A New Framework for the Reconstruction of Daily 1 km Land Surface Temperatures from 2000 to 2022
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data and Preprocessing
2.3. Methods
2.3.1. Reference LST Images
2.3.2. Training Sets and Testing Sets
2.3.3. Reconstruction Models and Hyperparameter Optimization
2.3.4. Spatial Reconstruction of LSTs
2.3.5. Accuracy Evaluation
3. Results
3.1. Optimal Model for LST Reconstruction
3.2. Optimal Datasets for LST Reconstruction
3.3. Reconstruction of LST Images
4. Discussion
4.1. Machine Learning in LST Reconstruction
4.2. Dataset for Model Training
4.3. Spatial–Temporal Pattern of LST
4.4. Application of Reconstructed LSTs in High-Temperature Monitoring
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Friedl, M.A. Forward and Inverse Modeling of Land Surface Energy Balance Using Surface Temperature Measurements. Remote Sens. Environ. 2002, 79, 344–354. [Google Scholar] [CrossRef]
- Pede, T.; Mountrakis, G.; Shaw, S.B. Improving Corn Yield Prediction across the US Corn Belt by Replacing Air Temperature with Daily MODIS Land Surface Temperature. Agric. For. Meteorol. 2019, 276, 107615. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite Remote Sensing of Surface Urban Heat Islands: Progress, Challenges, and Perspectives. Remote Sens. 2019, 11, 48. [Google Scholar] [CrossRef]
- Islam, S.; Ma, M. Geospatial Monitoring of Land Surface Temperature Effects on Vegetation Dynamics in the Southeastern Region of Bangladesh from 2001 to 2016. ISPRS Int. J. Geo-Inf. 2018, 7, 486. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very High Resolution Interpolated Climate Surfaces for Global Land Areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-Derived Land Surface Temperature: Current Status and Perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Gao, H.; Fu, R.; Dickinson, R.E.; Juarez, R.I.N. A Practical Method for Retrieving Land Surface Temperature from AMSR-E over the Amazon Forest. IEEE Trans. Geosci. Remote Sens. 2008, 46, 193–199. [Google Scholar] [CrossRef]
- Yang, H.; Weng, F. Error Sources in Remote Sensing of Microwave Land Surface Emissivity. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3437–3442. [Google Scholar] [CrossRef]
- Lian, Y.; Duan, S.-B.; Huang, C.; Han, W.; Liu, M. Generation of Spatial-Seamless AMSR2 Land Surface Temperature in China During 2012–2020 Using a Deep Neural Network. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5300618. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A. A Generalized Single-Channel Method for Retrieving Land Surface Temperature from Remote Sensing Data. J. Geophys. Res.-Atmos. 2003, 108, 4688. [Google Scholar] [CrossRef]
- Wan, Z.M.; Dozier, J. A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Li, Z.L.; Stoll, M.P.; Becker, F. Multi-Channel and Multi-Angle Algorithms for Estimating Sea and Land Surface Temperature with ATSR Data. Int. J. Remote Sens. 1996, 17, 2089–2114. [Google Scholar] [CrossRef]
- Wan, Z. New Refinements and Validation of the Collection-6 MODIS Land-Surface Temperature/Emissivity Product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Pede, T.; Mountrakis, G. An Empirical Comparison of Interpolation Methods for MODIS 8-Day Land Surface Temperature Composites across the Conterminous Unites States. Isprs J. Photogramm. Remote Sens. 2018, 142, 137–150. [Google Scholar] [CrossRef]
- NourEldeen, N.; Mao, K.; Yuan, Z.; Shen, X.; Xu, T.; Qin, Z. Analysis of the Spatiotemporal Change in Land Surface Temperature for a Long-Term Sequence in Africa (2003–2017). Remote Sens. 2020, 12, 488. [Google Scholar] [CrossRef]
- Fu, P.; Xie, Y.; Weng, Q.; Myint, S.; Meacham-Hensold, K.; Bernacchi, C. A Physical Model-Based Method for Retrieving Urban Land Surface Temperatures under Cloudy Conditions. Remote Sens. Environ. 2019, 230, 111191. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, J.; Liang, S.; Wang, D. A Practical Reanalysis Data and Thermal Infrared Remote Sensing Data Merging (RTM) Method for Reconstruction of a 1-Km All-Weather Land Surface Temperature. Remote Sens. Environ. 2021, 260, 112437. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Cao, Q.; Wei, J.; He, P.; Wang, S.; Wang, L. Global Seamless and High-Resolution Temperature Dataset (GSHTD), 2001–2020. Remote Sens. Environ. 2023, 286, 113422. [Google Scholar] [CrossRef]
- Sun, L.; Chen, Z.; Gao, F.; Anderson, M.; Song, L.; Wang, L.; Hu, B.; Yang, Y. Reconstructing Daily Clear-Sky Land Surface Temperature for Cloudy Regions from MODIS Data. Comput. Geosci. 2017, 105, 10–20. [Google Scholar] [CrossRef]
- Fan, X.-M.; Liu, H.-G.; Liu, G.-H.; Li, S.-B. Reconstruction of MODIS Land-Surface Temperature in a Flat Terrain and Fragmented Landscape. Int. J. Remote Sens. 2014, 35, 7857–7877. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, W.; Ma, M.; He, K. Gap-Free LST Generation for MODIS/Terra LST Product Using a Random Forest-Based Reconstruction Method. Remote Sens. 2021, 13, 2828. [Google Scholar] [CrossRef]
- Tan, W.; Wei, C.; Lu, Y.; Xue, D. Reconstruction of All-Weather Daytime and Nighttime MODIS Aqua-Terra Land Surface Temperature Products Using an XGBoost Approach. Remote Sens. 2021, 13, 4723. [Google Scholar] [CrossRef]
- Cho, D.; Bae, D.; Yoo, C.; Im, J.; Lee, Y.; Lee, S. All-Sky 1 Km MODIS Land Surface Temperature Reconstruction Considering Cloud Effects Based on Machine Learning. Remote Sens. 2022, 14, 1815. [Google Scholar] [CrossRef]
- Yu, W.; Tan, J.; Ma, M.; Li, X.; She, X.; Song, Z. An Effective Similar-Pixel Reconstruction of the High-Frequency Cloud-Covered Areas of Southwest China. Remote Sens. 2019, 11, 336. [Google Scholar] [CrossRef]
- Metz, M.; Andreo, V.; Neteler, M. A New Fully Gap-Free Time Series of Land Surface Temperature from MODIS LST Data. Remote Sens. 2017, 9, 1333. [Google Scholar] [CrossRef]
- Zeng, C.; Long, D.; Shen, H.; Wu, P.; Cui, Y.; Hong, Y. A Two-Step Framework for Reconstructing Remotely Sensed Land Surface Temperatures Contaminated by Cloud. Isprs J. Photogramm. Remote Sens. 2018, 141, 30–45. [Google Scholar] [CrossRef]
- Pham, H.T.; Kim, S.; Marshall, L.; Johnson, F. Using 3D Robust Smoothing to Fill Land Surface Temperature Gaps at the Continental Scale. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101879. [Google Scholar] [CrossRef]
- Gong, Y.; Li, H.; Shen, H.; Meng, C.; Wu, P. Cloud-Covered MODIS LST Reconstruction by Combining Assimilation Data and Remote Sensing Data through a Nonlocality-Reinforced Network. Int. J. Appl. Earth Obs. Geoinf. 2023, 117, 103195. [Google Scholar] [CrossRef]
- Zhao, X.; Xia, H.; Pan, L.; Song, H.; Niu, W.; Wang, R.; Li, R.; Bian, X.; Guo, Y.; Qin, Y. Drought Monitoring over Yellow River Basin from 2003–2019 Using Reconstructed MODIS Land Surface Temperature in Google Earth Engine. Remote Sens. 2021, 13, 3748. [Google Scholar] [CrossRef]
- Lou, W.; Wu, L.; Mao, Y.; Sun, K. Precipitation and Temperature Trends and Dryness/Wetness Pattern during 1971–2015 in Zhejiang Province, Southeastern China. Theor. Appl. Climatol. 2018, 133, 47–57. [Google Scholar] [CrossRef]
- Wan, Z.; Hook, S.; Hulley, G. MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006; NASA EOSDIS LP DAAC: Sioux Falls, SD, USA, 2015.
- Wan, Z.; Hook, S.; Hulley, G. MYD11A1 MODIS/Aqua Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid V006; NASA EOSDIS LP DAAC: Sioux Falls, SD, USA, 2015.
- NASA JPL. NASA Shuttle Radar Topography Mission Combined Image Data Set; NASA JPL: Pasadena, CA, USA, 2014.
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. Experiments with a New Boosting Algorithm. In Proceedings of the Thirteenth International Conference on International Conference on Machine Learning, Bari, Italy, 3–6 July 1996; pp. 148–156. [Google Scholar]
- Friedman, J.H. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD’16: 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- James, B.; Remi, B.; Yoshua, B.; Balazs, K. Algorithms for Hyper-Parameter Optimization; Neural Information Processing Systems: Granada, Spain, 2011. [Google Scholar]
- Colditz, R. An Evaluation of Different Training Sample Allocation Schemes for Discrete and Continuous Land Cover Classification Using Decision Tree-Based Algorithms. Remote Sens. 2015, 7, 9655–9681. [Google Scholar] [CrossRef]
- Utsumi, N.; Seto, S.; Kanae, S.; Maeda, E.E.; Oki, T. Does Higher Surface Temperature Intensify Extreme Precipitation? Geophys. Res. Lett. 2011, 38, L16708. [Google Scholar] [CrossRef]
- Li, X.; Hu, Z.-Z.; Liu, Y.; Liang, P.; Jha, B. Causes and Predictions of 2022 Extremely Hot Summer in East Asia. J. Geophys. Res.-Atmos. 2023, 128, e2022JD038442. [Google Scholar] [CrossRef]
Sensors | Time Period Temporal Resolution | Method | Variables | Quality Control | RMSE | References |
---|---|---|---|---|---|---|
Terra | 2011–2016 8-day | six interpolation methods | LST, elevation | good quality | 0.2–1.2 °C | [15] |
Terra/Aqua | 2003–2017 daily | IDW interpolation | LST, elevation | good quality | 0.84 °C | [16] |
Terra/Aqua | 28 April 2011–20 May 2011 daily | WRFF | LST | good quality | ~2.0 K | [17] |
Terra/Aqua | 2003 and 2014 daily | RTM | LST, reanalysis data | good quality | 2–4 K | [18] |
Terra | 2001–2020 8-day | ETD | LST, reanalysis data | not mentioned | 1 K | [19] |
Terra | 2000–2002 daily | RSDAST | LST | good quality | 1 K | [20] |
Terra | May, 2005 daily | MLR, RT, ANN | Landcover, NDVI, MODIS band 7 | not mentioned | 1.85 °C, 1.32 °C, 1.66 °C | [21] |
Terra | 2018 daily | RF-based method | NDVI, EVI, NDWI, elevation, slope, latitude, solar radiation factor | good quality | 2.6 K | [22] |
Terra/Aqua | Summer of 2017 and 2018 daily | XGBoost-based method | NDVI, EVI, NDWI, elevation, slope, albedo, reanalysis data | error < 2 K | 3.9–5.5 K | [23] |
Terra/Aqua | 2013–2020 daily | LightGBM-based method | Reanalysis data, elevation, slope, impervious area ratio, wind speed, day of the year, longitude, latitude | good quality | 0.6–1.4 °C | [24] |
Terra | 2012 daily | energy balance and similar pixels | NDVI, radiation, elevation, slope, aspect | emissivity < 0.04 error < 2 K | 1.9–3.2 K | [25] |
Terra/Aqua | 2003–2016 daily | temporal and spatial interpolation | LST, elevation, emissivity | error < 3 K | 0.5 K | [26] |
Terra | 2010 daily | two-step framework | LST, NDVI, radiation | not mentioned | 3–6 K | [27] |
Aqua | 2002–2011 daily | 3-D gap-filling method | LST | good quality | 2 K | [28] |
Terra/Aqua | 2019 daily | Nonlocality-reinforced network | LST, NDVI, elevation, reanalysis data | not mentioned | 0.8 K | [29] |
Aqua | 2003–2019 daily | ATC model | LST, day of the year | good quality | 3 K | [30] |
Models | Optimal Hyperparameters |
---|---|
MLR | — |
POLY | degree = 4 |
RF | n_estimators = 200 max_features = 4 max_depth = 40 criterion = ‘squared_error’ |
GBDT | n_estimators = 200 learning_rate = 0.06 loss = ‘squared_error’ max_features = 3 subsample = 0.6 max_depth = 18 |
XGBoost | num_boost_round = 200 eta = 0.1 colsample_bytree = 5/6 lambda = 0.7 max_depth = 18 subsample = 0.9 |
TestingSetsGQ+OQ | TestingSetsGQ | TestingSetsOQ | |||||||
---|---|---|---|---|---|---|---|---|---|
SD | Greater | Less | SD | Greater | Less | SD | Greater | Less | |
ModelGQ | 74.74% | 29.88% | 44.87% | 53.45% | 51.39% | 2.06% | 91.09% | 26.51% | 64.58% |
ModelGQ+OQ | 49.76% | 43.07% | 6.68% | 51.11% | 42.64% | 8.47% | 54.43% | 23.52% | 30.91% |
Model of LST Reconstruction | Accuracy Index | Terra-Day | Aqua-Day | Terra-Night | Aqua-Night |
---|---|---|---|---|---|
LST = XGBoost (Ref-LST, ele., slope, Lon., Lat.) | RMSE (°C) | 0.50 ± 0.14 | 0.61 ± 0.2 | 0.36 ± 0.07 | 0.39 ± 0.08 |
MAE (°C) | 0.35 ± 0.08 | 0.43 ± 0.13 | 0.26 ± 0.05 | 0.27 ± 0.06 | |
R2 | 0.95 ± 0.02 | 0.95 ± 0.02 | 0.95 ± 0.02 | 0.95 ± 0.02 | |
LST = XGBoost (ele., slope, Lon., Lat.) | RMSE (°C) | 0.80 ± 0.48 | 0.97 ± 0.55 | 0.59 ± 0.36 | 0.65 ± 0.41 |
MAE (°C) | 0.58 ± 0.35 | 0.70 ± 0.42 | 0.43 ± 0.27 | 0.46 ± 0.3 | |
R2 | 0.74 ± 2.15 | 0.79 ± 0.57 | 0.08 ± 12.12 | 0.71 ± 2.04 | |
Overall | RMSE (°C) | 0.50 ± 0.14 | 0.61 ± 0.2 | 0.36 ± 0.07 | 0.39 ± 0.08 |
MAE (°C) | 0.35 ± 0.08 | 0.43 ± 0.13 | 0.26 ± 0.05 | 0.28 ± 0.06 | |
R2 | 0.95 ± 0.02 | 0.95 ± 0.02 | 0.95 ± 0.02 | 0.95 ± 0.02 |
Terra-Day | Terra-Night | Aqua-Day | Aqua-Night | |
---|---|---|---|---|
RMSE (°C) | 0.65 ± 0.22 | 0.49 ± 0.16 | 0.83 ± 0.27 | 0.52 ± 0.18 |
MAE (°C) | 0.45 ± 0.14 | 0.32 ± 0.1 | 0.57 ± 0.18 | 0.33 ± 0.11 |
R2 | 0.93 ± 0.04 | 0.95 ± 0.03 | 0.92 ± 0.05 | 0.94 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Li, S.; Huang, J.; Huang, R.; Zhou, C. A New Framework for the Reconstruction of Daily 1 km Land Surface Temperatures from 2000 to 2022. Remote Sens. 2023, 15, 4982. https://doi.org/10.3390/rs15204982
Xiao Y, Li S, Huang J, Huang R, Zhou C. A New Framework for the Reconstruction of Daily 1 km Land Surface Temperatures from 2000 to 2022. Remote Sensing. 2023; 15(20):4982. https://doi.org/10.3390/rs15204982
Chicago/Turabian StyleXiao, Yuanjun, Shengcheng Li, Jingfeng Huang, Ran Huang, and Chang Zhou. 2023. "A New Framework for the Reconstruction of Daily 1 km Land Surface Temperatures from 2000 to 2022" Remote Sensing 15, no. 20: 4982. https://doi.org/10.3390/rs15204982
APA StyleXiao, Y., Li, S., Huang, J., Huang, R., & Zhou, C. (2023). A New Framework for the Reconstruction of Daily 1 km Land Surface Temperatures from 2000 to 2022. Remote Sensing, 15(20), 4982. https://doi.org/10.3390/rs15204982