Bridging the Data Gap: Enhancing the Spatiotemporal Accuracy of Hourly PM2.5 Concentration through the Fusion of Satellite-Derived Estimations and Station Observations
Abstract
:1. Introduction
2. Study Region and Materials
2.1. Study Region
2.2. Materials
2.2.1. Ground-Level Observations
2.2.2. Satellite-Derived PM2.5 Data
2.2.3. Auxiliary Factors
3. Methodology
3.1. Spatial Reconstruction
3.2. Temporal Reconstruction
3.3. Validation
4. Results
4.1. Model Performances
4.2. Spatial Distributions
4.3. Particle Exposure Analysis
5. Discussion
5.1. Overall Evaluation Results
5.2. Comparison with Related Studies
5.3. Uncertainty of the Framework
5.4. Differences in Filled and Unfilled Data
5.5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Badyda, A.J.; Grellier, J.; Dąbrowiecki, P. Ambient PM2.5 Exposure and Mortality Due to Lung Cancer and Cardiopulmonary Diseases in Polish Cities. In Respiratory Treatment and Prevention; Advances in Experimental Medicine and Biology; Pokorski, M., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 944, pp. 9–17. ISBN 978-3-319-44487-1. [Google Scholar]
- Wang, J.; Yi, X.; Zhang, J.; Wang, Z.; Li, T.; Zheng, Y.; Huang, B.; Zhang, H.; Rajagopalan, S.; Al-Kindi, S.G.; et al. Air Pollution and Cardiovascular Disease. J. Am. Coll. Cardiol. 2018, 72, 2054–2070. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, B.; Zhou, J.; Bi, Y.; Xu, S.; Zhou, B. The Epidemiological Trends in the Burden of Lung Cancer Attributable to PM2.5 Exposure in China. BMC Public Health 2021, 21, 737. [Google Scholar] [CrossRef]
- Fang, X.; Zou, B.; Liu, X.; Sternberg, T.; Zhai, L. Satellite-Based Ground PM2.5 Estimation Using Timely Structure Adaptive Modeling. Remote Sens. Environ. 2016, 186, 152–163. [Google Scholar] [CrossRef]
- She, Q.; Choi, M.; Belle, J.H.; Xiao, Q.; Bi, J.; Huang, K.; Meng, X.; Geng, G.; Kim, J.; He, K.; et al. Satellite-Based Estimation of Hourly PM2.5 Levels during Heavy Winter Pollution Episodes in the Yangtze River Delta, China. Chemosphere 2020, 239, 124678. [Google Scholar] [CrossRef]
- Li, L. A Robust Deep Learning Approach for Spatiotemporal Estimation of Satellite AOD and PM2.5. Remote Sens. 2020, 12, 264. [Google Scholar] [CrossRef]
- Li, L.; Girguis, M.; Lurmann, F.; Pavlovic, N.; McClure, C.; Franklin, M.; Wu, J.; Oman, L.D.; Breton, C.; Gilliland, F.; et al. Ensemble-Based Deep Learning for Estimating PM2.5 over California with Multisource Big Data Including Wildfire Smoke. Environ. Int. 2020, 145, 106143. [Google Scholar] [CrossRef]
- Shin, M.; Kang, Y.; Park, S.; Im, J.; Yoo, C.; Quackenbush, L.J.; Wei, J.; Huang, W.; Li, Z.; Xue, W.; et al. Estimating 1-Km-Resolution PM2.5 Concentrations across China Using the Space-Time Random Forest Approach. Remote Sens. Environ. 2019, 231, 111221. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Wei, Y.; Peng, Z. A Satellite-Derived, Ground-Measurement-Independent Monthly PM2.5 Mass Concentration Dataset over China during 2000–2015. Big Earth Data 2022, 6, 633–649. [Google Scholar] [CrossRef]
- Lee, C.; Lee, K.; Kim, S.; Yu, J.; Jeong, S.; Yeom, J. Hourly Ground-Level PM2.5 Estimation Using Geostationary Satellite and Reanalysis Data via Deep Learning. Remote Sens. 2021, 13, 2121. [Google Scholar] [CrossRef]
- Sun, Y.; Xue, Y.; Jiang, X.; Jin, C.; Wu, S.; Zhou, X. Estimation of the PM2.5 and PM10 Mass Concentration over Land from FY-4A Aerosol Optical Depth Data. Water Resour. Res. 2019, 13, 4276. [Google Scholar] [CrossRef]
- Yan, X.; Zang, Z.; Luo, N.; Jiang, Y.; Li, Z. New Interpretable Deep Learning Model to Monitor Real-Time PM2.5 Concentrations from Satellite Data. Remote Sens. Environ. 2020, 144, 106060. [Google Scholar] [CrossRef]
- Geng, G.; Xiao, Q.; Liu, S.; Liu, X.; Cheng, J.; Zheng, Y.; Xue, T.; Tong, D.; Zheng, B.; Peng, Y.; et al. Tracking Air Pollution in China: Near Real-Time PM2.5 Retrievals from Multisource Data Fusion. Environ. Sci. Technol. 2021, 55, 12106–12115. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Bi, J.; Meng, X.; Geng, G.; Lyapustin, A.; Lane, K.J.; Gu, D.; Kinney, P.L.; Liu, Y. Estimating Daily PM2.5 Concentrations in New York City at the Neighborhood-Scale: Implications for Integrating Non-Regulatory Measurements. Sci. Total Environ. 2019, 697, 134094. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, Y.; Chang, H.H.; Meng, X.; Geng, G.; Lyapustin, A.; Liu, Y. Full-Coverage High-Resolution Daily PM2.5 Estimation Using MAIAC AOD in the Yangtze River Delta of China. Remote Sens. Environ. 2017, 199, 437–446. [Google Scholar] [CrossRef]
- Xu, J.; Yang, Z.; Han, B.; Yang, W.; Duan, Y.; Fu, Q.; Bai, Z. A Unified Empirical Modeling Approach for Particulate Matter and NO2 in a Coastal City in China. Chemosphere 2022, 299, 134384. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Zhang, C.; Shen, H.; Yuan, Q.; Zhang, L. Real-time and Seamless Monitoring of Ground-level PM2.5 Using Satellite Remote Sensing. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, IV–3, 143–147. [Google Scholar] [CrossRef]
- Wu, J.; Li, T.; Zhang, C.; Cheng, Q.; Shen, H. Hourly PM2.5 Concentration Monitoring with Spatiotemporal Continuity by the Fusion of Satellite and Station Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8019–8032. [Google Scholar] [CrossRef]
- Kloog, I.; Nordio, F.; Coull, B.A.; Schwartz, J. Incorporating Local Land Use Regression And Satellite Aerosol Optical Depth In A Hybrid Model Of Spatiotemporal PM2.5 Exposures In The Mid-Atlantic States. Environ. Sci. Technol. 2012, 46, 11913–11921. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, C.; Liang, Y. Review of Satellite-Driven Statistical Models PM2.5 Concentration Estimation with Comprehensive Information. Atmos. Environ. 2021, 256, 118302. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhu, H.; Gao, Y.; Xie, T.; Liu, S.; Chen, L. Estimating Full-Coverage PM2.5 Concentrations Based on Himawari-8 and NAQPMS Data over Sichuan-Chongqing. Appl. Sci. 2022, 12, 7065. [Google Scholar] [CrossRef]
- Zhang, D.; Du, L.; Wang, W.; Zhu, Q.; Bi, J.; Scovronick, N.; Naidoo, M.; Garland, R.M.; Liu, Y. A Machine Learning Model to Estimate Ambient PM2.5 Concentrations in Industrialized Highveld Region of South Africa. Remote Sens. Environ. 2021, 266, 112713. [Google Scholar] [CrossRef]
- Li, K.; Bai, K.; Li, Z.; Guo, J.; Chang, N.-B. Synergistic Data Fusion of Multimodal AOD and Air Quality Data for near Real-Time Full Coverage Air Pollution Assessment. J. Environ. Manag. 2022, 302, 114121. [Google Scholar] [CrossRef]
- Liu, Y.; Li, C.; Liu, D.; Tang, Y.; Seyler, B.C.; Zhou, Z.; Hu, X.; Yang, F.; Zhan, Y. Deriving Hourly Full-Coverage PM2.5 Concentrations across China’s Sichuan Basin by Fusing Multisource Satellite Retrievals: A Machine-Learning Approach. Atmos. Environ. 2022, 271, 118930. [Google Scholar] [CrossRef]
- Cui, Q.; Zhang, F.; Fu, S.; Wei, X.; Ma, Y.; Wu, K. High Spatiotemporal Resolution PM2.5 Concentration Estimation with Machine Learning Algorithm: A Case Study for Wildfire in California. Remote Sens. 2022, 14, 1635. [Google Scholar] [CrossRef]
- Wang, W.; He, Q.; Zhang, M.; Zhang, W.; Zhu, H. Full-Coverage 1-Km Estimates and Spatiotemporal Trends of Aerosol Optical Depth over Taiwan from 2003 to 2019. Atmos. Pollut. Res. 2022, 13, 101579. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Pinker, R.T.; Wang, J.; Sun, L.; Xue, W.; Li, R.; Cribb, M. Himawari-8-Derived Diurnal Variations in Ground-Level PM2.5 Pollution across China Using the Fast Space-Time Light Gradient Boosting Machine (LightGBM). Atmos. Chem. Phys. 2021, 21, 7863–7880. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, Y.; Bai, Y.; Wang, H. Evaluation of the Total, Direct, and Diffuse Solar Radiations From the ERA5 Reanalysis Data in China. IEEE Geosci. Remote Sens. Lett. 2020, 17, 47–51. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, W.; Fan, Z.; He, X.; Sun, W.; Chen, S.; Wen, J.; Gao, J.; Wang, J. Evaluation of the ERA5 Reanalysis Precipitation Dataset over Chinese Mainland. J. Hydrol. 2021, 595, 125660. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, F. How Accurate Are Modern Atmospheric Reanalyses for the Data-Sparse Tibetan Plateau Region? J. Clim. 2019, 32, 7153–7172. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Yang, K.; Liao, H.; Zhang, S.; Huang, K.; Lv, Y.; Shao, J.; Yu, T.; Tong, B.; et al. Investigation of Near-Global Daytime Boundary Layer Height Using High-Resolution Radiosondes: First Results and Comparison with ERA5, MERRA-2, JRA-55, and NCEP-2 Reanalyses. Atmos. Chem. Phys. 2021, 21, 17079–17097. [Google Scholar] [CrossRef]
- Kong, L.; Tang, X.; Zhu, J.; Wang, Z.; Li, J.; Wu, H.; Wu, Q.; Chen, H.; Zhu, L.; Wang, W.; et al. A 6-Year-Long (2013–2018) High-Resolution Air Quality Reanalysis Dataset in China Based on the Assimilation of Surface Observations from CNEMC. Earth Syst. Sci. Data 2021, 13, 529–570. [Google Scholar] [CrossRef]
- Sun, Y.L.; Wang, Z.F.; Du, W.; Zhang, Q.; Wang, Q.Q.; Fu, P.Q.; Pan, X.L.; Li, J.; Jayne, J.; Worsnop, D.R. Long-Term Real-Time Measurements of Aerosol Particle Composition in Beijing, China: Seasonal Variations, Meteorological Effects, and Source Analysis. Atmos. Chem. Phys. 2015, 15, 10149–10165. [Google Scholar] [CrossRef]
- Prijith, S.S.; Moorthy, K.K.; Babu, S.N.S.; Satheesh, S.K. Characterization of Particulate Matter and Black Carbon over Bay of Bengal during Summer Monsoon: Results from the OMM Cruise Experiment. Environ. Sci. Pollut. Res. 2018, 25, 33162–33171. [Google Scholar] [CrossRef] [PubMed]
- Bali, K.; Dey, S.; Ganguly, D. Diurnal Patterns in Ambient PM2.5 Exposure over India Using MERRA-2 Reanalysis Data. Environ. Res. 2021, 248, 118180. [Google Scholar] [CrossRef]
- Buchard, V.; da Silva, A.M.; Randles, C.A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D. Evaluation of the Surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States. Atmos. Environ. 2016, 125, 100–111. [Google Scholar] [CrossRef]
- Ma, J.; Xu, J.; Qu, Y.; Cerqueira, V.; Moniz, N.; Soares, C. Evaluation on the Surface PM2.5 Concentration over China Mainland from NASA’s MERRA-2. Atmos. Environ. 2020, 237, 117666. [Google Scholar] [CrossRef]
- Provençal, S.; Buchard, V.; da Silva, A.M.; Leduc, R.; Barrette, N. Evaluation of PM Surface Concentrations Simulated by Version 1 of NASA’s MERRA Aerosol Reanalysis over Europe. Atmos. Pollut. Res. 2017, 8, 374–382. [Google Scholar] [CrossRef]
- He, L.; Lin, A.; Chen, X.; Zhou, H.; Zhou, Z.; He, P. Assessment of MERRA-2 Surface PM2.5 over the Yangtze River Basin: Ground-Based Verification, Spatiotemporal Distribution and Meteorological Dependence. Remote Sens. 2019, 11, 460. [Google Scholar] [CrossRef]
- Song, Z.; Fu, D.; Zhang, X.; Wu, Y.; Xia, X.; He, J.; Han, X.; Zhang, R.; Che, H. Diurnal and Seasonal Variability of PM2.5 and AOD in North China Plain: Comparison of MERRA-2 Products and Ground Measurements. Atmos. Environ. 2018, 191, 70–78. [Google Scholar] [CrossRef]
- Chu, W.; Zhang, C.; Zhao, Y.; Li, R.; Wu, P. Spatiotemporally Continuous Reconstruction of Retrieved PM2.5 Data Using an Autogeoi-Stacking Model in the Beijing-Tianjin-Hebei Region, China. Remote Sens. 2022, 14, 4432. [Google Scholar] [CrossRef]
- Horn, F.; Pack, R.; Rieger, M. The Autofeat Python Library for Automated Feature Engineering and Selection. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Würzburg, Germany, 16–20 September 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 111–120. [Google Scholar]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A Flexible Spatiotemporal Method for Fusing Satellite Images with Different Resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, J.; Chen, X.; Zhu, X.; Qiu, Y.; Song, H.; Rao, Y.; Zhang, C.; Cao, X.; Cui, X. Sensitivity of Six Typical Spatiotemporal Fusion Methods to Different Influential Factors: A Comparative Study for a Normalized Difference Vegetation Index Time Series Reconstruction. Remote Sens. Environ. 2021, 252, 112130. [Google Scholar] [CrossRef]
- Zhu, X.; Zhan, W.; Zhou, J.; Chen, X.; Liang, Z.; Xu, S.; Chen, J. A Novel Framework to Assess All-Round Performances of Spatiotemporal Fusion Models. Remote Sens. Environ. 2022, 274, 113002. [Google Scholar] [CrossRef]
- Li, Y.; Wu, H.; Li, Z.-L.; Duan, S.; Ni, L. Evaluation of Spatiotemporal Fusion Models in Land Surface Temperature Using Polar-Orbiting and Geostationary Satellite Data. In Proceedings of the IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; IEEE: Waikoloa, HI, USA, 2020; pp. 236–239. [Google Scholar]
- Rodriguez, J.D.; Perez, A.; Lozano, J.A. Sensitivity Analysis of K-Fold Cross Validation in Prediction Error Estimation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Blagus, R.; Lusa, L. SMOTE for High-Dimensional Class-Imbalanced Data. BMC Bioinform. 2013, 14, 106. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Mago, N.; Gao, Y.; Li, Y.; Chiang, Y.-Y.; Shahabi, C.; Ambite, J.L.; Chen, J.; Jönsson, P.; Tamura, M.; et al. Estimation of Ground-Level Particulate Matter Concentrations through the Synergistic Use of Satellite Observations and Process-Based Models over South Korea. Atmos. Chem. Phys. 2020, 19, 1097–1113. [Google Scholar] [CrossRef]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef]
- Bai, K.; Li, K.; Ma, M.; Li, K.; Li, Z.; Guo, J.; Chang, N.-B.; Tan, Z.; Han, D. LGHAP: The Long-Term Gap-Free High-Resolution Air Pollutant Concentration Dataset, Derived via Tensor-Flow-Based Multimodal Data Fusion. Earth Syst. Sci. Data 2022, 14, 907–927. [Google Scholar] [CrossRef]
- Ding, Y.; Chen, Z.; Lu, W.; Wang, X. A CatBoost Approach with Wavelet Decomposition to Improve Satellite-Derived High-Resolution PM2.5 Estimates in Beijing-Tianjin-Hebei. Atmos. Environ. 2021, 249, 118212. [Google Scholar] [CrossRef]
- Liu, N.; Li, S.; Zhang, F. Multi-Scale Spatiotemporal Variations and Drivers of PM2.5 in Beijing-Tianjin-Hebei from 2015 to 2020. Atmosphere 2022, 13, 1993. [Google Scholar] [CrossRef]
- Xiao, Q.; Zheng, Y.; Geng, G.; Chen, C.; Huang, X.; Che, H.; Zhang, X.; He, K.; Zhang, Q. Separating Emission and Meteorological Contributions to Long-Term PM2.5; Trends over Eastern China during 2000–2018. Atmos. Chem. Phys. 2021, 21, 9475–9496. [Google Scholar] [CrossRef]
- Wang, L.; Xiong, Q.; Wu, G.; Gautam, A.; Jiang, J.; Liu, S.; Zhao, W.; Guan, H. Spatio-Temporal Variation Characteristics of PM2.5 in the Beijing–Tianjin–Hebei Region, China, from 2013 to 2018. Int. J. Environ. Res. Public Health 2019, 16, 4276. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wei, J.; Huang, X. Integration of One-Pair Spatiotemporal Fusion with Moment Decomposition for Better Stability. Front. Environ. Sci. 2021, 9, 14. [Google Scholar] [CrossRef]
- Abdul Shakor, A.S.; Pahrol, M.A.; Mazeli, M.I. Effects of Population Weighting on PM10 Concentration Estimation. J. Environ. Public Health 2020, 2020, 1561823. [Google Scholar] [CrossRef]
- Aunan, K.; Ma, Q.; Lund, M.T.; Wang, S. Population-Weighted Exposure to PM2.5 Pollution in China: An Integrated Approach. Environ. Int. 2018, 120, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Li, C.; Liu, M.; Hu, Y.; Wu, W. Spatiotemporal Distribution Patterns and Exposure Risks of PM2.5 Pollution in China. Remote Sens. 2022, 14, 3173. [Google Scholar] [CrossRef]
- He, Q.; Huang, B.; Chen, M.; Guo, S.; Hu, M.; Zhang, X. The Spatiotemporal Evolution of Population Exposure to PM2.5 within the Beijing-Tianjin-Hebei Urban Agglomeration, China. J. Clean. Prod. 2020, 265, 121708. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Li, H. Factors Influencing PM2.5 Concentrations in the Beijing–Tianjin–Hebei Urban Agglomeration Using a Geographical and Temporal Weighted Regression Model. Atmosphere 2022, 13, 407. [Google Scholar] [CrossRef]
- Suriya; Natsagdorj, N.; Aorigele; Zhou, H. Sachurila Spatiotemporal Variation in Air Pollution Characteristics and Influencing Factors in Ulaanbaatar from 2016 to 2019. Atmosphere 2017, 13, 990. [Google Scholar] [CrossRef]
- Zhai, S.; Jacob, D.J.; Wang, X.; Shen, L.; Li, K.; Zhang, Y.; Gui, K.; Zhao, T.; Liao, H. Fine Particulate Matter (PM2.5) Trends in China, 2013–2018: Separating Contributions from Anthropogenic Emissions and Meteorology. Atmos. Chem. Phys. 2019, 19, 11031–11041. [Google Scholar] [CrossRef]
- Hua, Z.; Sun, W.; Yang, G.; Du, Q. A Full-Coverage Daily Average PM2.5 Retrieval Method with Two-Stage IVW Fused MODIS C6 AOD and Two-Stage GAM Model. Remote Sens. 2019, 11, 1558. [Google Scholar] [CrossRef]
- Jing, Y.; Pan, L.; Sun, Y. Estimating PM2.5 Concentrations in a Central Region of China Using a Three-Stage Model. Int. J. Digit. Earth 2023, 16, 578–592. [Google Scholar] [CrossRef]
- Xue, T.; Zheng, Y.; Tong, D.; Zheng, B.; Li, X.; Zhu, T.; Zhang, Q. Spatiotemporal Continuous Estimates of PM2.5 Concentrations in China, 2000–2016: A Machine Learning Method with Inputs from Satellites, Chemical Transport Model, and Ground Observations. Environ. Int. 2019, 123, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Gong, J.; Zhou, J. Estimating Hourly PM2.5 Concentrations in Beijing with Satellite Aerosol Optical Depth and a Random Forest Approach. Sci. Total Environ. 2021, 762, 144502. [Google Scholar] [CrossRef]
- Chen, J.; Yin, J.; Zang, L.; Zhang, T.; Zhao, M. Stacking Machine Learning Model for Estimating Hourly PM2.5 in China Based on Himawari 8 Aerosol Optical Depth Data. Sci. Total Environ. 2019, 697, 134021. [Google Scholar] [CrossRef]
- Fu, D.; Song, Z.; Zhang, X.; Xia, X.; Wang, J.; Che, H.; Wu, H.; Tang, X.; Zhang, J.; Duan, M. Mitigating MODIS AOD Non-Random Sampling Error on Surface PM2.5 Estimates by a Combined Use of Bayesian Maximum Entropy Method and Linear Mixed-Effects Model. Atmos. Pollut. Res. 2020, 11, 482–490. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, B.; Huang, B.; Ma, Z.; Biswas, A.; Jiang, Y.; Shi, Z. Predicting Annual PM2.5 in Mainland China from 2014 to 2020 Using Multi Temporal Satellite Product: An Improved Deep Learning Approach with Spatial Generalization Ability. Nat. Methods 2022, 187, 141–158. [Google Scholar] [CrossRef]
- Zhang, J.; Li, D.; Xia, Y.; Liao, Q. Bayesian Aerosol Retrieval-Based PM2.5 Estimation through Hierarchical Gaussian Process Models. Mathematics 2022, 10, 2878. [Google Scholar] [CrossRef]
- Zhang, A.; Fu, T.; Feng, X.; Guo, J.; Liu, C.; Chen, J.; Mo, J.; Zhang, X.; Wang, X.; Wu, W.; et al. Deep Learning-Based Ensemble Forecasts and Predictability Assessments for Surface Ozone Pollution. Geophys. Res. Lett. 2023, 50, e2022GL102611. [Google Scholar] [CrossRef]
- Bai, H.; Wu, H.; Gao, W.; Wang, S.; Cao, Y. Influence of Spatial Resolution of PM2.5 Concentrations and Population on Health Impact Assessment from 2010 to 2020 in China. Environ. Pollut. 2023, 326, 121505. [Google Scholar] [CrossRef]
- Aburas, M.M.; Ahamad, M.S.S.; Omar, N.Q.; Liu, T.; Wang, C.; Wang, Y.; Huang, L.; Li, J.; Xie, F.; Zhang, J.; et al. Impacts of Model Resolution on Predictions of Air Quality and Associated Health Exposure in Nanjing, China. Chemosphere 2020, 249, 126515. [Google Scholar] [CrossRef]
- Kaul, A.; Maheshwary, S.; Pudi, V. AutoLearn—Automated Feature Generation and Selection. In Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 217–226. [Google Scholar]
- Wu, D.; Liu, W.; Fang, B.; Chen, L.; Zang, Y.; Zhao, L.; Wang, S.; Wang, C.; Marcato, J.; Li, J.; et al. Automated Feature Engineering Improves Prediction of Protein–Protein Interactions. Amino Acids 2019, 51, 1187–1200. [Google Scholar] [CrossRef]
- Zheng, Z.; Fiore, A.M.; Westervelt, D.M.; Milly, G.P.; Goldsmith, J.; Karambelas, A.; Curci, G.; Randles, C.A.; Paiva, A.R.; Wang, C.; et al. Automated Machine Learning to Evaluate the Information Content of Tropospheric Trace Gas Columns for Fine Particle Estimates Over India: A Modeling Testbed. J. Adv. Model. Earth Syst. 2023, 15. [Google Scholar] [CrossRef]
- Džeroski, S.; Ženko, B. Is Combining Classifiers with Stacking Better than Selecting the Best One? Mach. Learn. 2004, 54, 255–273. [Google Scholar] [CrossRef]
- Dobson, J.; Brlght, E.A.; Coleman, P.R.; Durfee, R.C.; Worley, B.A. LandScan: A Global Population Database for Estimating Populations at Risk. In Remotely-Sensed Cities; Mesev, V., Ed.; CRC Press: Boca Raton, FL, USA, 2003; pp. 301–314. ISBN 978-0-429-18116-0. [Google Scholar]
This Study | CHAP | LGHAP | MERRA-2 | Population | PM2.5 | |
---|---|---|---|---|---|---|
Beijing | 51.04 | 48.62 | 51.13 | 42.00 | 20,376,165 | 43.49 |
Tianjin | 54.17 | 50.88 | 55.22 | 40.80 | 13,480,710 | 52.83 |
Hebei | 56.24 | 53.08 | 57.64 | 41.78 | 74,207,325 | 44.64 |
BTH | 55.00 | 51.96 | 56.11 | 41.69 | 108,064,754 | 45.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, W.; Zhang, C.; Li, H. Bridging the Data Gap: Enhancing the Spatiotemporal Accuracy of Hourly PM2.5 Concentration through the Fusion of Satellite-Derived Estimations and Station Observations. Remote Sens. 2023, 15, 4973. https://doi.org/10.3390/rs15204973
Chu W, Zhang C, Li H. Bridging the Data Gap: Enhancing the Spatiotemporal Accuracy of Hourly PM2.5 Concentration through the Fusion of Satellite-Derived Estimations and Station Observations. Remote Sensing. 2023; 15(20):4973. https://doi.org/10.3390/rs15204973
Chicago/Turabian StyleChu, Wenhao, Chunxiao Zhang, and Heng Li. 2023. "Bridging the Data Gap: Enhancing the Spatiotemporal Accuracy of Hourly PM2.5 Concentration through the Fusion of Satellite-Derived Estimations and Station Observations" Remote Sensing 15, no. 20: 4973. https://doi.org/10.3390/rs15204973
APA StyleChu, W., Zhang, C., & Li, H. (2023). Bridging the Data Gap: Enhancing the Spatiotemporal Accuracy of Hourly PM2.5 Concentration through the Fusion of Satellite-Derived Estimations and Station Observations. Remote Sensing, 15(20), 4973. https://doi.org/10.3390/rs15204973