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Abstract: Recently, synthetic aperture radar (SAR) target detection algorithms based on Convolu-
tional Neural Networks (CNN) have received increasing attention. However, the large amount of
computation required burdens the real-time detection of SAR ship targets on resource-limited and
power-constrained satellite-based platforms. In this paper, we propose a hardware-aware model
speed-up method for single-stage SAR ship targets detection tasks, oriented towards the most widely
used hardware for neural network computing—Graphic Processing Unit (GPU). We first analyze the
process by which the task of detection is executed on GPUs and propose two strategies according to
this process. Firstly, in order to speed up the execution of the model on a GPU, we propose SAR-aware
model quantification to allow the original model to be stored and computed in a low-precision format.
Next, to ensure the loss of accuracy is negligible after the acceleration and compression process,
precision-aware scheduling is used to filter out layers that are not suitable for quantification and
store and execute them in a high-precision mode. Trained on the dataset HRSID, the effectiveness
of this model speed-up algorithm was demonstrated by compressing four different sizes of models
(yolovbn, yolov5s, yolovbm, yolov5l). The experimental results show that the detection speeds
of yolov5n, yolov5s, yolovbm, and yolov5l can reach 234.7785 fps, 212.8341 fps, 165.6523 fps, and
139.8758 fps on the NVIDIA AGX Xavier development board with negligible loss of accuracy, which
is 1.230 times, 1.469 times, 1.955 times, and 2.448 times faster than the original before the use of this
method, respectively.

Keywords: synthetic aperture radar (SAR); target detection; convolutional neural networks (CNN);
model speed-up algorithms; graphic processing unit (GPU)

1. Introduction

Synthetic aperture radar (SAR) has an irreplaceable and unique advantage in the field
of remote sensing because of its all-day and all-weather ability to provide reliable remote
sensing information. Active detection [1] and identification [2] of targets of interest has
been an important issue for synthetic aperture radar (SAR) systems. And among them, SAR
ship target detection, as a very critical step in SAR data processing, is of great importance
in both military and civilian fields.

Traditional detection algorithms such as threshold methods [3], statistical methods [4],
and transformation methods [5] rely on information such as predefined image features
or distribution characteristics and are difficult to apply in different scenarios. As the
most widely used traditional detection algorithm, the constant false alarm rate (CFAR)
method [6,7] accomplishes the ship target detection task by comparing the statistical
features of a region with a set threshold. However, in complex backgrounds, it is difficult
to characterize the scattering properties of ship targets and clutter using simple statistical
methods, which results in the degradation of detection performance. In addition, the
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computation of distribution parameter estimation in CFAR takes a significant amount of
time, which makes real-time detection very difficult.

The rapidly developing deep learning techniques provide a new way for ship target
detection in SAR images and have been applied by many researchers. Benefiting from the
good robustness of neural networks and their ability to handle complex tasks, ship target
detection algorithms using neural networks have achieved good results. However, SAR ship
target detection tasks often lead to problems such as missed and false detection of targets
due to complex backgrounds, poor image quality, and inconsistent target scales. In order to
overcome these problems and improve the accuracy of SAR image ship target detection,
researchers have made improvements on both two-stage [8-15] and single-stage [16-21]
networks, respectively. Compared to single-stage detection networks, two-stage-based
SAR ship target detection networks have been studied earlier. The two-stage network first
extracts the object region and then recognizes the region by CNN classification. Nie et al. [9]
improved the FPN structure based on Mask-RCNN and added an attention mechanism
to improve the detection accuracy. To improve the detection accuracy of multi-scale ship
targets, Zhao et al. [10] proposed a two-stage attention receptive pyramid network (ARPN).
Cui et al. [11] proposed Dense Attention Pyramid Networks using a pyramid structure and
an attention mechanism approach to improve the performance of the network in detecting
small-scale targets. The Balanced Feature Pyramid Network proposed by Zhang et al. [12]
was used to solve the problem of low detection rate due to the uneven distribution of
ships in SAR images. Lv et al. [13] used the information from single-look SAR images
to reconstruct the features of the ship target based on the original detector. Ai et al. [14]
combined CFAR, Convolutional Neural Network, and Support Vector Machine (SVM) to
achieve the task of multi-target detection in complex backgrounds. The single-stage SAR
ship target detection networks do not need to reach the suggestion box stage, which directly
generates the class probability and position coordinate values of the object. This type of
network integrates regression of detection frames and classification of objects. Yang Xi
et al. [16] proposed the Receptive Field Increase Module (RFIM) to solve the multi-scale
problem of ship targets in SAR images. Chen et al. [18] used an end-to-end detection
network and a number of augmentation strategies and conducted experiments on both
offshore and distant sea datasets. Guo et al. [20] added Convolutional Block Attention
Module (CBAM) and Bidirectional Feature Pyramid Network (BIFPN) to yolov5 to improve
detection performance. All these methods have greatly improved the detection accuracy in
SAR ship target detection, but these network models are often complex, resulting in slower
detection speed.

In order to reduce the complexity of network models and increase the speed of model
detection, researchers are dedicated to improving the first stage of detection networks and
have developed a variety of lightweight detection models [22-29]. Jiang et al. [23] acceler-
ated the network detection speed by cropping the yolov4-lite network while improving
the detection accuracy by considering the characteristics of three-channel images. Zhou
et al. [24] used small convolutions and a customized extractor network to reduce the com-
putational and parametric size of the network model. Ren et al. [29] designed a Lightweight
Network, which uses a lightweight feature enhancement backbone to reduce the amount
of computation and a channel and position enhancement attention module to improve
detection accuracy. Zhang et al. [24] proposed a hybrid representation learning-enhanced
SAR target detection algorithm by taking into account the unique features of SAR images
and the lightweight structure of the network. Although these studies have targeted the
parameters and computational volume of the algorithms for optimization and are designed
to improve the detection speed by designing network structures, there are still some is-
sues that have not been fully studied. In practical applications, SAR systems need to be
simultaneously highly mobile, highly contingent, and highly accurate. In order to achieve
real-time target detection algorithms, many scholars have proposed running this part of
the work on airborne or satellite-based edge hardware platforms, which have constrained
computing resources and power consumption. Therefore, reasonable arrangement of the
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limited computational resources on the processing platform in order to further improve the
detection speed of SAR ship target detection networks has become the goal of researchers.

Recently, some hardware manufacturers, such as NVIDIA, AMD, INTEL, etc., have
designed their own model speed-up methods to achieve deep acceleration from their
own hardware. Li et al. [30], working at Intel, proposed the Analytical Clipping for
Integer Quantization (ACIQ) method and gave an analytical solution for the optimal
truncation value on this basis. Markus Nagel et al. [31] introduced two algorithms, Post-
training quantization (PTQ) and Quantization-aware-training (QAT), to minimize the
loss of accuracy caused by model compression. Wu et al. [32] proposed quantization
techniques suitable for high-throughput hardware accelerators. Based on these approaches,
NVIDIA proposes its own applicable GPU acceleration method for model inference tasks.
Unfortunately, when using this model speed-up method in some SAR ship target detection
tasks running on platforms with limited computing resources and power consumption,
there is still a huge demand for improving accuracy and speed. First of all, the operation
speed of the detection network is improved with the use of the method for the network,
but at the cost of a certain loss of accuracy. It is widely acknowledged that accuracy is
more important than speed as the most important metric in SAR ship target detection
tasks. Therefore, this method of increasing speed at the expense of accuracy is not desirable.
Secondly, this method works well for speed improvement in small and medium sized
networks, but the speed increase after using this method for larger network structures is
negligible, which limits its application to some extent. In summary, how to accelerate SAR
ship target detection networks deployed on edge platforms with limited computational
resources and power consumption, without much loss of detection accuracy, is still a great
challenge.

To address this challenge, a novel model speed-up method applicable to SAR ship
target detection algorithms is proposed in this paper, using embedded GPUs as the target
deployment platform. The main contributions of this paper are as follows:

e  We propose a GPU-oriented model speed-up method for SAR ship target detection
tasks and use this algorithm for yolov5n, yolov5s, yolovbm, and yolov5l. Then, the
accelerated models are deployed on an NVIDIA AGX Xavier development board.

e  This paper provides the first detailed analysis of the execution of the inference process
for the SAR ship target detection task on a GPU. The results of the analysis give
direction and provide a basis for subsequent optimization.

o  To reduce the computation time on the GPU, SAR-aware model quantification is used.
Firstly, we introduced a low-precision quantization method to improve the detection
speed. After quantization, we used a SAR-adapting Calibration method to reduce the
accuracy loss due to quantization while performing computational acceleration. At
the same time, we used activation layer merging to reduce the number of memory
readings to speed up the network.

e  To further reduce the accuracy loss, the Precision-aware scheduling method is pro-
posed. This method minimizes accuracy loss while guaranteeing speed-up by inverse
quantization of layers unsuitable for quantization.

The rest of this study is as follows: Section 2 introduces the steps of a SAR target
detection algorithm inference task running on a heterogeneous system including CPU and
GPU. Section 3 introduces the SAR-aware model quantification method to reduce the time
of inference tasks running on heterogeneous systems. On this basis, a precision-aware
scheduling method is proposed according to the GPU computing power characteristics of
the heterogeneous system to reduce the precision loss caused by acceleration. In Section 4,
we use the method in Section 3 on four different networks to verify the effectiveness of the
proposed method. The method used in this paper is compared with TensorRT, the most
commonly used GPU acceleration method, and the effectiveness of the proposed method is
proved. In Section 5, the experimental results are analyzed and discussed. Finally, the main
conclusions are drawn in Section 6.
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2. Analysis

The inference process of the SAR ship target detection task usually runs in a heteroge-
neous system containing a CPU and a GPU, and its structure is shown in Figure 1. When
performing computational tasks, the GPU cannot run alone and usually requires the CPU
to assist in running. CPUs usually contain multiple processor cores and caches, each of
which can execute one or more threads, and the main advantage of CPUs is that they
can handle different types of complex tasks and can better manage and allocate system
resources to ensure smooth execution of computational tasks, while GPUs have their own
unique streaming multiprocessor (SM) computing architecture and higher bandwidth
memory, better suited to handle large amounts of data and parallel computing tasks. The
two units are connected via a peripheral component interconnect express (PCI-Express)
bus to complement each other and improve the performance and efficiency of the whole
system.

GPU

System memory

Decode ﬁ

CPU
Cache
SM SM SM
core core

! !

PCI-Express

GPU memory

Figure 1. The heterogeneous system.

Although the computation in the inference task is performed on the GPU, the GPU
first needs to obtain instructions and data from the CPU and return the results to the CPU
after the computation is completed. The whole inference task is shown in Figure 2, which
can be divided into four stages.

Instruction Queue

Memcpy ] g
HtoD Conv0 = Sigmoidl eee cPU
GPU
Memcpy HtoD
Execution Queue
Conv0 ' Sigmoidl Mul2 eee
Memcpy
DtoH
1 1 1 1 >
t, t, t, t, Time

Figure 2. The inference process of the SAR ship target detection task.
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e  The CPU compiles the executed code into instructions that can be executed by the GPU
and sends them to the GPU through the instruction queue, including data loading
instructions, arithmetic computation instructions, and data result transfer instructions.

e  Asshown in Figure 2, when the GPU receives the instruction of data loading, it starts
the work of data loading and loads the image data saved in the system memory to the
memory in the GPU at the moment of t;.

e  Once the data and instructions are ready at the moment of t,., the arithmetic computa-
tion starts. In this process, the GPU reads the data from the GPU’s memory to start
the operation of the convolution, activation, and other arithmetic operations. Each
arithmetic operation reads input data from the memory on the GPU, and then saves
the output data on the GPU’s memory after the computation is completed.

e  When the above operations are finished at the moment of t3, the results will be saved
in the memory of the GPU. Since the post-processing needs to be performed in the
CPU, the results will be reloaded into the system memory.

3. Method

Figure 3 illustrates the frame of work in this paper, which aims to ensure real-time and
accurate performance of detection algorithms running on the edge platform. Based on a
detailed analysis of the detection inference process running on an edge GPU platform, we
propose corresponding hardware-aware speed-up algorithms for SAR ship target detection
networks.

Analysis of the inference process

Hardware-aware model quantificating Precision-aware scheduling
Low precision quantification CalibrationSet Model
! e !
SAR-adapting calibration Quantification error analysis
v v
Arithmetic operator fusion High precision model

Figure 3. The frame of work in this paper.

In order to speed up the computation of the arithmetic operator, the SAR-aware model
quantification method is used on the trained model. A SAR image detection model-friendly
calibration algorithm is used based on low-bit quantization. Also, considering the access
demand during the arithmetic operator computation, the arithmetic operator fusion method
is used to reduce the number of memory accesses and effectively shorten the arithmetic
operator computation time.

Considering the loss of model accuracy caused by the quantization process, this paper
uses precision-aware scheduling after quantization to inverse-quantize the layers that are
not suitable for quantization and continue to use the FP32 format for computation, thus
compensating for the loss of accuracy.
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3.1. SAR-Aware Model Quantification

In the inference analysis of target detection, the longest time occupation is often the
time of arithmetic operations. Previous studies have used lightweight models to reduce
the number of operations but have not optimized this process from the perspective of
underlying hardware execution. Although hardware vendors have proposed some relevant
model speed-up algorithms from the hardware point of view, the direct use of these model
speed-up algorithms in the SAR image detection model mountain will result in accuracy
degradation. In order to achieve high model acceleration with finite accuracy loss, we
propose a SAR-aware model quantification, which consists of three parts: low precision
quantification, SAR-adapting calibration, and arithmetic operator fusion.

3.1.1. Low Precision Quantification

In order to ensure the accuracy of the final detection in the target detection network of
SAR images, the weights and feature maps are stored and calculated using high-precision
floating-point numbers. Most of them are stored and calculated in the form of FP32 in the
deployed hardware. However, two benefits can be brought about if they are stored and
calculated in the format of INTS.

Firstly, using fewer bits for data reading, writing, and storage will effectively increase
the speed of data reading and writing before and after each arithmetic computation. Sec-
ondly, the peak computational power of INT8 computation in many GPUs is much larger
than that of FP32 computation, which means that the computational speed of INT8 is much
higher than that of FP32. Both of these can accelerate the network inference computation.
Therefore, we use the 8-bit linear layer-by-layer quantization algorithm to speed-up the
network model and achieve the speed-up of network inference.

The quantization calculation of the operator is shown in Figure 4, where weight_fp32
and feature map_fp32 represent the input weights and feature map for each calculation,
and s_w and s_fm represent the quantization parameters when the value conversion is
performed. Before each calculation starts, it is necessary to map the high-precision value
stored in FP32 to an INT8 format value in the interval [—128, 127] using the following

formula: -
x = round( xpr)

)

Xintg = clamp(—128,127, x) )
where s denotes the scaling factor. “Round” represents the rounding function, and the
resulting floating-point value is rounded to an integer according to the number after the

decimal point. “Clamp” is a truncation function, meaning that integers less than —128 will
become —128, and integers greater than 127 will be evaluated as 127.

weight quantize weight_ bias

fp32

feature quantize

int8

l

i feature dequantlze quantize .
map_fp32 1/s_fm map_int8 U _>- s_x*s_fm B y-fp32 /sy y-Int8

Figure 4. The quantization calculation of the operator.

After convoluting the x in INT8 format with the w in INT8 format, the convolution
result is multiplied with the product of s_w and s_fm. Then, the obtained intermediate
result is unquantized and added to the bias without quantization. Finally, the result is
output quantized.
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3.1.2. SAR-Adapting Calibration

The quantization parameters are the decisive factors that affect the accuracy of the
quantized network. The formula for calculating the quantization parameters is shown

below:
T1—T

5= max(int) — min(int)

®)

where Ti, T, denote the truncated range of the floating point number.

For the quantization of weights, since the weight is already a fixed value that does
not change after the training of the network, and also since there are fewer values in each
weight, we can directly use the maximum and minimum values in each weight as the
truncated range of float point numbers.

As for the activation values (feature map of each layer), since the values generated
by each inference are different, the maximum and minimum values generated by a certain
inference cannot simply be used as the truncation threshold.

An analytical solution for minimizing the quantization error was calculated in arti-
cle [30] using a detailed formula derivation, but it assumes a Gaussian distribution for
the activation values. Nevertheless, for the activation values in the SAR ship target de-
tection network, it is not possible to strictly prove that the activation values are Gaussian
distributed using the formula. The method used by NVIDIA [32] uses kullback-leibler (KL)
divergence as a measure of quantization error, which is also not adapted to the SAR ship
target detection network. The reason for this is as follows: the detection task can often be
subdivided into a regression task for the detection frame and a classification task for the
target, and there are numerous types of targets to be detected in optical images. The two
datasets we commonly use are PASCAL VOC and coco, which have 20 and 91 classes of
targets, respectively. Therefore, the classification task is quite important in the detection
network of optical images. However, for ship target detection tasks for SAR images, there
is only one type of target for classification. Thus, for this type of detection task, more
attention should be given to the regression task in detection. However, kullback-leibler
(KL) divergence is concerned with the difference between the two tensor distributions of
input and output, while regression is more concerned with the difference between the
values of these two distributions. Consequently, the error calculation of kullback-leibler
(KL) divergence is not suitable for the regression tasks.

In order to solve the above two drawbacks, this paper proposes a calibration algorithm
suitable for SAR ship target detection tasks. The algorithm adopts a statistically based
approach to avoid the problem of assuming the distribution of the activation values, and
it uses Mean Squared Error (MSE) that pays more attention to the values before and after
quantization as a measure of quantization error, making it more adaptable to the target
detection task of SAR.

The specific steps of the proposed algorithm are as follows:

Prepare a trained SAR ship target detection model.

Select a subset from the SAR image validation set as the calibration set.

Inference is performed on the model of FP32 using the calibration dataset.

The inference process traverses each layer of the network.

The calibration set is deduced on the existing network and the histograms of activation
values can be obtained which are further divided into 2048 intervals.

The median of each of these intervals is chosen as the T-value.

Iterate over different thresholds T and select the T that makes the MSE obtain the
minimum value, which can be represented as

S IR

N

N 2
(X — Xints)
Errormse =—
N

(4)
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where x; denotes the value of each element of the tensor and N denotes the number of
elements of the tensor.

8. Return a series of T values, one for each layer T, creating the Calibration Table.
9.  The quantization parameter S is calculated for each layer based on the value of T.

Using this method, the accuracy error of the SAR ship target detection network is
minimized without considering the feature map distribution.

3.1.3. Arithmetic Operator Fusion

To further reduce the time of arithmetic operator computation, the arithmetic operator
fusion approach is adopted in this paper.

A convolutional neural network can be regarded as a computational graph consisting
of several nodes, where an arithmetic operator is the smallest scheduling unit of the neural
network scheduling. Arithmetic operator fusion is designed to fuse the original multiple
operators into a new operator, and this operation can accomplish the following two aspects
of optimization.

In heterogeneous systems, the execution of each operator requires the CPU to first
issue a computational task. The GPU starts execution as soon as it receives the task. This
process then incurs additional latency and overhead. After performing arithmetic operator
fusion, the CPU emits fewer computational tasks to the GPU, effectively reducing the
latency caused by task sending.

The completed result of an operator computation usually needs to be saved to the
GPU’s memory, and then the result of the previous operator is read out from the GPU’s
memory for computation when the next operator is executed. Operator fusion allows the
intermediate results of several fused operators to be stored in registers, thus reducing the
number of memory accesses to GPU memory. In the quantization of this paper, we fuse all
activation operators with the previous operators, thus reducing the inference time.

In summary, the compression of the model is accomplished by using three methods
simultaneously in the quantization process, taking into account the computational process
of the hardware execution unit and the characteristics of SAR images.

3.2. Precision-Aware Scheduling

In the overall optimization of the network, the quantization of some layers will lead to
a larger error in the whole neural network and eventually lead to a larger loss of accuracy.
In order to reduce the accuracy loss due to model speed-up based on the previous steps, we
fully analyze the computing power of the GPU platform and use the computational graph
operator scheduling to ensure that the network does not lose accuracy after quantization.
The accuracy loss of the network mainly comes from low-bit quantization. Mapping values
from a high-precision format (FP32) to a low-precision format (INT8) will inevitably reduce
the amount of information in the data, thus generating errors. The GPU platform we use
has both INT8 and FP32 computing ability. We can use the high-precision FP32 format to
calculate and store the layers with serious error loss and use the INTS8 format to calculate
and store the layers with less serious error loss. However, if too many layers are computed
in FP32 form, although the loss of accuracy is lower, it also means that the detection will
be slower at the same time, thus failing to maximize acceleration. After quantization,
determining the number of layers for FP32 mode computation and storage is the key to
solving the problem.

To determine the number of layers, we first constructed the optimization model. In
the Yolo family of detection networks, the evaluation metrics describing the algorithm’s
detection accuracy are precision, recall, and mean accuracy (mAP). Among them, mAP is
subdivided into mAP@0.5 and mAP@0.5:0.95. mAP@0.5 stands for the mean value of APs
for each category when the Intersection over Union (loU) threshold is 0.5. mAP@0.5:0.95 is
the average of the APs for each category when IoU threshold takes 10 numbers increasing
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from 0.5 to 0.95 in steps of 0.05, respectively. The formulae for the above metrics are as

follows: TP
Precision = TP+ ED @)
TP
Recall = m (6)
1
AP = /P(R)dR %
0
1 N
AP=—Y AP
m N ; ®)
1 N
mAP@0.5 = N 1:21 AP;(I0Ugpresh = 0.5) )
1Y .
mAP@0.5 : 0.95 = N 1; ;Api(IOUthresh =) (10)

In the above formulae, TP represents the number of samples in which both the
predicted and true values are positive samples. FP stands for the number of samples where
the predicted value is positive but the true value is negative. FN stands for the number of
samples where the predicted value is negative but the true value is positive. N denotes the
number of categories detected.

Frames per second (FPS) is widely used as an indicator of the model detection speed,
which is calculated as follows:

1

FPS = (11)
tpreprocess + tinfernce + ENMS

The tpreprocess tinferences aNd tnps in the formula denotes the time consumed by pre-
processing, inference, and Non-Maximum Suppression (NMS), respectively. In real hetero-
geneous computing systems, only the inference phase is run on the GPU platform as the
usual case. Therefore, we choose the time length of inference as a metric to evaluate the
speed of model detection.

Higher values of mAP@0.5 and mAP@0.5:0.95 mean higher detection accuracy of the
model, and smaller fi,erence means faster detection. Therefore, our final optimization model
is as follows:

maxmAP@0.5 = & Y. AP;(IOUgyesh = 0.5)

zw~ Ile

(12)

N
maxmAP@0.5 : 0.95 Y. ¥ AP;(I0Uihresh = f)

i=1j
mlntinference

There is a conflict among the three optimization objectives mentioned in Equation (12).
In order to achieve the fastest speed within the error tolerance for each network, this
paper proposes an accuracy-adaptive scheduling method to find the optimal number of
scheduling layers. The method is divided into two parts. In the first part, we design
the accuracy error detector and find the Pareto optimal set of solutions that fit in the
optimization mode based on the results of the detection. In the second part, we propose
the AHP-TOPSIS method to find the optimal compromise.

In order to obtain the most realistic Pareto optimal solution set, this paper first designs
the error detector, which is planted after each quantized layer. Then, the images of the
training set are selected for detection. During the detection process, the error detector
records the output feature map produced by the quantized layer and calculates the MSE
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between the value of the produced feature map and the value of the produced feature
before optimization. For each network, we selected the layers with error values in the
top 5%, starting with the layer with the largest error, and incrementally converted these
quantized layers layer-by-layer into FP32 format for detection, and recorded the detection
accuracy metrics mAP@0.5 and mAP@0.5:0.95 after each detection, as well as the time used
for inference. These data are the set of solutions to the above problem.

In addition, in order to obtain the final solution, it is necessary to filter the obtained
Pareto optimal solution set. In this paper, the multi-attribute decision-making method is
introduced to achieve the above objectives. Therefore, this paper combines TOPSIS for
multi-attribute decision making and also determines the weight values of each attribute by
the analytic hierarchy process (AHP) [33].

The specific steps are shown below:

1.  Insert the designed error detector into the detected network.

2. The error detector is used to calculate the error in the feature map values before and
after the quantization of each layer.

3. Sort to select the top 5% of layers in the network with the largest errors.

4. The selected layers are incremented layer by layer for the inverse quantization opera-
tion.

5. The accuracy metrics and speed of detection are counted sequentially for each time as
a Pareto solution set.

6.  The maximum value of the inference time metric was subtracted from the correspond-
ing solution in the set of Pareto-optimal solutions to standardize all metrics to a larger
value for better results. The normalization matrix is also normalized so that the scale
of the three metrics does not affect the results. Assume that the forwarding matrix is
writtenas Y = (yif)mxa‘ The standardized matrix is as follows:

- 7z (Zij)m><3
= Y ,1:1,2,,77’1,]:1,2,3,4: (13)

Zij = T
Y 2
\ &Y

where m denotes the number of solutions in the set of Pareto solutions.

7. Construct the judgment matrix A. The three optimization objectives, mAP@
0.5, mAP@0.5:0.95, and fipference are analyzed two by two, and their importance is
judged by the 1~9 scale method [34]. The judgement matrix takes the value of

1 w1 wy
A= |1/wy 1 1/ws (14)
1/602 w3 1

where w; denotes the importance of mAP@0.5 with respect to mAP@0.5:0.95, w, denotes
the importance of mAP@0.5 with respect to tinference, and w3 denotes the importance of
mAP@0.5:0.95 with respect to finference- In this paper, the value of wy is 9, the value of wy is
7, and the value of wj is 2.

8.  Consistency indicators C; and consistency ratios Cr are calculated through the maxi-
mum eigenvalue of the matrix Amax.

. Amax — 1
=TT (19
C
Cr = R—i (16)

In the formula, the matrix dimension n = 3 and the average random consistency index
Ry = 0.58. When Cr < 0.1, the judgment matrix is considered to pass the consistency test,
and the eigenvectors corresponding to the largest eigenvalues of the judgement matrix are



Remote Sens. 2023, 15, 4995

11 of 19

normalized to obtain the weights w;. The weighted normalization matrix is calculated as
follows:

V = (vjj)m x 4

) ) 17
vij:wjzij;z:1,2,~~~,m;]:1,2,3,4 ( )

9.  To calculate the relative approximation, the ideal and negative ideal solutions are first
determined as

+ e + 3 |7 -
v { (e er) (mmaer)} "
—_ v?_/v;r"' ,z);'"n
— inoali e Tt ilj €T
e {lmeer) (mener))

— U;,UE,' .o ,U%
In the formula, J* is the set of benefit-based attributes and J~ is the set of cost-based
attributes. Then, the distance to the ideal and negative ideal solutions for each scenario can

be calculated as:
3

Dl—‘r: Z(vl]—vf)z,zzl,Z,B,,m (20)
j=1
3 2

Dy = | Y (o507 )5i =123 ,m (21)
j=1

This gives the relative approximation for calculating the scenarios as:

D:
Ci=—F7"—i=123,--,m 22
" Df+D; @)
10.  The Pareto solution corresponding to the scheme with the highest relative approxima-

tion is chosen as the final result.

4. Results

In order to simulate the operation on a real airborne or onboard real-time processing
platform, we use different computing platforms for training and testing. The training
platform is the inspur high-performance workstation P8000 and the test platform is the
NVIDIA Jetson AGX Xavier. A high-precision model is first trained on the training platform
using the dataset and the selected model, and then this model is transferred to the test
platform for the corresponding model compression, and finally the performance is tested
on the test platform.

4.1. Experimental Platform
4.1.1. Training Platform

The training platform used in this paper is a high-performance platform with two
Intel Xeon E5-2640 CPUs, 64GB DDR4 RAM, and two NVIDIA Quadro P5000 GPUs with
2560 CUDA cores and 16GB RAM. On top of the platform, we use the Ubuntu 20.04 LTS
operating system and installed Python 3.8, Pytorch 1.11.0, cuda 11.3, and cudnn 8.6.0, which
together constitute the software environment of the training platform.

4.1.2. Testing Platform

The test platform is the NVIDIA Jetson AGX Xavier development board, a high-
performance embedded computing platform with 32 GB DDR4 memory, 512 CUDA cores,
64 Tensor cores, 8§ CPU cores, and 2 NVDLA deep learning accelerators, which can provide
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up to 30TOPS of deep learning computing power. Most notably, the NVIDIA Jetson AGX
Xavier development board has significant advantages in terms of low power consumption
and can fully meet the power consumption requirements of airborne or onboard edge
processing platforms. For the software environment, we used the official NVIDIA JetPack
SDKS5.1.1, Pytorch1.12, cudall.4, and cudnn8.6.0.

4.2. Dataset

The dataset used in this paper is the High-Resolution SAR Images Dataset (HRSID),
which has been widely adopted by researchers and published by the University of Electronic
Science and Technology. The dataset contains 5604 images and 16,965 ship targets. The
images are of high quality from Sentinel-1B, TerraSAR-X, and TanDEM satellites and cover
HH, HV, VV, and other polarization methods. In this article, we set the resolution of the
image to 256 x 256 in order to obtain quick results.

4.3. Model

To prove the effectiveness of the approach in this paper, we have selected four different
models from the yolov5 series, yolov5n, yolov5s, yolovbm, and yolov5l for our experiments.

Yolov5n: This is a variant of the Yolov5 series optimized for Nano devices such as the
NVIDIA Jetson Nano. Yolov5n provides accuracy for edge devices while maintaining a
faster speed.

Yolov5s: This is the smallest model in the Yolov5 family. This model performs better
on devices with limited computational resources, such as mobile devices or edge devices.
Yolovbs has a faster detection speed but relatively lower accuracy.

Yolovbm: This is a medium-sized model in the Yolov5 family. Yolov5m provides a
better balance between speed and accuracy for devices with some computational power.

Yolov5l: This is one of the larger models in the YOLOV5 series. Yolov5l has relatively
high accuracy but is slow to detect. It is suitable for tasks that require a high degree of
accuracy.

The relevant parameters of the three models are shown in Table 1.

Table 1. Relevant parameters of the experimental model.

Model Layers Parameters Flops
Yolov5n 157 1,760,518 41g
Yolov5s 157 7,012,822 158 ¢
Yolov5Sm 212 20,852,934 479¢g
Yolov51 267 46,108,278 1076 ¢g

4.4. Result

In this paper, the effectiveness of the proposed speed-up method is evaluated in terms
of both detection speed and detection accuracy. For detection accuracy, we use precision
(P), recall (R), and mean average precision (mAP), which are commonly used in detection
networks, as the evaluation metrics for detection accuracy. For detection speed, we use FPS
as the evaluation index of detection speed, and which is calculated as Equation (12).

4.4.1. Effect of Each Method

In order to demonstrate the effectiveness of the methods in Section 3 for improving
detection performance, we designed three ablation experiments. We used the two models
mentioned in 4.2.1 without any added optimization as the baseline. The first experiment
uses the method of SAR-aware model quantification based on baseline. The second experi-
ment uses the method of precision-aware scheduling on the basis of the first experiment.
The results of each optimization method are shown in Table 2. In Table 2, SAMQ denotes
SAR-aware model quantification and PAS denotes Precision-aware scheduling.
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Table 2. Test performance comparison of models before and after using the method proposed in this
paper.

Model Method P R mAP@0.5 mAP@0.5:0.95 FPS

Baseline 0.8906 0.7141 0.7965 0.5227 190.8484

Yolov5n SAMQ 0.8952 0.7123 0.7945 0.5077 237.5148
SAMQ + PAS 0.8972 0.7145 0.7964 0.5155 234.7785

Baseline 0.8973 0.7499 0.8237 0.5531 144.8165

Yolovbs SAMQ 0.894 0.7506 0.8217 0.5438 218.2885
SAMQ + PAS 0.8964 0.7516 0.8236 0.5438 212.8341

Baseline 0.9098 0.7615 0.8364 0.5693 84.7072

Yolovbm SAMQ 0.9012 0.7626 0.8289 0.5605 167.0161
SAMQ + PAS 0.9096 0.7629 0.8363 0.5693 165.6523

Baseline 0.9123 0.7723 0.8469 0.5772 57.1275

Yolov51 SAMQ 0.8774 0.7699 0.8319 0.4605 140.4588
SAMQ + PAS 0.9066 0.775 0.8467 0.5703 139.8758

Overall, the FPS of Yolovbn, Yolov5s, Yolovbm, and Yolov5l are improved by 43.9301,
68.0176, 80.9451, and 82.7483, after using the methods in this paper, while the reduction of
AP is very small, decreasing by 0.0001, 0.0001, 0.0001, and 0.0002, respectively. From the
above results, it can be demonstrated that the SAR ship target detection network using the
method proposed in this paper achieves considerable speed with only a very low loss of
accuracy on embedded GPUs.

We focus on analyzing the impact of each of the methods proposed in this paper on the
results. Firstly, we analyzed the function of SAR-aware model quantification. According to
the effect of SAR-aware model quantification, the FPS of Yolov5n, Yolov5s, Yolovbm, and
Yolov5l are improved by 46.6664, 73.472, 82.3089, and 83.3313 after using the method of
SAR-aware model quantification. The AP of yolov5n, yolov5s, and yolovim are decreased
by 0.002, 0.002, 0.0075, and 0.015, respectively, with yolov5]l showing the most significant
decrease in accuracy. It can be seen that the detection speed of the SAR ship target detection
network is greatly improved by using this method, but there is still some loss of detection
accuracy. Secondly, we analyzed the effect of precision-aware scheduling. After using the
method of precision-aware scheduling, the FPS of Yolov5n, Yolov5s, Yolovbm, and Yolov5l
are decreased by 2.7363, 5.4544, 1.3638, and 0.583. The AP of Yolov5n, Yolov5s, Yolovsm,
and Yolov5l are improved by 0.0019, 0.0019, 0.0074, and 0.0148, respectively. Although
this step gains a very low accuracy, the baseline is that after this step, the accuracy error is
reduced to within 0.0001, and the loss of FPS is only in the single digits. This result achieves
a perfect trade-off.

As can be seen from the detection results graph in Figure 5, after network inference
acceleration using the SAMQ method, there are some missing targets in the detection results,
which indicates that the detection accuracy of the accelerated model becomes lower. Using
the PAS method on this basis, it can be seen that the missing targets are obviously reduced
or have even disappeared. This shows the importance of the PAS method in reducing
precision loss. Compared with the detection results before the acceleration method is used,
there is only one or no missing targets, which proves that the accuracy loss of the proposed
method can be ignored.
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Figure 5. Comparison of detection results. From top to bottom are the results of yolov5n, yolov5s,

yolovbm, and yolov5] model detection. Targets marked in red are detected. Targets marked in yellow

are missed. (a) Baseline model detection results. (b) Detection results of the model after quantification
using the SAMQ method. (c) Detection results of the model after using the PAS method with SAMQ.
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4.4.2. Comparison Experiment

To verify the advancement of the speed-up method proposed in this paper, we ac-
celerated four trained models using the speed-up method of the TensorRT proposed by
NVIDIA, and we compared the performance of the speed-up results with those accelerated
by the method proposed in this paper. The comparison results are shown in Table 3.

Table 3. Performance comparison results between the method proposed in this paper and TensorRT.

Model Method P R AP FPS

Baseline 0.8906 0.7141 0.7965 190.8484

Yolov5n TensorRT 0.8771 0.7067 0.7896 235.6216
SAMQ + PAS 0.8952 0.7123 0.7945 234.7785

Baseline 0.8973 0.7499 0.8237 144.8165

Yolov5s TensorRT 0.8789 0.7414 0.8171 212.2303
SAMQ + PAS 0.8964 0.7516 0.8236 212.8341

Baseline 0.9098 0.7615 0.8364 84.7072

Yolovbm TensorRT 0.9028 0.7694 0.8352 93.2982
SAMQ + PAS 0.9096 0.7629 0.8363 165.6523

Baseline 0.9123 0.7723 0.8469 57.1275

Yolov5l TensorRT 0.9069 0.774 0.846 60.8875
SAMQ + PAS 0.9066 0.775 0.8467 139.8758

We analyze the results in Table 3 from the perspectives of both detection speed im-
provement and accuracy loss. Firstly, we compare the impact of TensorRT and the proposed
method on the detection speed of SAR ship target detection networks. For small size net-
works such as YolovSn and Yolov5s, the detection speeds after using TensorRT are 235.6216
and 212.8341. After using the method in this paper, the detection speeds are 234.7785 and
212.8341. The results of the two methods are basically the same. But for medium and large
networks such as yolovim and yolov5], the TensorRT method gives very little improvement
in the detection speed of the SAR target network for the detection network. The FPS is only
improved by 8.591 and 3.76. After using our method, the FPS of these two networks is
improved by 90.8268 and 82.7483, respectively. This result proves that our method is more
effective in improving the detection speed for large-size networks. Secondly, the effect
of the two methods on the loss of detection accuracy was compared. We found that the
detection accuracy of SAR target network detection decreased to some extent after using
TensorRT. Among them, the detection accuracy of Yolov5n, Yolov5s, YolovSm, and Yolov5]
has decreased respectively by 0.002, 0.002, 0.0012, and 0.0009. After using our method,
these networks correspond to an accuracy loss of 0.0001, 0.0001, 0.0001, 0.0002. Compared
to the loss of accuracy after using TensorRT, the loss incurred after using our proposed
method is negligibly small. In summary, compared to TensorRT, the method proposed in
this paper achieves a very low loss of accuracy while substantially increasing the detection
speed, which is applicable to networks of various sizes.

As can be seen from the detection results in Figure 6, the models were detected after
quantization using the method proposed in this paper and TensorRT, respectively. In this
paper, we are more concerned with the comparison of detection results before and after
using the acceleration method. Therefore, we directly used the unoptimized Yolov5 series
of networks for SAR ship target detection and there are still some missed detections of
ships in baseline. Compared to the detection results of the model without quantization,
the detection results of the Yolovim model after quantization using the proposed method
produces two missed targets. The rest of the quantized models have only one missed target.
However, the detection results of the models quantized using the TensorRT method all
produced more than three missed targets.
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(b)

Figure 6. Comparison of detection results. From top to bottom are the results of yolov5n, yolov5s,

yolovbm, and yolov5]l model detection. Targets marked in red are detected. Targets marked in yellow

are missed. (a) Baseline model detection results. (b) Detection results of the model after quantification
using the method proposed in this paper. (c) Detection results of the model after using TensorRT.
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5. Discussion

After analyzing the results in Table 2, it can be seen that the proposed method in this
paper has an overall significant speed-up for the SAR ship target detection algorithm, with
23.01%, 46.97%, 95.56%, and 144.85% improvement on the Yolov5n, Yolov5s, Yolovbm, and
Yolov5l models, respectively, with negligible loss in accuracy.

Through careful analysis of each method proposed in this paper, we observe that all
of them yield improvements. The extent of these gains varies across different networks
due to their unique structures and computational volumes. For the method of SAR-aware
model quantification, the improvements on Yolovbm and Yolov5l are 97.17% and 145.86%,
while those on Yolov5n and Yolov5s are only 23.46% and 50.73%. Compared to lightweight
networks, networks with more model layers tend to be more computationally intensive,
so the speedup after quantization is more significant, and the corresponding accuracy
loss is correspondingly larger. For different networks, the method of precision-aware
scheduling reduces the accuracy loss before and after algorithm acceleration to within
0.0002 at the expense of negligible FPS performance, which demonstrates the compatibility
of this method for each network. It is also clear that large networks have a greater demand
to use this method to reduce the accuracy error before and after quantization.

In terms of the comparison results, TensorRT tends to produce good accelerations more
easily on small networks, while the corresponding effect is little on large networks. After
accelerating the neural network of lightweight type using this method, the performance of
FPS is audible and obvious. However, for the detection accuracy of the model after using
this method, there is still a certain degree of loss of accuracy. Compared with the method
proposed in this paper, the accuracy loss of TensorRT is smaller, and the improvement of
FPS is almost the same as that of TensorRT. For detection networks with larger models,
the performance improvement by using TensorRT in FPS is very small, despite the low
accuracy loss. The method proposed in this paper has a much lower accuracy loss and a
much higher performance improvement in FPS. This proves that the method proposed in
this paper outperforms TensorRT both in terms of loss of control accuracy and speedup
and is more applicable to networks of various sizes.

6. Conclusions

In order to solve the problem of real-time SAR ship target detection algorithms on
airborne or onboard processing platforms, a hardware-aware speed-up algorithm for SAR
ship target detection networks is proposed in this paper. The proposed algorithm is divided
into two parts: SAR-aware model quantification and Precision-aware scheduling. The
method of hardware-aware model quantification uses low-bit quantization and operator
fusion to reduce the time spent on computing and memory readings during operator
computation, which accelerates inference operations. In addition, the loss of detection
accuracy can be reduced using SAR-adapting calibration. The method of precision-aware
scheduling, which de-quantifies the layers with the highest loss, allocates the computational
resources on the available hardware in a rational way, reducing the loss of precision due
to quantization. The algorithm is also tested on four models of the Yolov5 series, and the
accelerated detection model is finally deployed on the NVIDIA AGX Xavier platform to
demonstrate the effectiveness of the speed-up algorithm. This method has demonstrated
superiority over the TensorRT method in terms of both detection accuracy and speed.
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