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Abstract: Accurate, seamless, and long-term land surface temperature (LST) data sets are crucial for
investigating climate change and agriculture production. However, factors like cloud contamination
have led to invalid values in the LST product, which has restricted the application of the LST dataset.
Therefore, the reconstruction of LST products is challenging, and it is attracting widespread attention.
This study compared the performance of different algorithms (XGBoost, GBDT, RF, POLY, MLR) and
different training sets (using only good-quality pixels or using both good-quality and other-quality
pixels) in the estimation of missing pixels in the LST data, obtaining a seamless daily 1 km LST
dataset of MODIS Terra-day, Aqua-day, Terra-night, and Aqua-night data for Zhejiang Province and
its surrounding areas from 2000 to 2022. The results demonstrated that the performance of machine-
learning models is significantly better than that of linear models, and among the five models, XGBoost
performed the best, with an RMSE of less than 1 ◦C. The Wilcoxon test between the reconstructed
LST and the true LST values revealed that including both good-quality and other-quality pixels for
reconstruction resulted in a 33% increase in the number of days with non-significant differences
compared with using only good-quality pixels. Moreover, the reconstructed nighttime LST has
a lower RMSE compared with the reconstructed daytime LST, and the RMSE of the reconstructed
LST on the Terra satellite is lower than the RMSE of the reconstructed LST on the Aqua satellite.
The RMSEs for the reconstructed LSTs are 0.50 ◦C, 0.61 ◦C, 0.36 ◦C, and 0.39 ◦C, corresponding to
Terra-day, Aqua-day, Terra-night, and Aqua-night for images with coverage reaching 70%, 0.65 ◦C,
0.83 ◦C, 0.49 ◦C, respectively, and 0.52 ◦C for images with coverage less than 70%. The accuracy of the
reconstructed LSTs using our proposed framework outperforms the existing reconstruction methods.
The 1 km daily seamless LST products can be applied in various fields, such as air temperature
estimation, climate change, urban heat island, and crop temperature stress monitoring.

Keywords: land surface temperature; reconstruction; quality control; XGBoost; long term; MODIS

1. Introduction

Land surface temperature (LST) is an important parameter in the study of land–
atmosphere energy exchange [1]. It is also one of the key indicators for revealing climate
change, playing an extremely important role in research on agricultural production [2],
urban heat islands [3], and ecological protection [4]. Traditional land surface temperature
data is mainly obtained through ground station observations. The data quality is high and
has a high temporal resolution. However, the data are very costly, inefficient, and unevenly
distributed, and they are point-scale data, which greatly limit the application of LST data at
the area level. Although area-level LST datasets can be obtained through some interpolation
functions, the uncertainty is high in mountainous and in poorly sampled areas [5]. The
emergence of remote-sensing technology has proven to be an effective solution, giving
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researchers a chance to obtain area-level LSTs through satellites and to apply these in
various research fields [6].

Currently, there are two main approaches for obtaining LSTs through remote sens-
ing: TIR-based and PMW-based. PMW (Passive Microwave) is not considered in this
study due to its low spatial resolution, low accuracy [7], instability caused by the inter-
ference of water vapor [8], and swath gap [9]. In contrast, the LST retrieved using TIR
(Thermal Infrared) has a higher resolution and accuracy based on different algorithms
(single-window [10,11], split-window [12], multi-channel [13]. For example, the MODIS
LST products have a resolution of 1 km with an accuracy of 1 K [14]. However, due to
factors such as atmosphere and clouds, the data have serious temporal and spatial gaps,
limiting the widespread use of LST datasets. Especially in the southeastern part of China,
where the average missing rate of data exceeds 60%. 2. Moreover, most researchers of-
ten perform quality control before using the data, resulting in fewer valid data values.
Therefore, there is an urgent need for the reconstruction of LST datasets.

Fortunately, many researchers have proposed their own approaches for reconstructing
the LST dataset (Table 1). There are primarily three methods for reconstructing LSTs:
geostatistical interpolation, physical models, and models incorporating spatiotemporal
information. Pedes et al. employed six geostatistical interpolation methods to reconstruct
LSTs and compared their performance. They found that the Spline method performed best
in low-cloud conditions, the Weiss method performed better in greater cloud coverage, the
spatial method often performed poorly in complex terrain areas, and the temporal method
performed better in warmer climates [15]. NourEldeen et al. used the IDW interpolation
method to reconstruct LST data for Africa from 2003 to 2017 [16]. Fu et al. combined
the WRF/UCM system with random forest to retrieve under-cloud LSTs in the Baltimore–
Washington metropolitan region from April 28, 2011, to May 20, 2011 [17]. Zhang et al.
used the RTM to integrate high-quality MODIS LSTs and reanalysis data (GLDAS/CLDAS)
to reconstruct 1 km all-weather LSTs in the Tibetan Plateau and surrounding areas [18].
Yao et al. employed the ETD method to reconstruct global seamless MODIS 8-day LST data
from 2001 to 2020 [19]. Sun et al. proposed the RSDAST model and reconstructed the LST of
northwest China [20]. Fan et al. used linear regression, regression tree analysis, and artificial
neural networks to reconstruct LSTs in the Yellow River Delta and found that the regression
tree method had the highest reconstruction accuracy [21]. Consistently, other researchers
using regression tree methods, such as random-forest-based [22], XGBoost-based [23],
and LightGBM-based methods [24], achieved favorable reconstruction performances. In
addition, different researchers used different subsets of MODIS LST data. Most studies only
used good-quality pixels for reconstructing the LST dataset. Some studies, like Yu et al.,
filtered out pixels with an average emissivity error larger than 0.04 or an average LST
error larger than 2 K [25]. Tan et al. filtered out pixels with an average LST error larger
than 2 K [23], while Metz et al. filtered out pixels with an average LST error larger than
3 K [26]. Whether it is necessary to filter out some pixels based on the quality-control files
is still unclear.

The above research has yielded many beneficial conclusions, but there are still some
remaining issues to be solved. Firstly, some studies have explored interpolation methods
to reconstruct the LST dataset, but they only reconstructed partial missing pixels and
did not obtain seamless LST images. Secondly, some studies have limitations in terms of
the small study area and short time span, which have brought challenges to producing
nationwide or global LST datasets. Thirdly, some researchers did not fully utilize the
temporal information of existing LST datasets, resulting in a higher RMSE of reconstruction.
In addition, most studies only used good-quality pixels for LST reconstruction, filtering out
other-quality pixels that have not been proven to be interfering and that may contribute to
the reconstruction of LST.



Remote Sens. 2023, 15, 4982 3 of 21

Table 1. Some research on LST reconstruction.

Sensors Time Period
Temporal Resolution Method Variables Quality Control RMSE References

Terra 2011–2016
8-day

six interpolation
methods LST, elevation good quality 0.2–1.2 ◦C [15]

Terra/Aqua 2003–2017
daily IDW interpolation LST, elevation good quality 0.84 ◦C [16]

Terra/Aqua 28 April 2011–20 May 2011
daily WRFF LST good quality ~2.0 K [17]

Terra/Aqua 2003 and 2014
daily RTM LST, reanalysis data good quality 2–4 K [18]

Terra 2001–2020
8-day ETD LST, reanalysis data not

mentioned 1 K [19]

Terra 2000–2002
daily RSDAST LST good quality 1 K [20]

Terra May, 2005
daily MLR, RT, ANN Landcover, NDVI, MODIS band 7 not

mentioned

1.85 ◦C,
1.32 ◦C,
1.66 ◦C

[21]

Terra 2018
daily RF-based method NDVI, EVI, NDWI, elevation, slope,

latitude, solar radiation factor good quality 2.6 K [22]

Terra/Aqua Summer of 2017 and
2018 daily

XGBoost-based
method

NDVI, EVI, NDWI, elevation, slope,
albedo, reanalysis data error < 2 K 3.9–5.5 K [23]

Terra/Aqua 2013–2020
daily

LightGBM-based
method

Reanalysis data, elevation, slope,
impervious area ratio, wind speed, day

of the year, longitude, latitude
good quality 0.6–1.4 ◦C [24]

Terra 2012
daily

energy balance and
similar pixels NDVI, radiation, elevation, slope, aspect emissivity < 0.04

error < 2 K 1.9–3.2 K [25]

Terra/Aqua 2003–2016
daily

temporal and spatial
interpolation LST, elevation, emissivity error < 3 K 0.5 K [26]

Terra 2010
daily two-step framework LST, NDVI, radiation not

mentioned 3–6 K [27]

Aqua 2002–2011
daily

3-D gap-filling
method LST good quality 2 K [28]

Terra/Aqua 2019
daily

Nonlocality-
reinforced
network

LST, NDVI, elevation, reanalysis data not
mentioned 0.8 K [29]

Aqua 2003–2019
daily ATC model LST, day of the year good quality 3 K [30]

The main objective of this study is to develop a framework for the reconstruction of
MODIS LSTs using machine algorithms. Specifically, this study includes the following aims:
(i) to determine the optimal model for the LST reconstruction by comparing the perfor-
mance of multiple linear regression (MLR), polynomial regression (POLY), Random forest
(RF), Gradient-boosting decision tree (GBDT), and Extreme Gradient-Boosting (XGBoost)
algorithms; (ii) to select the optimal dataset for LST reconstruction from the dataset using
only good-quality pixels and the dataset using both good-quality and other-quality pixels;
(iii) to generate a daily 1 km LST dataset for Zhejiang Province and its surrounding areas
from 2000 to 2022.

2. Materials and Methods
2.1. Study Area

Figure 1 shows the study area (26.25◦N–31.66◦N, 113.83◦E–122.82◦E), which is located
in southeastern China, including the entire range of Zhejiang province and its surrounding
areas, with an area of approximately 261,200 km2. The landcover types in the study area
are complex, including mountains, urban buildings, forests, orchards, farmland, lakes and
rivers, with a large undulating terrain ranging from an altitude of −3 m to 2034 m. The
climate type is subtropical monsoon, and it is located in a humid area, with an average
annual temperature ranging from 15 ◦C to 18 ◦C and an average annual precipitation
of 1000–2000 mm. The four seasons are distinct, with an average temperature of about
15–20 ◦C in spring and autumn and a maximum temperature above 35 ◦C in summer, while
the lowest temperature drops to 0 ◦C in winter [31]. In mid-April, there may be a cold
wave with sudden temperature drops accompanied by precipitation. If the rainy season
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lasts from May to July, it may cause more than two consecutive months of satellite image
cloud cover, bringing difficulties to the reconstruction of LSTs.
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Figure 1. Map of the study area. (a) Digital elevation model (DEM) of the study area. (b) Land cover
map of the study area.

2.2. Satellite Data and Preprocessing

The daily 1 km LST dataset used in this study is the sixth version product released by
the Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive
Center (LAADS DAAC) and includes MOD11A1 and MYD11A1, which are retrieved
from the Moderate Resolution Imaging Spectroradiometer (MODIS) carried on the Terra
and Aqua satellites, respectively [32,33]. The Terra satellite was launched in 1999, with
observations conducted twice a day at 10:30 a.m. and 10:30 p.m., while the Aqua satellite
was launched in 2002, with observations conducted twice a day at 1:30 a.m. and 1:30 p.m.
Previous research has demonstrated that the above products are reliable, with errors within
1 K [14]. Two MODIS tiles (h28v05, h28v06) covering the entire study area were obtained
from the Earthdata website (https://ladsweb.modaps.eosdis.nasa.gov/search/, accessed
on 28 January 2023), with a time range from 25 February 2000 to 15 November 2022
for Terra and from 4 July 2002 to 31 December 2022 for Aqua. The original sinusoidal
coordinate system was maintained throughout the data processing, with mosaicking and
cropping performed to extract the study area, resulting in 650 rows and 650 columns with
approximately 300,000 study area pixels. Then, we converted the units to Celsius. Both
MOD11A1 and MYD11A1 products have quality-control (QC) layers that record image
quality information. In the preprocessing step, two sets of LST data were generated, named
LST images of good-quality pixels (GQ-pixel LST images) and LST images of both good-
quality and other-quality pixels (GQ+OQ-pixel LST images). GQ-pixel LST images were
obtained by filtering out other-quality pixels, leaving only images containing good-quality
pixels. GQ+OQ-pixel LST images were images that include both good-quality pixels and
other-quality pixels. The model established using GQ-pixel LST images is called ModelGQ
and the model established using GQ+OQ-pixel LST images is called ModelGQ+OQ.

https://ladsweb.modaps.eosdis.nasa.gov/search/
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Figure 2 shows the proportions and distribution patterns of the valid data during the
study period. The average proportion of valid data for Terra-day, Aqua-day, Terra-night,
and Aqua-night in GQ-pixel LST images are 16%, 13%, 17%, and 17%, respectively. The
average proportion of valid data for Terra-day, Aqua-day, Terra-night, and Aqua-night in
GQ+OQ-pixel LST images are 27%, 26%, 27%, and 28%, respectively. In the picture, the
areas with a redder color indicate a lower proportion of valid data, reaching a minimum of
0%, meaning that there is no valid data available throughout the entire study period. On
the other hand, the areas with a greener color indicate a higher proportion of valid data,
reaching a maximum of 41%. Figure 3 shows the proportion of valid data in LST images
across different years. It is evident that the proportion of valid data in GQ+OQ-pixel LST
images is significantly higher than that in GQ-pixel LST images. Although there are slight
differences across different years, the proportion of valid data in GQ-pixel LST images
is generally below 20%, and the proportion of valid data in GQ+OQ-pixel LST images is
generally below 40%, indicating that the data has a serious issue with missing values.
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Figure 2. Proportion and distribution graph of valid values in different datasets. (a–d) corre-
spond to the Terra-day, Aqua-day, Terra-night, and Aqua-night GQ-pixel LST images, respectively.
(e–h) correspond to the Terra-day, Aqua-day, Terra-night, and Aqua-night GQ+OQ-pixel LST images,
respectively. GQ+OQ-pixel images coverage is more than 10% higher than GQ-pixel images. Some
areas in GQ-pixel images (marked in red in the image) do not have any pixels available from 2000 to
2022. The pixel with the highest coverage in GQ+OQ-pixel images has about 41% coverage.
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respectively. (e–h) correspond to the Terra-day, Aqua-day, Terra-night, and Aqua-night GQ+OQ-pixel
LST images, respectively.
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The SRTM3 DEM data used in this study were generated from surface elevation data
obtained by radar equipment carried on board space shuttles by the National Aeronautics
and Space Administration (NASA) and the National Imagery and Mapping Agency (NIMA).
These data covered a total area of over 119 million square kilometers between the latitudes of
60 degrees North and 60 degrees South, covering more than 80% of the earth’s land surface
with a spatial resolution of 90 m [34]. We downloaded the complete coverage of the study
area SRTM3 products from Earthdata (https://lpdaac.usgs.gov/products/srtmimgmv003/,
access on 21 July 2022), then carried out mosaicking, resampling, reprojection, clipping,
and calculated the slope to obtain the elevation and slope images of the study area with
the same resolution as the LST images. Next, we calculated the latitude and longitude
coordinates of each pixel using ARCGIS. These data provide important information for
LST reconstruction.

2.3. Methods

We used five variables for the LST reconstruction, which are the LSTs of the nearest
date, longitude, latitude, elevation, and slope. According to the research results of Sun et al.,
there is a correlation between LSTs with dates that are close to each other [20]. The
shorter the time interval between two days, the stronger the correlation between the
LST of the two days. Therefore, LSTs from the nearest dates were selected as variables
for reconstructing the LST. Longitude and latitude were selected for LST reconstruction
because they provide location information. This is based on the Tobler’s First Law of
Geography that everything is related to everything else, but neighboring things are more
related to each other [35]. Furthermore, elevation and slope are also considered important
variables in LST reconstruction due to their strong correlation with LST. Figure 4 shows the
flow chart of the LST spatiotemporal reconstruction, which mainly consists of two parts.
The first part is the reconstruction of the reference LST image. Firstly, the reference LST
images that meet the conditions are selected, and then they are interpolated to achieve
full spatial coverage. In this process, the two sets of datasets are modeled on five models
respectively. Their performances are compared, and the optimal dataset and model are
used to estimate the missing LST values. The second part is the reconstruction of other LST
images, which is achieved using the latest dated reference LST image that has already been
reconstructed. Finally, the dataset of LSTs that covers both the time and space entirely is
obtained using the time interpolation algorithm.

2.3.1. Reference LST Images

The selection of reference LST images has a significant impact on the final recon-
struction results because they will be used for the reconstruction of other LST images
in later steps. When selecting reference LST images, two factors need to be considered
comprehensively: (i) the coverage rates of the reference LST image should be as high as
possible; (ii) the date of the reference LST images taken by other images should be as close
as possible. If a higher coverage is required for the reference LST images, fewer reference
LST images will be selected, resulting in longer date intervals between the reference LST
images taken for other LST images. The longer the interval between two days, the lower
the correlation of LST between the two days, leading to poor reconstruction accuracy. If the
coverage of reference LST images is not required to be higher, it will lead to difficulties in
reconstructing the reference LST images and introduce a large amount of error in earlier
steps. Therefore, taking into account the above reasons, LST images with a coverage rate no
less than 70% were selected as the reference LST imagery, and all other images were consid-
ered as other LST images. There were a total of 1841 reference LST images in the GQ-pixel
LST images dataset, including 450 LST images in Terra-day, 590 LST images in Terra-night,
339 LST images in Aqua-day, and 462 LST images in Aqua-night. In the GQ+OQ-pixel
LST images dataset, there were 4326 reference LST images, including 1125 LST images in
Terra-day, 1203 LST images in Terra-night, 899 images in Aqua-day, and 1099 LST images
in Aqua-night.

https://lpdaac.usgs.gov/products/srtmimgmv003/
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Figure 4. Flowchart of the reconstruction of the LST dataset.

The number of reference LST images in GQ+OQ-pixel LST images is much higher than
that in GQ+OQ-pixel LST images. Additionally, the number of GQ-pixel LST reference
images at night are 33% more than during the day, and the number of GQ+OQ-pixel LST
reference images at night is 14% more than during the day, indicating that there is less
cloud cover at night and that the LST retrieved at night is more stable. A 70% coverage
threshold not only ensures high coverage of the reference LST image, but also ensures that
the date distance between other LST images and their corresponding reference LST images
is close enough. Figure 5 shows the date interval between the other LST images and their
nearest reference LST images. For the 24,320 other LST images in the GQ-pixel LST images
dataset, approximately one-third of them selected reference LST images with an interval
of no more than 5 days, and over two-thirds of them selected reference LST images with
an interval of no more than 35 days. For the 25,172 other LST images in the GQ+OQ-pixel
LST images dataset, approximately one-third of them selected reference LST images with
an interval of no more than 5 days, and over 95% of them selected reference LST images
with an interval of no more than 35 days. It is not difficult to see that in the GQ+OQ-pixel
images, the date interval between other LST images and their corresponding reference LST
images is shorter, which may be more favorable for the reconstruction of the LST dataset.
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Figure 5. The date interval between the other LST image and the nearest reference LST image under
different quality control conditions. In GQ+OQ-pixel images, the time interval between the other LST
image and its corresponding reference LST image is closer than in GQ-pixel images. Furthermore,
most of the other LST images have a date interval with their corresponding reference LST images
that does not exceed 35 days (over half of the other-LST images have a date interval of no more than
5 days with their corresponding reference LST images).

2.3.2. Training Sets and Testing Sets

We split all valid pixels in each image (including reference LST images and other LST
images) into training and testing sets with an 8:2 ratio to ensure accurate testing accuracy.
Specifically, for each daily LST image, 80% of the GQ pixels are randomly selected as
the training sets (TrainingSetsGQ) for ModelGQ, and the remaining 20% are used as the
testing set (TestingSetsGQ). 80% of the OQ pixels are randomly selected and combined with
the TrainingSetsGQ to form training sets (TrainingSetsGQ+OQ) for ModelGQ+OQ, and the
remaining 20% of the OQ pixels are used as the test sets (TestingSetsOQ). TestingSetsGQ+OQ
is obtained by merging TestingSetsOQ with TestingSetsGQ. In the end, two training sets
were obtained, namely TrainingSetsGQ and TrainingSetsGQ+OQ, along with three testing
sets, namely TestingSetsGQ, TestingSetsOQ, and TestingSetsGQ+OQ.

2.3.3. Reconstruction Models and Hyperparameter Optimization

In addition to the impact brought by different training sets, the choice of different
interpolation models can also lead to different results. Many studies have employed
machine-learning models to accomplish LST reconstruction tasks, which have had high
performance, gradually replacing traditional linear models [22–24]. In this study, the
performance and results of the XGBoost, GBDT, RF, POLY, and MLR models were compared
with regard to their reconstruction of LSTs.

Multiple linear regression (MLR) is a common statistical method used to establish
a linear relationship model between a dependent variable and multiple independent vari-
ables in order to estimate the target. Specifically, the dependent variable can be represented
as a linear combination of independent variables, where each independent variable has
a corresponding coefficient. These coefficients represent the degree of influence of each
independent variable on the dependent variable, also known as regression coefficients. By
performing regression analysis on known data, we can obtain the degree of influence of
each feature on the LST and use this information to estimate the missing LST values.

Polynomial regression (POLY) is a common regression analysis method that elevates
the dimensionality by performing polynomial transformations on the independent vari-
ables, enabling linear models to fit non-linear data. By transforming the independent
variables into polynomial terms, we can convert the data from its original low-dimensional
space to a higher dimensional space. This dimensionality elevation allows the linear model
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to better fit non-linear data. An important issue in polynomial regression is how to select
the degree of the polynomial. If the degree is too low, the model will be too simple to fit
the data well. If the degree is too high, the model may overfit the data, leading to poor
generalization performance.

As a powerful machine-learning technique, ensemble learning has been increasingly
proven to have stronger learning ability and better performance. Its main branches include
the Bagging algorithm and the Boosting algorithm. Random forest (RF), as the represen-
tative of the bagging algorithm, has been widely used in various fields including remote
sensing. RF is designed and proposed based on the decision-tree algorithm, which im-
proves the problem of model overfitting by simultaneously constructing multiple decision
trees and introducing randomness [36]. The randomness of random forests is reflected in
two aspects: one is to randomly sample with replacement, and the other is to randomly
sample without replacement features. This makes random forests highly robust and able to
effectively mitigate overfitting problems.

Different from the RF, boosting algorithms construct a series of weak estimators one
after another and combine the results of all weak estimators to obtain the final prediction.
The basic process is as follows: based on the result of the previous weak estimator f(x)t−1,
calculate the loss function L(x, y) and use L(x, y) to adaptively affect the construction of the
next weak estimator f(x)t [37]. The integrated model output results are affected by all weak
estimators f(x)0~f(x)T. Compared with earlier boosting algorithms (such as Adaboost),
the Gradient-boosting decision tree (GBDT) has the following characteristics: no matter
whether the GBDT performs classification or regression tasks, the weak estimator must be
a regression tree; the loss function can be extended to any differentiable function; and the
GBDT affects the structure of subsequent weak estimators by fitting pseudo-residuals (the
difference between the current integrated output result and the true label), which can make
the loss function reduce the fastest [38].

The Extreme Gradient-Boosting (XGBoost) algorithm has made significant improve-
ments based on the basic modeling process of the Boosting algorithm. These improvements
include adding structural risk to the loss function, making them part of the objective
function, pursuing the minimum value of the objective function instead of the minimum
value of the loss function in the process of building evaluators, achieving a balance be-
tween empirical and structural risks, and using information gain as the splitting indi-
cator [39]. These improvements enable the model to have a strong learning ability and
overfitting resistance, ensuring accuracy while controlling model complexity and improv-
ing computational efficiency.

The performance of an algorithm is greatly influenced by hyperparameters, especially
for machine-learning algorithms. To achieve optimal model performance and to reconstruct
more accurate LSTs, the selection of hyperparameters is necessary. However, as hyper-
parameters affect each other, selecting hyperparameters one by one often leads to poor
results. Therefore, this study uses a method based on Tree-structured Parzen Estimator
(TPE) to select the best hyperparameters. TPE is a probabilistic model-based optimization
method that optimizes hyperparameters by constructing a tree-structured probabilistic
model [40]. In each iteration, the TPE calculates new hyperparameter values based on the
evaluated model performance and the distribution of hyperparameter values and uses them
to train new models. Through repeated iterations, the TPE can find the best combination
of hyperparameters to improve model performance. The entire process of modeling and
hyperparameter optimization is implemented using the Python language’s “scikit-learn”
library, “xgboost” library, and “hyperopt” library. Note that since the MLR algorithm has
no hyperparameters, it has not been optimized with hyperparameters. Table 2 shows the
hyperparameter combinations of each model selected by the TPE algorithm.
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Table 2. The optimal combination of hyperparameters for the five models.

Models Optimal Hyperparameters

MLR —

POLY degree = 4

RF

n_estimators = 200
max_features = 4
max_depth = 40
criterion = ‘squared_error’

GBDT

n_estimators = 200
learning_rate = 0.06
loss = ‘squared_error’
max_features = 3
subsample = 0.6
max_depth = 18

XGBoost

num_boost_round = 200
eta = 0.1
colsample_bytree = 5/6
lambda = 0.7
max_depth = 18
subsample = 0.9

2.3.4. Spatial Reconstruction of LSTs

It is insufficient for a single interpolation step to complete the reconstruction of LST.
As shown in Figure 6, a Recurrent Interpolate (RIP) method is proposed to achieve full
spatial coverage of the LST images. After dividing the reference LST image and other LST
images, RIP is used to interpolate the reference LST image and other LST images to achieve
the full spatial coverage of both. As shown in Figure 4, the steps of RIP are as follows:
for any LST image to be interpolated, select the nearest reference LST image as one of the
features, combine this with altitude, slope, longitude, and latitude to establish a model and
perform the interpolation once. The result obtained is called the interpolated-LST image.
If the coverage of the interpolated LST image is still below 99%, then another Ref-LST
image is selected, and a model is established again to carry out another interpolation
based on the interpolated-LST image. This process is repeated until the coverage of the
obtained interpolated-LST image reaches 99%. Then, only the four features of altitude,
slope, longitude, and latitude are used to establish the model to ensure full spatial coverage
of this image. Note that if the coverage reaches 100% during any interpolation process, the
results are output directly.
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In the interpolation process of reference LST images, due to the presence of gaps
in the selected reference LST image, after one interpolation, it is impossible to raise the
coverage of the interpolated-LST image to 100%. Therefore, multiple interpolations are
needed to increase the coverage. In addition, a very small portion of pixels (<1%) cannot
be reconstructed during the interpolation process. Consequently, after the coverage is
raised to 99%, only seamless terrain and position features are used for interpolation to
achieve complete spatial coverage. For other LST images, however, since the full spatial
coverage of all reference LST images has been completed, the coverage of the selected
reference LST image must be 100%. By combining the five features of reference LST,
altitude, slope, longitude, and latitude, only one interpolation is needed to achieve complete
spatial coverage.

2.3.5. Accuracy Evaluation

In this study, the clear-sky LSTs in cloudy areas were obtained through an interpolation
model, ignoring the influence of clouds on the LST. Therefore, it is inappropriate to compare
the reconstructed LSTs with ground observation data, which is affected by clouds. It is
more appropriate to select a portion of true values from the image as the test set before
training the model. These pixels are not involved in model construction, and the estimated
values of the model are compared with the true values to evaluate the performance of the
model. TestingSetsGQ, TestingSetsOQ, and TestingSetsGQ+OQ mentioned in Section 2.3.2 will
be used to evaluate the accuracy of each LST image. The Root Mean Square Error (RMSE),
Mean Absolute Error (MAE), and R2 indicators were calculated, and their calculation
formulas are shown below:

RMSE =

√
1
n

n

∑
i=1

(
LSTi − ˆLSTi

)2 (1)

MAE =
1
n

n

∑
i=1

∣∣LSTi − ˆLSTi
∣∣ (2)

R2 = 1 − ∑n
i=1
(

LSTi − ˆLSTi
)2

∑n
i=1
(

LSTi − LST
)2 (3)

where n is the number of reconstructed pixels of the current LST image, LSTi represents
the true LST of pixel i, and ˆLSTi represents the LST estimated by the model for pixel i. The
lower RMSE and MAE values of the test set indicate higher model accuracy, while a higher
R2 represents a stronger model-fitting ability. RMSE, MAE, and R2 were calculated using
the metrics “module” of the “sklearn” library.

The Wilcoxon signed-rank test was used to evaluate the difference between recon-
structed LSTs and true LSTs on the TestingSetsGQ, TestingSetsOQ, and TestingSetsGQ+OQ
datasets. This is a non-parametric test method for comparing two paired samples to de-
termine whether two populations have the same median. Its greatest advantage is that
it does not require data to follow normal distribution or homogeneity of variance, which
may occur in LST data, in which case the t-test is not suitable. The Wilcoxon signed-rank
test helps to select better training sets for LST reconstruction, and this test is implemented
through “scipy” library.

3. Results
3.1. Optimal Model for LST Reconstruction

We built the XGBoost, GBDT, RF, POLY, and MLR models using TrainingSetsGQ
and TrainingSetsGQ+OQ, respectively, and compared their performance. Figures 7 and 8
show that machine-learning models have better performance compared with traditional
regression models. In ModelGQ, the average RMSE of the reconstructed LST obtained by
traditional linear regression model is 1.02 ◦C, the average MAE is 0.78 ◦C, and the average
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R2 is 0.73. In contrast, the RMSE of machine-learning models decreased by 60%, the MAE
decreased by 62%, and the R2 increased by 32%. Among the three machine learning
models, XGBoost performs the best. The model established using the TrainingSetsGQ
has an average RMSE of 0.39 ◦C, an average MAE of 0.29 ◦C, and an average R2 of 0.96.
The model established using the TrainingSetsGQ+OQ has an average RMSE of 0.40 ◦C, an
average MAE of 0.29 ◦C, and an average R2 of 0.96. Based on these three indicators,
there was no significant difference between the models established using TrainingSetsGQ
and TrainingSetsGQ+OQ. To sum up, the XGBoost model will be used for subsequent
reconstruction processes.
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During the reconstruction process of the reference LST image, due to gaps in the
reference LST image, which is one of the modeling variables, it is impossible to use reference
LST as a feature to achieve full spatial coverage. Therefore, for the small percentage of
pixels that have never been interpolated (less than 1%), only four variables, including
altitude, slope, longitude, and latitude, are used to build the model, in order to achieve full
spatial coverage of the reference LST images. Figure 9 shows that when the coverage is
high enough (greater than 70%), whether using TrainingSetsGQ or TrainingSetsGQ+OQ to
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build the models, removing the reference LST variable results in a slight decrease in model
performance, but it is still acceptable.
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3.2. Optimal Datasets for LST Reconstruction

As shown in Figures 6 and 7, there is almost no difference in the RMSE, MAE, and
R2 between ModelGQ and ModelGQ+OQ. Therefore, it is difficult to decide which dataset
performs better. We conducted a Wilcoxon signed-rank test by comparing the number
of days with significant differences between the true LST values and the predicted LST
values by ModelGQ and ModelGQ+OQ to determine which dataset performs better. Table 3
shows that on whichever test set, ModelGQ+OQ has fewer dates with significant differ-
ences between the reconstructed LSTs and true LSTs compared with ModelGQ. This is
especially the case for TestingSetsGQ and TestingSetsGQ+OQ, which means that the LST
reconstructed by ModelGQ+OQ is closer to the true LST. In subsequent reconstruction steps,
TrainingSetsGQ+OQ was chosen as the training sets for LST reconstruction.
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Figure 9. Comparison of the RMSE, MAE, and R2 between the model LST = XGBoost (Ref-LST, ele.,
slope, Lon., Lat.) and the model LST = XGBoost (ele., slope, Lon., Lat.). When the coverage is high
enough, removing the reference LST and modeling using only the other four features results in both
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Table 3. The Wilcoxon signed-rank test results for the LST estimate values of ModelGQ and
ModelGQ+OQ on three test sets (TestingSetsGQ, TestingSetsOQ, TestingSetsGQ+OQ). “SD” refers to
the proportion of images with a significant difference, at the 5% significance level, between the
reconstructed LST values and the true LST values in the test sets. “Greater” and “Less” respectively
refer to the proportion of images, at the 2.5% significance level, where the reconstructed LST values
are significantly higher or lower than the true LST values in the test set.

TestingSetsGQ+OQ TestingSetsGQ TestingSetsOQ

SD Greater Less SD Greater Less SD Greater Less

ModelGQ 74.74% 29.88% 44.87% 53.45% 51.39% 2.06% 91.09% 26.51% 64.58%

ModelGQ+OQ 49.76% 43.07% 6.68% 51.11% 42.64% 8.47% 54.43% 23.52% 30.91%

3.3. Reconstruction of LST Images

The above results indicated that using TrainingSetsGQ+OQ as the training dataset to
establish the XGBoost model can achieve better reconstruction results. Therefore, 4326
reference LST images were reconstructed using TrainingSetsGQ+OQ as the training dataset
on the XGBoost model, and the accuracy was evaluated on TestingSetsGQ. Table 4 shows the
reconstruction performance at Terra-day, Aqua-day, Terra-night, Aqua-night. The model
that used reference LSTs as a feature demonstrated better accuracy compared to the model
that did not include reference LST as a feature, as evidenced by a lower RMSE and MAE
and a higher R2. The model without reference LST as a feature has slightly lower accuracy,
but due to only a small number of missing pixels (less than 1%) being reconstructed by
this model, the overall RMSE, MAE, and R2 values are almost identical to those of the
model using reference LST as a feature. The reconstruction accuracy at night was better



Remote Sens. 2023, 15, 4982 15 of 21

than during the day, and the accuracy of the Terra satellite was superior to that of Aqua. In
addition, the study found that the Terra-night LST has the highest accuracy with an RMSE
of 0.36 ◦C, an MAE of 0.26 ◦C, and an R2 of 0.95, while the Aqua-day LST has the lowest
accuracy with an RMSE of 0.61 ◦C, an MAE of 0.43 ◦C, and an R2 of 0.95.

Table 4. Accuracy evaluation results of Reference LST images reconstructed using the XGBoost
model.

Model of LST
Reconstruction Accuracy Index Terra-Day Aqua-Day Terra-Night Aqua-Night

LST = XGBoost (Ref-LST,
ele., slope, Lon., Lat.)

RMSE (◦C) 0.50 ± 0.14 0.61 ± 0.2 0.36 ± 0.07 0.39 ± 0.08
MAE (◦C) 0.35 ± 0.08 0.43 ± 0.13 0.26 ± 0.05 0.27 ± 0.06

R2 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02

LST = XGBoost (ele.,
slope, Lon., Lat.)

RMSE (◦C) 0.80 ± 0.48 0.97 ± 0.55 0.59 ± 0.36 0.65 ± 0.41
MAE (◦C) 0.58 ± 0.35 0.70 ± 0.42 0.43 ± 0.27 0.46 ± 0.3

R2 0.74 ± 2.15 0.79 ± 0.57 0.08 ± 12.12 0.71 ± 2.04

Overall
RMSE (◦C) 0.50 ± 0.14 0.61 ± 0.2 0.36 ± 0.07 0.39 ± 0.08
MAE (◦C) 0.35 ± 0.08 0.43 ± 0.13 0.26 ± 0.05 0.28 ± 0.06

R2 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.95 ± 0.02

After completing the spatial coverage of reference LST images, the RIP was used
to reconstruct 22,033 other LST images, including 5743 Terra-day, 5613 Terra-night, 5371
Aqua-day, and 5306 Aqua-night. Table 5 shows the reconstruction accuracy on the other
LST images. Consistent with the reconstruction results of the reference LST image, the
interpolation accuracy is higher at night than during the day, and Terra satellite has higher
interpolation accuracy than Aqua satellite. The accuracy of Terra-night LST has the highest
accuracy with an RMSE of 0.49 ◦C, MAE of 0.32 ◦C, and R2 of 0.95, while the accuracy of
the Aqua-day LST is the lowest, with an RMSE of 0.83 ◦C, MAE of 0.57 ◦C, and R2 of 0.92.

Table 5. Accuracy evaluation results of other LST images reconstructed using the XGBoost model.

Terra-Day Terra-Night Aqua-Day Aqua-Night

RMSE (◦C) 0.65 ± 0.22 0.49 ± 0.16 0.83 ± 0.27 0.52 ± 0.18
MAE (◦C) 0.45 ± 0.14 0.32 ± 0.1 0.57 ± 0.18 0.33 ± 0.11
R2 0.93 ± 0.04 0.95 ± 0.03 0.92 ± 0.05 0.94 ± 0.03

After completing the steps mentioned above, the proportion of valid data had in-
creased to approximately 80% (Figure 10), but some of the LST images were still incomplete,
including 1260 LST images in Terra-day, 1096 LST images in Aqua-day, 1306 LST images
in Terra-night, and 957 LST images in Aqua-night. This is because (i) the LST products of
some dates were not produced for various reasons, making it impossible to obtain them
from the official website. (ii) Although some dates have LST products available from the
official website, the number of good-quality and other-quality pixels in the image is 0,
which makes it impossible to build an XGBoost model to reconstruct LSTs; iii) in the images
of other dates, the number of good-quality and other-quality pixels is too low (less than
0.25% [41]) to build a model, and the LST data for these dates have therefore not been
reconstructed. Therefore, a weighted averaging algorithm based on the distance between
dates is used to reconstruct the LST missing over time, with the specific formula as follows:

LST
(
ttarget, i

)
=

Intervala f terLST
(

tbe f ore, i
)
+ Intervalbe f oreLST

(
ta f ter, i

)
Intervalbe f ore + Intervala f ter

(4)

where LST
(
ttarget, i

)
represents the reconstructed LST of pixel i on the current date.

LST
(

tbe f ore, i
)

is the LST of pixel i on the latest date before the current date. LST
(

ta f ter, i
)
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is the LST of pixel i on the latest date after the current date. Intervalbefore is the number
of days between ttarget and tbe f ore, and Intervala f ter is the number of days between ttarget
and ta f ter.
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After completing all the reconstruction steps, a seamless 1 km LST dataset in Zhejiang 
and its surrounding area from 2000 to 2022 was obtained, which included 8300 LST images 
in Terra-day, 7485 LST images in Aqua-day, 8300 LST images in Terra-night, and 7485 LST 
images in Aqua-night. Then, we calculated the average LST within the study area for each 
image and observed the variations in LSTs at daily, monthly, and yearly scales. The fluc-
tuations observed were consistent with expectations and aligned with common patterns 
(Figures 11–13). 

Figure 10. Polar bar chart of the proportion of valid data in reconstructed LST images across different
years. (a–d) correspond to the Terra-day, Aqua-day, Terra-night, and Aqua-night reconstructed LST
images, respectively.

After completing all the reconstruction steps, a seamless 1 km LST dataset in Zhejiang
and its surrounding area from 2000 to 2022 was obtained, which included 8300 LST images
in Terra-day, 7485 LST images in Aqua-day, 8300 LST images in Terra-night, and 7485 LST
images in Aqua-night. Then, we calculated the average LST within the study area for
each image and observed the variations in LSTs at daily, monthly, and yearly scales. The
fluctuations observed were consistent with expectations and aligned with common patterns
(Figures 11–13).
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4. Discussion
4.1. Machine Learning in LST Reconstruction

The development of machine learning is now evident and is increasingly being ap-
plied in remote-sensing research, such as in the reconstruction of LST. Traditional linear
regression models, such as multiple linear regression models, are simple and time saving
but lack the ability to learn from data and to capture complex deep relationships between
the LST and related variables, which may be nonlinear. With the development of tree
models, ensemble models such as RF, GBDT, XGBoost and others have outperformed tradi-
tional models with their strong learning ability, high resistance to overfitting, and other
advantages. Fan et al. reconstructed LSTs using a linear regression model with an RMSE of
1.85 K; they also reconstructed LSTs using a regression decision-tree model with an RMSE
of 1.32 K, and they utilized an artificial neural network to reconstruct LST with an RMSE
of 1.66 K [21]. Xiao et al. used an RF-based method to reconstruct LST with an RMSE of
2.63 K [22]. Cho et al. employed a LightGBM-based method, achieving an RMSE of 0.6 ◦C
at nighttime and 1.1–1.4 ◦C at daytime for the LST reconstruction [24]. In this study, the LST
was reconstructed using the XGBoost model, resulting in an RMSE of 0.36–0.83 ◦C. This
performance was found to be superior to that of other studies. In addition to the modeling
performance brought by machine-learning models themselves, selecting appropriate fea-
tures is also an indispensable part of LST reconstruction work. Tan et al. selected CLDAS
data and other surface attribute factors to reconstruct LST through XGBoost with an RMSE
of 4 K [23]. In this study, a reference LST was added as one of features for reconstructing
LSTs, resulting in an average RMSE reduction of less than 1 K after reconstruction. Further-
more, unlike traditional regression models, the selection of hyperparameters is crucial when
using XGBoost to reconstruct the LST, and optimizing hyperparameters can significantly
improve the model’s performance. Compared with the XGBoost default parameters, the
average RMSE decreased by about 50% after hyperparameter optimization. In summary,
selecting suitable models for LST reconstruction, stronger features related to LST, and
appropriate hyperparameters can greatly improve the accuracy of LST reconstruction and
enhance the robustness of reconstruction work.

4.2. Dataset for Model Training

Many studies in LST reconstruction have only used good-quality pixels, resulting in
a reconstructed LST dataset with an RMSE greater than 1 K [17,18,20,28,30]. In contrast, our
reconstructed LST dataset has an RMSE controlled within 1 K. Therefore, solely excluding
the so-called “low-quality pixels” through QC layers is not conducive to LST reconstruction.
This may be attributed to the following reasons. On the one hand, some cities such as
Shanghai have no good-quality pixels from 2000–2022, and the pixel values in those
locations are classified as “other-quality”, with an average emissivity error ≤ 0.02 in
quality-control layers. This means that the reconstructed LST in these areas comes from
models that remove reference LSTs using four terrain and location features, resulting in
lower accuracy and potentially less reliability compared with LST images with other-quality
pixels. On the other hand, using only GQ pixels results in more dates with completely
missing LST images, which rely on time-weighted averages. The accuracy of these results
is uncertain and difficult to validate. In contrast, using both good-quality and other-quality
pixels increases the daily coverage, reduces the number of completely missing pixels, and
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provides more reference LST images. It also decreases the time interval between other
LST images and the reference LST, improving model performance. Furthermore, using all
the valid pixels increases the sample size during model building, which can enhance the
robustness of the model.

4.3. Spatial–Temporal Pattern of LST

Figure 14 displays the spatial patterns of the average values of LST for different pixels
during the study period. Due to solar radiation and the complexity of the underlying
surface, the LST in built-up areas is higher and spatially heterogeneous during the daytime.
In contrast, the LST in water bodies, such as Tai Lake, is lower and spatially homogeneous.
In mountainous areas, LST is primarily influenced by elevation, with higher altitudes
corresponding to lower LST values. Among the four observation times, Aqua-day has the
highest LST, with an average LST of 21.2 ◦C in the study area and average LSTs of different
pixels ranging from 15 ◦C to 26 ◦C. Terra-day comes next, with an average LST of 19.7 ◦C in
the study area and average LSTs of different pixels ranging from 15 ◦C to 23 ◦C. Terra-night
ranks third, with an average LST of 11.6 ◦C in the study area and average LSTs of different
pixels ranging from 8 ◦C to 14 ◦C. Aqua-night has the lowest LST, with an average LST of
11.0 ◦C in the study area and average LSTs of different pixels ranging from 7 ◦C to 13 ◦C,
which is consistent with the temperature diurnal cycle.
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Calculating the slopes of different pixels during the study period, we obtained the
temporal trends of LST. As shown in Figure 15, LST shows a gradual upward trend from
2000 to 2022, especially in urban and built-up areas during the daytime, which is attributed
to recent urban expansion. An increase in LST leads to changes in precipitation patterns,
resulting in a noticeable increase in the frequency and intensity of extreme weather and
climate events such as heatwaves, extreme droughts, and flooding [42]. This could have
a potential impact on the entire ecosystem.
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4.4. Application of Reconstructed LSTs in High-Temperature Monitoring

The Aqua satellite observes during the daytime at 1:30 pm, which can be considered
the approximate time when the highest temperature of the day occurs. Therefore, it is
often used for high-temperature monitoring. We used the reconstructed Aqua-day LST
data to calculate the number of days during each summer (June to September) of every
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year with the highest LST exceeding 35 ◦C. Figure 16 displays the results for the years
2013, 2020, 2021, and 2022. From the figure, we can see that the summer temperatures in
2020 and 2021 were lower compared with other years due to fewer hot regions and shorter
high-temperature periods. In contrast, the summers of 2013 and 2022 were significantly
hotter, with some areas experiencing more than 70 days with LSTs exceeding 35 ◦C. These
findings are consistent with news reports and the results of other researchers. A study
shows that 2022 was the hottest summer on record in China, which was due to the extremely
strong and westwardly-expanded Western Pacific subtropical high [43]. In conclusion,
LST datasets like this are highly suitable for high-temperature monitoring, enabling timely
detection of areas most severely affected by heat, and providing guidance for government
decision-making.
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5. Conclusions

Thermal infrared remote sensing enables the creation of high-precision, high-
spatiotemporal-resolution, and large-coverage LST dataset products. However, the gaps
caused by cloud contamination in the images limit the application of such products. In this
study, we found that modeling using both good-quality and other-quality pixels in MODIS
LST data exhibits better reconstruction performance than using only good-quality pixels.
This is because there is still a significant amount of useful information in these pixels, and it
is inappropriate to discard them. Additionally, the XGBoost model demonstrated stronger
learning capabilities and was adept at fitting more complex relationships compared with
the other four models. Therefore, the TrainingSetsGQ+OQ and XGBoost models were cho-
sen to reconstruct daily 1 km LSTs for Zhejiang Province and its surrounding areas from
2000 to 2022, which provided four daily observations at 10:30 a.m., 1:30 p.m., 10:30 p.m.,
and 1:30 a.m. with an average RMSE < 1 ◦C, MAE < 1 ◦C, and R2 > 0.9.

This study provides an effective method for solving the problem of missing LST data,
which is helpful for the reconstruction of LSTs in larger areas and has positive significance
for crop monitoring and climate change research.
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