K.; Komac, M. PSInSAR and DInSAR methodology comparison and their applicability in the field of surface deformations-A case of NW Slovenia. Geologija 2007, 50, 77–96. [Google Scholar] [CrossRef]
- Castañeda, C.; Gutiérrez, F.; Manunta, M.; Galve, J.P. DInSAR measurements of ground deformation by sinkholes, mining subsidence, and landslides, Ebro River, Spain. Earth Surf. Process. Landf. 2009, 34, 1562–1574. [Google Scholar] [CrossRef]
- Angelier, J.; Baruah, S. Seismotectonics in Northeast India: A stress analysis of focal mechanism solutions of earthquakes and its kinematic implications. Geophys. J. Int. 2009, 178, 303–326. [Google Scholar] [CrossRef]
- Murthy, M.V.N.; Talukdar, S.C.; Bhattacharya, A.C.; Chakrabarty, C. The Dauki Fault of Assam. Bull. ONGC 1969, 6, 57–64. [Google Scholar]
- Baruah, S.; Hazarika, D. A GIS based tectonic map of Northeastern India. Curr. Sci. 2008, 95, 176–177. [Google Scholar]
- Sarma, J.N.; Sharma, S. Neotectonic activity of the Bomdila Fault in northeastern India from geomorphological evidences using remote sensing and GIS. J. Earth Syst. Sci. 2018, 127, 113. [Google Scholar] [CrossRef]
- Sarma, J.N. Fluvial process and morphology of the Brahmaputra River in Assam, India. Geomorphology 2005, 70, 226–256. [Google Scholar] [CrossRef]
- Evans, P. The tectonic framework of Assam. Geol. Soc. India 1964, 5, 80–96. [Google Scholar]
- Milliman, J.D.; Meade, R.H. World-wide delivery of river sediment to the oceans. J. Geol. 1983, 91, 1–21. [Google Scholar] [CrossRef]
- Milliman, J.D.; Syvitski, J.P. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. J. Geol. 1992, 100, 525–544. [Google Scholar] [CrossRef]
- Ludwig, W.; Probst, J.L. River sediment discharge to the oceans; present-day controls and global budgets. Am. J. Sci. 1998, 298, 265–295. [Google Scholar] [CrossRef]
- Verma, S.; Mukherjee, A.; Mahanta, C.; Choudhury, R.; Mitra, K. Influence of geology on groundwater–sediment interactions in arsenic enriched tectono-morphic aquifers of the Himalayan Brahmaputra river basin. J. Hydrol. 2016, 540, 176–195. [Google Scholar] [CrossRef]
- Corps, E.V. Digboi oil field, Assam. AAPG Bull. 1949, 33, 1–21. [Google Scholar]
- Bhandari, L.L.; Fuloria, R.C.; Sastri, V.V. Stratigraphy of Assam Valley, India. AAPG Bull. 1973, 57, 642–654. [Google Scholar]
- Barooah, D.; Barman, S.; Phukan, S. Simultaneous measurements of radon and thoron, and their progeny levels in dwellings on anticlinal structures of Assam, India. Environ. Monit. Assess. 2014, 186, 3581–3594. [Google Scholar] [CrossRef] [PubMed]
- Sen, T.K.; Pande, L.M.; Sehgal, J.L.; Maji, A.K.; Chamuah, G.S. Satellite remote sensing in soil resource inventory of Dibrugarh district (part), Assam. J. Indian Soc. Remote Sens. 1992, 20, 95–104. [Google Scholar] [CrossRef]
- Rajendran, K.; Parameswaran, R.M.; Rajendran, C.P. Seismotectonic perspectives on the Himalayan arc and contiguous areas: Inferences from past and recent earthquakes. Earth-Sci. Rev. 2017, 173, 1–30. [Google Scholar] [CrossRef]
- Rajendran, C.P.; Rajendran, K. Earthquakes of the Indian Subcontinent; Springer: Singapore, 2022. [Google Scholar]
- Debbarma, J.; Martin, S.S.; Suresh, G.; Ahsan, A.; Gahalaut, V.K. Preliminary observations from the 3 January 2017, MW 5.6 Manu, Tripura (India) earthquake. J. Asian Earth Sci. 2017, 148, 173–180. [Google Scholar] [CrossRef]
- Bhadran, A.; Sreejith, K.M.; Girishbai, D.; Duarah, B.P.; Agrawal, R.; Gopinath, G. An Appraisal of Ground Failure and Hydrogeological Changes Associated with the 28 April 2021 M w 6 Sonitpur Earthquake, Assam, India, Using Field Evidences and InSAR Measurements. Seismol. Soc. Am. 2022, 93, 1440–1451. [Google Scholar] [CrossRef]
- Virk, A.S.; Singh, A.; Mittal, S.K. Monitoring and analysis of displacement using InSAR techniques for Gulaba landslide site. J. Eng. Sci. Technol. 2019, 14, 1558–1571. [Google Scholar]
- Luirei, K.; Kothyari, G.C.; Mehta, M. Active tectonics in the Main Boundary Thrust zone, Garhwal Himalaya, as evident from palaeoseismic signatures, morphotectonic features and PSI base ground deformation. Geol. J. 2023, 58, 195–208. [Google Scholar] [CrossRef]
- Joshi, M.; Kothyari, G.C.; Malik, K.; Taloor, A.K. Response of drainage to tectonics and PS-InSAR derived deformation study in Bilaspur, northwestern Himalaya, India. Geod. Geodyn. 2022, 13, 205–218. [Google Scholar] [CrossRef]
- Sahoo, M.; Gogoi, K.D. Structural and sedimentary evolution of Upper Assam Basin, India and implications on hydrocarbon prospectivity. In Proceedings of the 2nd South Asian Geoscience Conference and Exhibition, GEO India, Gearter Noida, New Delhi, India, 12–14 January 2011; pp. 1–6. [Google Scholar]
- Sahoo, M.; Gogoi, K.D. Depositional history, processes and mechanism of early Miocene sediments of Upper Assam Basin. J. Geol. Soc. India 2009, 73, 575–585. [Google Scholar] [CrossRef]
- Dumka, R.K.; SuriBabu, D.; Malik, K.; Prajapati, S.; Narain, P. PS-InSAR derived deformation study in the Kachchh, Western India. Appl. Comput. Geosci. 2020, 8, 100041. [Google Scholar] [CrossRef]
- Garg, K.K.; Anantha, K.H.; Nune, R.; Akuraju, V.R.; Singh, P.; Gumma, M.K.; Ragab, R. Impact of land use changes and management practices on groundwater resources in Kolar district, Southern India. J. Hydrol. Reg. Stud. 2020, 31, 100732. [Google Scholar] [CrossRef]
- Panda, D.; Kundu, B.; Santosh, M. Oblique convergence and strain partitioning in the outer deformation front of NE Himalaya. Sci. Rep. 2018, 8, 10564. [Google Scholar] [CrossRef]
- Ader, T.; Avouac, J.-P.; Liu-Zeng, J.; Lyon-Caen, H.; Bollinger, L.; Galetzka, J.; Genrich, J.; Thomas, M.; Chanard, K.; Sapkota, S.N.; et al. Convergence rate across the Nepal Himalaya and Interseismic coupling on the Main Himalayan Thrust: Implication for seismic Hazard. J. Geophys. Res. 2012, 117, B04403. [Google Scholar] [CrossRef]
- Stevens, V.L.; Avouac, J.P. Interseismic coupling on the main Himalayan thrust. Geophys. Res. Lett. 2015, 42, 5828–5837. [Google Scholar] [CrossRef]
- Vernat, P.; Bihlam, R.; Szeliga, W.; Drupka, D.; Kalita, S.; Bhattacharyya, A.K.; Gaur, V.K.; Pelgay, P.; Cattin, R.; Berthet, T. Clockwise rotation of the Brahmputra valley relative to India: Tectonic convergences in the eastern Himalaya, Naga Hills, and Shillong Plateau. J. Geophys. Res. 2014, 119, 6558–6571. [Google Scholar] [CrossRef]
- Devachandra, M.; Kundu, B.; Catherine, J.; Kumar, A.; Gahalaut, V.K. Global positioning system (GPS) measurements of crustal deformation across the frontal eastern Himalayan syntaxis and seismic-hazard assessmnent. Bull. Seism. Soc. Am. 2014, 104, 1518–1524. [Google Scholar] [CrossRef]
Age | Group | Formation and Member | |||
---|---|---|---|---|---|
Shelf sediments | Geosynclinal sediments | ||||
Upper Assam | Naga Schuppen Belt | ||||
Recent-Pleistocene | Alluvium | Alluvium | |||
Unconformity | |||||
Pliocene | Dhekiajuli (1800) | Dihing (900) | |||
Unconformity | |||||
Mio-Pliocene | Namsang (600) | Namsang (800) | |||
Unconformity | |||||
Miocene | Tipam | Girujan Clay (600) | Girujan Clay | Girujan Clay Member (1700) | |
Arenaceous Alternations member (150) | |||||
Tipam Sandstone (900) | Tipam Sandstone | Upper Tipam Sandstone Members | Hansapung Sandstone (260) Bappapung Clay (90) Bappapung Sandstone (170) | ||
Middle Tipam Sandstone Members | Upper Digboi Mottled Clay (75) Nahor Oilsand (75) Lower Mottled Clay (75) | ||||
Lower Tipam Sandstone Members | Upper Digboi Oilsand Group (75) Cover clay (75) Middle Digboi Oilsand Group (210) | ||||
Basal Digboi Oilsand Group (60) | |||||
Surma | Undivided (200) | Undivided (200) | |||
Unconformity | |||||
Oligocene | Barail | Rudrasagar (530) | Tikak Parbat (600) | ||
Baragolai (3300) | |||||
Nagaon (670) | Nagaon (2200) | ||||
Eocene-Cretaceous | Disang/Jaintia | Jaintia (1100) | Disang (~3000) |
Satellite | Orbit | Path | Frame | Date | Time | Polarization | Band | Direction | Normal Baseline (m) | Normal Baseline from the Master Image (m) |
---|---|---|---|---|---|---|---|---|---|---|
SENTINEL 1A | 8192 | 70 | 85 | 17 October 2015 | 11:40:26 | VV | C | Ascending | 110.5424 | 12 |
SENTINEL 1A | 27,792 | 70 | 1271 | 22 June 2019 | 11:40:56 | VV + VH | C | Ascending | 31.2813 | 24 |
SENTINEL 1A | 30,767 | 70 | 1271 | 12 January 2020 | 11:40:59 | VV + VH | C | Ascending | 6.7563 | 36 |
SENTINEL 1A | 36,017 | 70 | 1271 | 6 January 2021 | 11:41:05 | VV + VH | C | Ascending | −43.0912 | 48 |
SENTINEL 1A | 41,617 | 70 | 1271 | 25 January 2022 | 11:41:10 | VV + VH | C | Ascending | −18.5896 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakhote, A.; Kothyari, G.C.; Patidar, A.K.; Changmai, J.; Borgohain, R.; Choudhury, T.; Um, J.-S. Assessment of Active Ground Subsidence in the Dibrugarh and Digboi Areas of Assam, Northeast India, Using the PSInSAR Technique. Remote Sens. 2023, 15, 4963. https://doi.org/10.3390/rs15204963
Lakhote A, Kothyari GC, Patidar AK, Changmai J, Borgohain R, Choudhury T, Um J-S. Assessment of Active Ground Subsidence in the Dibrugarh and Digboi Areas of Assam, Northeast India, Using the PSInSAR Technique. Remote Sensing. 2023; 15(20):4963. https://doi.org/10.3390/rs15204963
Chicago/Turabian StyleLakhote, Abhishek, Girish Ch Kothyari, Atul Kumar Patidar, Jayshree Changmai, Rashmi Borgohain, Tanupriya Choudhury, and Jung-Sup Um. 2023. "Assessment of Active Ground Subsidence in the Dibrugarh and Digboi Areas of Assam, Northeast India, Using the PSInSAR Technique" Remote Sensing 15, no. 20: 4963. https://doi.org/10.3390/rs15204963
APA StyleLakhote, A., Kothyari, G. C., Patidar, A. K., Changmai, J., Borgohain, R., Choudhury, T., & Um, J. -S. (2023). Assessment of Active Ground Subsidence in the Dibrugarh and Digboi Areas of Assam, Northeast India, Using the PSInSAR Technique. Remote Sensing, 15(20), 4963. https://doi.org/10.3390/rs15204963