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Abstract: Quantifying the forage biomass in pastoral systems can be used for enhancing farmers’
decision-making in precision management and optimizing livestock feeding systems. In this study,
we assessed the feasibility of integrating Sentinel-1 and Sentinel-2 satellite imagery with machine
learning techniques to estimate the aboveground biomass and forage quality of bale grazing and
sacrificed grassland areas in Virginia. The workflow comprised two steps, each addressing specific
objectives. Firstly, we analyzed the temporal variation in spectral and synthetic aperture radar (SAR)
variables derived from Sentinel-1 and Sentinel-2 time series images. Subsequently, we evaluated the
contribution of these variables with the estimation of grassland biomass using three machine learning
algorithms, as follows: support vector regression (SVR), random forest (RF), and artificial neural
network (ANN). The quantitative assessment of the models demonstrates that the ANN algorithm
outperforms the other approaches when estimating pasture biomass. The developed ANN model
achieved an R2 of 0.83 and RMSE of 6.68 kg/100 sq. meter. The evaluation of feature importance
revealed that VV and VH polarizations play a significant role in the model, indicating the SAR
sensor’s ability to perceive changes in plant structure during the growth period. Additionally, the
blue, green, and NIR bands were identified as the most influential spectral variables in the model,
underscoring the alterations in the spectrum of the pasture over time.

Keywords: biomass estimation; Sentinel products; SAR; spectral information; learning algorithms

1. Introduction

Grasslands represent a vital ecological component of the Earth’s surface, serving as
a critical element in the livestock feeding system [1]. In addition, these ecosystems play
a critical role in preserving animal and plant biodiversity [2], mitigating soil erosion [3],
offering habitats for diverse animal species [4], and exerting influence over the carbon cycle
between the Earth’s surface and the atmosphere.

In recent decades, grassland regions have experienced significant degradation due to
various factors, including drought, fire, land use changes, and inadequate management
practices such as overgrazing [5]. Furthermore, natural phenomena like climate change and
the introduction of invasive species, whether animal or plant, have further exacerbated the
deterioration of grazing areas, thus posing a threat to the most cost-effective food source
for cattle. Consequently, precision monitoring of grasslands through the quantitative and
qualitative assessment of available pasture biomass can enhance farmers’ decision-making
processes, thus improving profitability and efficiency within the dairy and cattle industries’
feeding systems [6]. Therefore, precision estimation of pasture biomass in diverse grassland
areas is crucial for providing valuable information for farmers.

Pasture biomass estimation techniques can be broadly classified into two categories:
ground-based and remote sensing methods [7]. Ground-based methods, such as visual
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estimation and field spectrometry, are often time-consuming, costly, destructive, labor-
intensive, and impractical for large-scale monitoring [8]. Consequently, researchers have
turned their attention to remote sensing methods that offer the advantages of spatiotem-
poral, large-scale, and rapid grassland monitoring, and they are comparatively more
cost-effective.

Studies on biomass estimation using remote sensing methods can be categorized into
optical and radar-based approaches, depending on the type of sensor used [6]. In several
studies, scientists have assessed the capabilities of remotely sensed images obtained from
various platforms, including unmanned aerial vehicles (UAVs), spaceborne satellites, and
airborne sensors. Optical images provide valuable insights into changes in the pasture
spectrum over time, thereby enabling the derivation of spectral indices that indicate the
presence of pasture biomass in a given area. Examples of optical products utilized for pas-
ture monitoring on a global and national scale include AVHRR, MERIS, and MODIS [9–15].
Although these sensors offer good temporal resolution (daily availability) and are cost-free,
their monitoring results often have coarse spatial resolution [16] and may not provide
actionable information for farmers.

Landsat sensors, including Landsat-5 [17], Landsat-7 [17–20], and Landsat-8 [21–23],
have been utilized as multispectral satellite images for estimating pasture biomass. Due to
their availability and higher spatial resolution, Landsat products have been more frequently
employed in biomass estimation compared to other sensors. However, there are limitations
associated with using Landsat satellite products as valuable sources for biomass estimation.
Firstly, the 30 m spatial resolution of Landsat sensors makes it challenging to numerically
evaluate the results and assess model validity against field measurements. Secondly,
Landsat satellites have a 16-day revisit period, resulting in a relatively low temporal
resolution, and thus, acquiring cloud-free, high-quality images becomes problematic.

In the new generation of spaceborne optical imagery, Sentinel-2 (S2) has emerged as
a powerful tool for pasture biomass mapping, offering a spatial resolution of 10 m and a
temporal resolution of 5 days. Filho et al. [24] demonstrated that the S2 Multispectral Instru-
ment (MSI) sensor onboard the Sentinel-2 satellites provides relatively accurate quantitative
indicators of biomass in natural grasslands. Unlike other multispectral satellite images,
Sentinel-2 images excel in regular biomass estimation for two reasons. Firstly, its spatial
resolution is suitable for studying paddocks of any size, including small dairy paddocks.
Secondly, the five-day temporal resolution of Sentinel-2 enables continuous monitoring of
rotational bale grazing and its impact on pasture growth, a crucial consideration for both
dairy and beef industries.

However, optical imagery still has limitations in terms of estimating pasture biomass.
It relies on cloud-free weather conditions and it primarily captures reflectivity information
from the top of the pasture canopy, which may not fully represent a pasture’s structure,
a critical factor related to biomass volume [25]. Additionally, a saturation of surface
reflectance and vegetation indices can occur in low to moderate spatial resolution products
like Landsat, necessitating the utilization of alternative imagery platforms [26,27]. Synthetic
aperture radar (SAR) provides backscattering mechanisms relevant to the surface structure
and can serve as a complementary dataset for biomass estimation. Previous studies [28–30]
have conducted backscattering analyses of pastures using time series Sentinel-1 images,
demonstrating the high sensitivity of VH and VV polarization backscattering and signal
amplitude for pasture structure.

However, it is important to note that there is a significant gap in the existing literature
concerning the integration and combined use of Sentinel-1 and Sentinel-2 datasets for
biomass estimation in different paddock types. In addition, to the best of our knowledge,
no previous study has explored this integration in conjunction with advanced machine-
learning techniques to estimate pasture biomass. Our research aims to bridge this gap
by exploring the synergistic potential of combining Sentinel-1 and Sentinel-2 data with
machine learning techniques to enhance the accuracy and robustness of biomass estimation
across various paddock types, including bale grazing, sacrificed areas, and rest paddocks.
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This innovative approach allows us to address the existing gap in the literature and offer a
novel and effective solution for accurate biomass estimation, which can have substantial
implications for pasture management and environmental monitoring.

In the pursuit of our research objectives, we have defined several key sub-goals that
contribute to the comprehensiveness and depth of our study. More specifically, our study
aims to do the following: (1) analyze the variations in spectral and SAR variables across
the different treatments to gain insights into the unique characteristics of different paddock
types and their impact on biomass estimation; (2) identify the most significant variables
among the optical and SAR data in biomass estimation, with the goal of pinpointing
the key features that play a crucial role in accurate estimations; and (3) evaluate the
performance of commonly used machine learning techniques when estimating pasture
biomass, providing a comparative analysis of their effectiveness in harnessing the integrated
Sentinel-1 and Sentinel-2 data. By delineating these sub-goals, our research not only offers a
comprehensive exploration of the integration of optical and SAR data, but it also provides a
structured framework for assessing the variables and machine learning techniques that can
enhance the accuracy and applicability of biomass estimation in diverse pasture settings. We
believe that this multifaceted approach adds significant value to our study and contributes
to the advancement of knowledge in the field.

2. Materials
2.1. Study Area

The research was carried out during the spring and summer of 2022 at the Shenandoah
Valley Agricultural Research and Extension Center (SVAREC) in the Shenandoah Valley
of Virginia. SVAREC is dedicated to conducting various research and extension projects
focused on enhancing cattle productivity, developing forage systems, exploring small-scale
forestry, and managing wood lots. The study area, situated at coordinates 37.934711◦N and
−79.216526◦W, is centrally located and spans an elevation range of 500 to 580 m above sea
level. Encompassing over 900 acres, the center features a diverse landscape with varying
topographies, including slopes of up to 50% and flat plains predominantly covered by
pasture vegetation for cattle grazing. For a visual representation of the study location,
paddocks, and boundaries, please refer to Figure 1.
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The experimental design for this study involved three treatments, as follows: rota-
tional bale grazing, sacrifice lots, and rest paddocks. There were three replications of
each treatment.

For treatment 1 (rotational bale grazing), 15 tall fescue paddocks were used, with a
5 paddock rotation per replicate. Each paddock was approximately 2 acres in size. For
treatment 2 (sacrifice lots), there were 3 pre-existing sacrifice paddocks, each approximately
2 acres in size. Each replicate had 8 cow/calf pairs. The bale grazing period lasted for
approximately 60 days, during which, the 8 cow/calf pairs required access to a new bale
every 3 days. This resulted in a need for 20 bales per replicate.

2.2. Datasets and Preprocessing
2.2.1. Field Data

We employed a total of twelve paddocks at SVAREC for our study, which consisted
of six bale grazing paddocks, three rest paddocks, and three sacrificed paddocks. Each
paddock covered an approximate area of two acres. To gather data on forage biomass, we
conducted ground sampling on three occasions, as follows: immediately after the cattle
finished hay feeding in winter during mid-April, followed by mid-May, then early June.
For each treatment, we utilized three quadrats each measuring 0.25 m2 to collect samples of
forage biomass. These samples were obtained using a Makita Cordless Grass Shear, cutting
the vegetation down to ground level. After collection, the samples were dried in a dryer
for at least three days, then they were weighed and recorded. To ensure compatibility with
the surface area, which was covered by a Sentinel pixel (100 m2), the weight of each sample
was multiplied by 400. This conversion enabled us to establish a correlation between the
sample and the corresponding pixel for ROI (region of interest) extraction. For visualization
purposes, please refer to Figure 1, which depicts the quadrat used for ground sampling.

2.2.2. Satellite Data

The Sentinel-1A and Sentinel-1B satellites are equipped with a C-band SAR instrument
that operates at a center frequency of 5.405 GHz. The satellites have a temporal resolution
of 6 days, meaning they collect data at regular intervals. The SAR data are available
in two product categories, as follows: Ground Range Detected (GRD) and Single Look
Complex (SLC). Both products are freely accessible through the Copernicus Open Access
Hub “https://scihub.copernicus.eu/dhus/#/home (accessed on 14 August 2023)”. For
this study, we utilized three GRD products with a spatial resolution of 10 m and dual
polarization (VH-VV). These products were acquired on the following dates, corresponding
with the in situ measurement days, as follows: 21 April 2022, 27 May 2022, and 14 June 2022.

A Sentinel-1 GRD scene contains only the amplitude information of VH and VV polar-
izations. The GRD products undergo a multi-looking process, which reduces speckle noise
and changes the rectangular shape of the Sentinel-1 pixels to square pixels of 10 m by 10 m.
The preprocessing of Sentinel-1 GRD data involves several steps that were conducted on
the Sentinel Application Platform (SNAP), a freely available software with a user-friendly
interface. The preprocessing steps include the satellite’s position and orientation correction,
thermal and border noise removal, radiometric calibration, speckle filtering, range doppler
terrain correction, and conversion of image values to (dB) for better visualization and inter-
pretation. More details about the specific steps and parameters used in the preprocessing
workflow can be found in the literature and technical documentation [31].

The Sentinel-2 mission consists of two multispectral satellites, Sentinel-2A and Sentinel-
2B. These satellites are equipped with optical sensors capable of capturing images in
13 spectral bands, ranging from visible–infrared to shortwave infrared. With a temporal
resolution of 5 days, Sentinel-2 provides frequent and up-to-date data for various real-time
applications. The spectral bands of Sentinel-2 products have different spatial resolutions,
such that the four bands—blue, green, red, and near-infrared (NIR)—have a pixel size
of 10 m. There are also three vegetation red edge bands, a narrow NIR band, and two
shortwave infrared (SWIR) bands with a pixel size of 20 m. Additionally, there are coastal
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aerosol, water vapor, and SWIR/cirrus bands with a pixel size of 60 m. We removed
the coastal aerosol, water vapor, and SWIR/cirrus bands from the Sentinel-2 datasets to
enhance the relevance and accuracy of the analysis by focusing on the spectral bands that
are most informative for vegetation and biomass assessments.

In this study, we utilized three cloud-free products in level-1C format from Sentinel-2,
featuring a spatial resolution of 10 m. Preprocessing of the Sentinel-2 images with level-1C
format typically involves three essential steps, as follows: applying a scale factor to image
values, radiometric calibration, and interpolation. By applying a scaling factor of 0.0001, the
image values in each spectral band are converted into reflectance values ranging from 0 to 1.
This scaling factor ensures that the image values consistently and accurately represent the
reflectance of the Earth’s surface. Second, radiometric calibration is performed to correct
any sensor-specific variations or biases in the image data, ensuring precise and reliable
radiometric measurements. Lastly, interpolation is applied to standardize the pixel size
across all spectral bands, enabling seamless integration and analysis. These preprocessing
procedures significantly enhance the quality and consistency of Sentinel-2 imagery, making
it well-suited for research and applications in various fields [32].

In this study, we utilized the S2cor v2.11 toolbox via SNAP software (available at
the following link: http://step.esa.int/main/hirdparty-plugins-2/sen2cor, accessed on
14 August 2023) to conduct all the recommended preprocessing steps. For more detailed
information about the Sen2Cor Toolbox and its functionalities, refer to the link [33].

3. Methodology
3.1. Variables and ROI Extraction

Figure 2 presents a flowchart depicting the proposed methodology employed in this
study. The data preparation and preprocessing steps were described in the previous sections.
As illustrated in the figure, the next step involves the extraction of ROIs. This entails generating
various spectral indices from the Sentinel-2 images, SAR features from the Sentinel-1 images,
and extracting the corresponding variable values for each ground sample.

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 23 
 

 

time applications. The spectral bands of Sentinel-2 products have different spatial resolu-
tions, such that the four bands—blue, green, red, and near-infrared (NIR)—have a pixel 
size of 10 m. There are also three vegetation red edge bands, a narrow NIR band, and two 
shortwave infrared (SWIR) bands with a pixel size of 20 m. Additionally, there are coastal 
aerosol, water vapor, and SWIR/cirrus bands with a pixel size of 60 m. We removed the 
coastal aerosol, water vapor, and SWIR/cirrus bands from the Sentinel-2 datasets to en-
hance the relevance and accuracy of the analysis by focusing on the spectral bands that 
are most informative for vegetation and biomass assessments. 

In this study, we utilized three cloud-free products in level-1C format from Sentinel-
2, featuring a spatial resolution of 10 m. Preprocessing of the Sentinel-2 images with level-
1C format typically involves three essential steps, as follows: applying a scale factor to 
image values, radiometric calibration, and interpolation. By applying a scaling factor of 
0.0001, the image values in each spectral band are converted into reflectance values rang-
ing from 0 to 1. This scaling factor ensures that the image values consistently and accu-
rately represent the reflectance of the Earth’s surface. Second, radiometric calibration is 
performed to correct any sensor-specific variations or biases in the image data, ensuring 
precise and reliable radiometric measurements. Lastly, interpolation is applied to stand-
ardize the pixel size across all spectral bands, enabling seamless integration and analysis. 
These preprocessing procedures significantly enhance the quality and consistency of Sen-
tinel-2 imagery, making it well-suited for research and applications in various fields [32]. 

In this study, we utilized the S2cor v2.11 toolbox via SNAP software (available at the 
following link: http://step.esa.int/main/hirdparty-plugins-2/sen2cor, accessed on 14 Au-
gust 2023) to conduct all the recommended preprocessing steps. For more detailed infor-
mation about the Sen2Cor Toolbox and its functionalities, refer to the link [33]. 

3. Methodology 
3.1. Variables and ROI Extraction 

Figure 2 presents a flowchart depicting the proposed methodology employed in this 
study. The data preparation and preprocessing steps were described in the previous sec-
tions. As illustrated in the figure, the next step involves the extraction of ROIs. This entails 
generating various spectral indices from the Sentinel-2 images, SAR features from the Sen-
tinel-1 images, and extracting the corresponding variable values for each ground sample. 

 

Figure 2. Flowchart of the method proposed in this study.

http://step.esa.int/main/hirdparty-plugins-2/sen2cor


Remote Sens. 2023, 15, 5014 6 of 23

Table 1 summarizes all the independent variables extracted from Sentinel-1 and
Sentinel-2 images. As can be seen, in addition to the spectral bands of Sentinel-2 im-
ages, we generated six spectral indices of NDVI, MNDVI, GNDVI, AVI, GCI, and SIPI using
certain mathematical equations from previous studies. Table 2 provides the equations for
these spectral indices.

Table 1. A summary of all the variables extracted from both Sentinel-1 and Sentinel-2.

Data Source Variable Description

Sentinel-2 Band 2 Blue (460–520 nm)
Band 3 Green (540–580 nm)
Band 4 Red (650–680 nm)
Band 5 Red edge 1 (700–710 nm)
Band 6 Red edge 2 (730–750 nm)
Band 7 Red edge 3 (770–790 nm)
Band 8 NIR-1 (780–900 nm)

Band 8A NIR-2 (860–880 nm)
Band 11 SWIR-1 (1570–1660 nm)
Band 12 SWIR-2 (2100–2280 nm)
NDVI Normalized Difference Vegetation Index

MNDVI Mid-infrared Normalized Difference Vegetation Index
GNDVI Green Normalized Difference Vegetation Index

AVI Advanced Vegetation Index
GCI Green Coverage Index
SIPI Structure Intensive Pigment Index

Sentinel-1 VH Amplitude of VH polarization
VV Amplitude of VV polarization

VH/VV A ratio of the two types of polarization

In the Normalized Difference Vegetation Index (NDVI), the difference between the
near-infrared (NIR) and red spectral bands, which is sensitive to vegetation’s chlorophyll
content and photosynthetic activity, is quantified. NDVI strongly correlates with vegetation
greenness and biomass, making it a valuable indicator for estimating pasture biomass [34].

The Modified Normalized Difference Vegetation Index (MNDVI) is a modification of
NDVI, in which the green band is incorporated instead of the red band. The saturation effect
in dense and highly productive vegetation is reduced, improving the index’s sensitivity
to changes in biomass [35]. The Green Normalized Difference Vegetation Index (GNDVI)
is similar to NDVI, but it uses the green band instead of the red band. It is particularly
useful in areas with vegetation stress or senescence, as it is less affected by factors such as
soil background and leaf pigments other than chlorophyll [36]. Regarding the Advanced
Vegetation Index (AVI), the red, near-infrared, and blue bands are combined, providing
enhanced vegetation vigor and biomass sensitivity by considering variations in the canopy
structure and leaf area [37].

Table 2. The spectral indices used in this study.

Spectral Index Equation Reference

NDVI (ρ NIR − ρRed)/(ρNIR + ρRed) [38]
MNDVI (ρ MNIR − ρRed

)
/(ρMNIR + ρRed) [38]

GNDVI (ρ NIR − ρGreen)/(ρNIR + ρGreen) [39]
AVI (ρNIR ∗ (1 − ρRed) ∗ (ρNIR − ρRed))

0.3 [40]
GCI (ρNIR/ρGreen)− 1 [41]
SIPI (ρ NIR − ρBlue)/(ρNIR − ρRed) [42]

The Green Chlorophyll Index (GCI) is a spectral index that focuses on the green band,
and it provides an estimate of the chlorophyll content in vegetation. It is useful for assessing
the health and physiological condition of vegetation, which is directly related to biomass
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production [42]. In addition, the Structure–Insensitive Pigment Index (SIPI) characterizes
the photosynthetic activity and pigment concentration in vegetation. It is less influenced
by variations in canopy structure, and it provides a more direct measure of vegetation
productivity and biomass [43].

On the other hand, information from the Sentinel-1 images, VH and VV polarizations,
as well as their amplitude ratio, can be valuable for the biomass estimation models. SAR
data, captured by Sentinel-1 satellites, provide insights into the backscattering properties of
the vegetation structure, which can be correlated with biomass content. Many studies have
demonstrated the significance of SAR variables extracted from Sentinel-1 in aboveground
plant biomass estimation [28,44,45].

By incorporating these SAR variables with the spectral indices, the models can leverage
both optical and SAR data to estimate pasture biomass. In this study, we used QGIS
software to facilitate the processing of these variables and the extraction of their values
for each ground sample, enabling their integration into the biomass estimation models. In
total, there were 19 independent variables, including spectral indices and SAR variables,
and biomass as the dependent variable for each sample, which provided a comprehensive
set of inputs for the modeling process.

3.2. Machine Learning Algorithms

Based on the literature [7], we decided to compare the performance of three of the
most widely used machine learning techniques for the task of biomass estimation, as
follows: Random Forest (RF), Support Vector Regression (SVR), and Artificial Neural
Networks (ANN).

These three techniques have been extensively studied and applied in various fields,
including remote sensing, agriculture, forestry, and environmental science. Our goal was to
evaluate their effectiveness in estimating biomass, which is a critical parameter in assessing
forest health, carbon sequestration, and ecological studies.

Through this comparative analysis, we aim to provide valuable insights into the
strengths and weaknesses of RF, SVR, and ANN for biomass estimation, helping researchers
and practitioners make informed decisions when selecting a machine learning technique
for their specific applications in this domain.

3.2.1. Random Forest (RF)

Random forest (RF) regression, proposed by Ho Tin Kam Ho [46], is a nonparametric,
supervised, and ensemble algorithm in machine learning that is constructed using a set
of decision trees. The use of group learning techniques and multiple decision trees to
predict (compared with the use of a single model) enables RF to obtain satisfactory and
acceptable results, which is why RF has been widely used by researchers for regression and
classification problems [47–49].

The main purpose of this algorithm is to create a forest by combining multiple decision
trees, which is often conducted using the bootstrap aggregation or bagging method [50].
The most significant advantage of RF is that the algorithm resists overfitting effects, which
results from importing a large number of features, and is therefore not required to preselect
features when training a model using RF [51]. Another significant advantage of RF is
that the algorithm resists overfitting effects which result from importing many features.
Therefore, preselecting features when training a model using RF is not required [51].

Furthermore, RF has two distinct advantages over other statistical models, as follows:
relative robustness against noise and the ability to recognize optimal and informative
features [52]. RF can achieve its best performance even if too many features or ineffective
features are included in the input vector. The algorithm’s performance depends entirely
on the parameters that experts must predefine for the design or training of the forest. The
grid search in the RF model is focused on two key parameters, as follows: ‘n_estimators’
and ‘max_depth’. ‘n_estimators’ refers to the number of decision trees in the random forest
ensemble, whereas ‘max_depth’ represents the maximum depth allowed for each decision



Remote Sens. 2023, 15, 5014 8 of 23

tree. In this study, we used the grid search strategy of the Scikit-learn package programmed
using Python. Table 3 shows the values determined for two parameters of ‘n_estimators’
and ‘max_depth’ in the RF model.

Table 3. The inner parameters of the machine learning algorithms defined in the grid search strategy.

Model Parameters Type or Values

SVR
Kernel Type Linear, polynomial, and radial basis function (RBF)

Penalty factor 10, 100, 1000

RF
max_depth 4, 5, 8

n_estimators 10, 20, 40, 50

ANN

Epochs 10, 20, 30, 50, 500
Optimizer SGD, RMSprop, Adagrad, Adam, Nadam
Initializer ecun_uniform, normal, he_normal

Number of Neurons 50, 25, 10, 8, 7, 5, 3
Activation function Relu, linear, Tanh

3.2.2. Support Vector Regression (SVR)

The support vector machine (SVM), proposed by Vapnik in 1995, is a powerful, robust
supervised algorithm that is used for classification and regression problems. The robustness
in its ability to minimize structural risk, its ability to solve both linear and nonlinear
problems, and its effectivity and efficiency when applied to large dimensional feature
spaces and a low number of samples are some advantages of the SVM algorithm, which
motivated us to implement it in this study.

Appropriately setting the SVR meta-parameters, the loss function, and the error
penalty factor C determines the quality of the SVR models. Additionally, the choice of
kernel function has a significant effect on the final models. In this study, we focused
on tuning two key parameters, as follows: the kernel type and the penalty term (C). To
optimize these parameters, we created a grid of different types for the kernel, including
linear, radial basis function (RBF), polynomial kernels, and different penalty terms of 10,
100, and 1000 (Table 3).

3.2.3. Artificial Neural Network (ANN)

Artificial neural networks are nonparametric and supervised machine learning meth-
ods that attempt to imitate the pattern of information processing in a human brain to model
complicated problems for predictions or decisions [53]. The advantages of neural networks
over other regression models include the ability to model nonlinear or unknown relation-
ships between variables, robustness in dealing with noisy inputs, the ability to generalize
input variables, and the lack of need for variable-specific assumptions. On the other hand,
training an optimal model of this kind is complex, it is sensitive to overfitting effects, and
designing a sufficient architecture for this type of model are some of the disadvantages of
neural network models that affect the algorithm’s performance [54].

In this study, we utilized the TensorFlow package, programmed in Python, to design
a multi-layer perceptron neural network. The reason that we chose TensorFlow over the
MLPRegressor in Scikit-learn is that TensorFlow provides a more flexible and powerful
platform for deep learning, allowing you to build and train a wide range of neural network
architectures beyond MLPs. We could therefore customize a number of hidden layers,
activation functions, initial weight initializers, optimizers, and the number of neurons
in each layer, and we could run a sufficient number of ANN models using a grid search
strategy. Table 3 shows all the parameters defined in the ANN model using the grid
search strategy.
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3.3. Model Evaluation Criteria

To quantitatively validate the performance of models, three statistical criteria of R2,
the root mean square error (RMSE), and the correlation value between the estimated and
measured biomass were used [47]. These three criteria are formulated as shown below:

R2 =

[
1
N

∑N
i=1
[
(Pi − P)

(
Qi − Q

)]
σpσo

]2

(1)

RMSE = (
1
N

N

∑
i=1

[Pi − Qi]
2)

1/2

(2)

r =
∑N

i=1 (P i − P)
(
Qi − Q

)√
∑N

i=1 (P i − P)2
√

∑N
i=1 (Q i − Q)2

=
1

N − 1

N

∑
i=1

(
Pi − P
δP

)(
Qi − Q
δQ

)
(3)

where N is the number of observations, Qi is the observed values, Pi is the estimated values,
Q is the mean of the observational values, P is the mean of the estimated parameter, δQ is
the standard deviation of the observations, and δP is the standard deviation of the estimated
values. Conceptually, higher values of R2 and r (close to 1), and a lower value of RMSE
(close to 0), are desirable, and they could indicate the better performance of models. It
should be noted that model performance and the estimation results are severely affected
by samples, which are selected for training the models. Therefore, the values of R2, r, and
RMSE could change when training different subsets of the dataset. To ensure that the
validation is robust, a K-fold cross validation approach was performed, which is highly
recommended when using machine learning models [55].

3.4. Feature Importance Evaluation Using SHAP

In this study, we employed SHAP (Shapley Additive exPlanations) methods as part of
our approach when evaluating variable importance in the models. SHAP values, derived
from game theory principles, were utilized to assess the contribution and effect of each
feature on the model output. By treating each feature as a player in a game and calculating
their respective Shapley values through an extensive iteration process, we obtained a
comprehensive understanding of the global interpretability of the models. This approach
allowed us to quantitatively determine the degree to which each predictor or variable
positively or negatively influenced the target variable. To visualize the results, we utilized
two Python functions, namely, variable importance plots and summary plots; this enabled
a clear and concise representation of the variables’ contributions. By leveraging SHAP
as an explainable machine learning technique, we were able to provide in-depth insights
into the significance and impact of different variables in our models, thus enhancing the
interpretability and transparency of our research findings.

4. Results and Discussion
4.1. Time Series Analysis of SAR and Spectral Variables

In this study, the temporal dynamics of pasture plants were investigated in terms
of their structural and spectral characteristics over a three-month period from April to
June (Figure 3). During this period, significant changes were observed in the biomass
and spectral properties of the pasture. In April, the biomass was minimal, indicating
limited vegetative growth. However, from April to May, the pasture experienced rapid
growth, reaching its peak greenness in mid-May, which corresponded with the second
sampling period. Subsequently, between May and June 10, although the biomass continued
to increase, the pasture started to exhibit a reduction in greenness. This phenomenon can
be attributed to the maturation of the pasture plants, resulting in greater volumetric and
structural density.
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To examine these temporal changes, a comprehensive analysis was conducted using
both optical and synthetic aperture radar (SAR) data. The reflectance values from the
spectral bands of optical images and the amplitude changes in VH and VV polarizations
from SAR data were analyzed. The integration of optical and SAR data allowed for a
more comprehensive understanding of the structural and spectral variations in the pasture
over time.

Figure 3 presents the results of this analysis, illustrating the temporal variability of the
reflectance values and polarization. The findings highlight the distinct patterns and trends
observed during the three-month period, shedding light on the dynamics of the pasture’s
structural development and spectral response.

It has been observed that in the areas devoid of vegetation or biomass (or with very
low biomass (in April)), the specular mechanism exhibits a higher probability of occurrence
compared with other mechanisms, specifically in the bale grazing paddock, which has
lower biomass in April compared with the other two paddock types.

This particular mechanism is characterized by relatively lower backscattering coeffi-
cient values in the Sentinel-1 SAR channels (Figure 3d shows where the VV polarization has
a lower amplitude in April). Conversely, when changes in plant biomass occur, the volume
type mechanism becomes dominant. This demonstrates that the canopy structure and den-
sity of grasslands influence the amplitude of backscattering measured by the sensor. This
finding is also highlighted in numerous studies where they have harnessed the temporal
variations in backscattering coefficients to facilitate various applications, including when
monitoring plant phenology, the classification of crops [28,56], the estimation of the leaf
area index (LAI) [57], and the detection of mowing events [29] in grassland areas. These
studies highlight the significance of utilizing SAR imagery to gain insights into vegetation
dynamics and land surface changes in diverse grassland ecosystems [28].

However, the amplitude of VH and VV polarization in each paddock varies in terms
of their difference in existing biomass in April, their soil texture, and management practices.
For example, in Figure 3e, it is evident that in the rest paddock where the pasture is left
undisturbed, the VV and VH polarization values show moderate to high backscattering
amplitudes in April compared with the next two months. This is because the vegetation in
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a rest paddock tends to have relatively higher biomass and density, resulting in increased
scattering of the radar waves.

From this figure, we can see that the VH and VV polarization in pastures decreases in
the May and June months. The reduction in VH and VV amplitudes in the rest paddock
during May and June is attributed to vegetation dynamics and structural changes over
time. In April, when the pasture is in its early growth stage, the vegetation density and
biomass are relatively low. As the vegetation progresses into May and June, it undergoes
active growth and development, resulting in increased biomass and a denser vegetation
canopy. The increase in biomass and vegetation density leads to more absorption and
scattering of the radar waves, and a reduction in VH and VV amplitudes. In addition, the
denser vegetation canopy absorbs and attenuates a more significant portion of the radar
signal, resulting in reduced backscatter returns. These findings were investigated by Sinha
et al. [58]. They conducted a comprehensive analysis of VH and VV polarization in biomass
estimation, showing that the canopy can absorb radar signals and cause a reduction in the
amplitude values.

Additionally, as the vegetation becomes more voluminous and structurally dense, the
radar waves interact more with various vegetation components, such as leaves, stems, and
branches. These interactions further contribute to the reduction in VH and VV amplitudes.
Such results were also found in [59], during the monitoring of winter wheat, and, where
the backscattering coefficients derived from Sentinel-1 were found to be highly sensitive to
the crop structures.

Based on our ground sampling observations, the biomass volume in either bale graz-
ing or sacrificed paddocks increased between April and May. According to the figure, the
backscattering coefficient values in the VH and VV channels for both bale grazing and
sacrificed paddocks exhibited similar changes (an increase) over three months, indicating
comparable plant biomass variations. Ground observations confirmed that the biomass
levels in these paddocks increased compared with April. However, they did not reach a
sufficiently high density that would result in volume scattering in SAR images. Instead, the
interaction between the Earth and the biomass gave rise to a probable double bounce mech-
anism, leading to higher amplitudes in the VH and VV channels. This is consistent with
the observed increase in backscattering coefficient values for bale grazing and sacrificed
paddocks in May, which can be attributed to the influence of the scattering mechanism.
Figure 3 provides visual evidence of these trends.

In Figure 3, spectral analysis of the paddocks over three months shows significant
changes in reflectance values in all the spectral bands. In almost all paddocks, the highest
reflectance in three bands of blue, green, and red occurred in April, when there was a low
amount of biomass on the farm (spare biomass), and there was no light absorption at the
top of the pasture. However, when the vegetation texture changes from sparse to dense,
the spectral behavior of aboveground biomass is entirely diversified. This is because a
dense and voluminous pasture, regardless of paddock type, tends to absorb and scatter
more incoming light, reducing the amount of light reflected. As a result, the reflectance
values in the RGB bands may appear lower compared with areas that have lower biomass
or sparse vegetation. This lower reflectance is attributed to the dense vegetation’s increased
absorption and scattering of light, leading to a reduction in the amount of light reflected
back to the sensor.

The spectral signatures in Figure 3 show low reflectivity in VRE2, VRE3, and NIR
bands in the image captured in April. In contrast, in the VRE bands, the maximum
reflectivity occurred in May, when pastures had their highest greenness. These findings can
also be seen in [60], where the reflectance variability in Sentinel-2 spectral bands was used
to map seasonal variations of grazing land aboveground biomass. Schwieder et al. [61]
used the reflectance changes in NIR and VRE spectral bands over time to monitor the
biophysical characteristics of grassland pasture. We could find the same variability in
reflectance values of the NIR band in our analysis. From Figure 3a–c, the NIR band can be
introduced as a suitable variable showing high variability among all three paddocks. The
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significant reflectance changes in the NIR band occur between April to May (due to the
substantial change in biomass from sparse to dense on the surface from April to May).

The reflectance values of the paddocks in these spectral bands of VRE3, NNIR, and
SWIR1 are almost the same between May and June, when the changes in biomass are
beyond only structural and volumetric. This finding, called saturation tendency, has been
reported in many previous studies [27,62,63] and confirms that the spectral variables,
whether spectral indices or reflectance values, insufficiently contribute to biomass esti-
mation. Therefore, integrating the dataset could be a valuable source of information for
biomass estimation in grassland areas. The study by Wang et al. is the only study that has
specifically used the integration of Sentinel-1 and Sentinel-2 for biomass and LAI estimation
in grassland areas [28]. They showed that integrating Sentinel-1 and Sentinel-2 has high
potential in biomass estimation and LAI prediction in grassland areas.

4.2. The Evaluation of Machine Learning Algorithms

Table 4 shows the performance of SVR models implemented by different inner pa-
rameters. The optimal model trained by the RBF kernel, and the penalty term of 10 more,
accurately estimated pasture biomass. On the other hand, [64] estimated the grassland
biomass using a support vector machine as one of the nonparametric algorithms. Both stud-
ies reported the same results, demonstrating the high potential of the model that combines
the Sentinel-2 dataset and the support vector machine algorithm [64]. However, the SVR
model trained in this study outperformed these two studies. This could be due to the addi-
tion of the SAR variable extracted from Sentinel-1 images to the SVR model as a valuable
source dataset associated with pasture structure. Regarding tuning the inner parameters of
SVR models, our model should be compared with the study by Mercier et al. [65]. They
tuned the hyperparameters of the SVR model, including the kernel type and C parameter,
using the tune function in the R programming language. As a result, the optimal model in
Mercier could perform the biomass estimation with an RMSE = 138.65 g/m2, similar to the
results obtained from our optimal SVR model regarding RMSE value.

Table 4. The numerical values of evaluation criteria obtained by SVR models.

Parameters Evaluation Criteria

Kernel Penalty Term R2 RMSE (Kg/100 m2)

Linear
C = 10 0.42 12.60
C = 100 0.33 13.66

C = 1000 0.28 16.56

Polynomial
C = 10 0.28 33.82
C = 100 0.18 53.59

C = 1000 0.12 54.23

RBF
C = 10 0.6 10.86
C = 100 0.38 14.01

C = 1000 0.37 14.16

The SVR model trained using the RBF kernel demonstrated a relatively acceptable
performance in terms of biomass estimation. The best SVR model was trained using
the RBF kernel and a penalty term of 10, as it could predict the biomass with an RMSE
of 10.86 Kg/100 m2, an R2 of 0.6, and correlation of 0.79. The linear and RBF kernels
performed significantly better than polynomials. Moreover, as the value of C increased
from 10 to 1000, the RMSE and R2 change indicate that the models trained with a smaller
value of C show more accurate estimations.

Figure 4 presents the error bar plot and scatterplot depicting the relationship between
observed and estimated values obtained from implementing the model on the testing
samples. The error bar plot reveals discrepancies between the model predictions and
the actual values. Notably, the model exhibits underestimation errors for samples with
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biomass values exceeding 40 kg, whereas overestimation errors are observed for samples
with values below 40 kg. To further evaluate the model’s performance, we considered the
slope and intercept parameters of the line fitted to the scatterplot. The computed values
for the slope and intercept are 0.81 and 5.8, respectively. These values indicate that the
support vector regression (SVR) model did not achieve high accuracy and estimation, as
ideal models typically have slope values close to 1 and intercept values close to 0. Tree-
based learning tools, such as random forest and XGBoost, are frequently used for biomass
estimation in grassland areas. Chunchua et al. compared the performance of random forest
and XGBoost algorithms in the aboveground biomass estimation of grassland in Shengjin
Lake wetland [66]. The model developed by RF and XGBoost could robustly and efficiently
perform and estimate biomass with RMSE = 126.571 g/and RMSE = 112.425 g/, showing
that XGBoost, by contrast, performed better. On the other hand, the RF model trained in
this study estimated the biomass at 9.9 kg/pixel, which indicates its better performance in
terms of RMSE value. In [65], Mercier et al. also used an optimized RF by grid search, but
the model performed the estimation with R2 = 0.49 and RMSE = 181.71 g/, which indicates
a lower accuracy than our RF model. In this study, we used the grid search strategy for
tuning the number of estimators and maximum depth. Table 5 shows the results of the RF
model with different parameters. By increasing the number of estimators from 10 to 20,
the error of biomass estimation decreased to 9.9 kg, compared with 11.5 in the SVR model,
indicating an improvement in model performance. This conclusion is also supported by
Chunchua [66], whose study used 500 trees as the optimal model estimators. The primary
difference between our model and the Chunchua model is that the RF model should not be
complicated. In our model, there was no significant improvement in model performance
when more estimators (40 estimators) were added to the model. This shows that adding
more estimators creates a complicated and extensive model, and it does not guarantee
significant improvement. Therefore, to avoid designing a complex model which might
also increase the probability of overfitting, we propose that the random forest model with
20 estimators is the best model.

The maximum depth of our model alternated between three values of 4, 5, and 8,
and the maximum depth of 4 was introduced as the optimal parameter in the RF model.
By changing this parameter, no significant improvement could be seen in the algorithm’s
performance, and the final RF model was thus trained with a maximum depth of 4 and
20 estimators. This model could estimate biomass values with an RMSE = 9.6 kg and
R2 = 0.66, and thus, it outperformed the SVR model. The better performance of the RF
model is also evident from the error bar plot shown in Figure 5, wherein the estimated
values are much closer to the observed values.
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Figure 4. (a) Error bar plot and (b) scatterplot of observed and estimated values obtained by the
optimal SVR model.
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Table 5. The numerical values of the evaluation criteria obtained by RF models.

Parameters Evaluation Criteria

N-estimators Max_Depth R2 RMSE (Kg/100 m2)

10
4 0.58 11.57
5 0.59 11.42
8 0.54 12.04

20
4 0.66 9.63
5 0.66 9.97
8 0.63 10.42

40
4 0.64 9.64
5 0.69 9.88
8 0.69 9.58
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Figure 5. (a) Error bar plot and (b) scatterplot of observed and estimated values obtained by the
optimal RF model.

In Figure 5, the fitted line between the observed and estimated values has a slope of
0.96 and an intercept of 0.18, showing that RF outperforms the SVR model. Furthermore,
the error bar plot in Figure 5 shows that the RF model underestimates the test samples with
biomass values greater than 40 kg, and it overestimates the samples with biomass values less
than 40 kg, which cannot be a reliable estimation. The underestimation of the RF algorithm
in samples with large biomass values was also reported in [66]. This study suggested that
XGBoost could partly solve the problem of underestimation and overestimation, but the
mapping results showed that only some issues were completely resolved. As a result, we
suggested using a neural network model to compare the performance of ANN models
when dealing with the underestimation and overestimation of biomass.

Although there are many publications on using ANN for the biomass estimation
of grassland areas, only one or two studies have specifically applied the integration of
Sentinel-2 and ANN algorithms for biomass estimation [67–69]. For example, Chen et al.
(2021) [69] estimated the biomass value in Tasmanian grassland areas. They built a multi-
layer perceptron (MLP) neural network model trained with two hidden (middle) layers,
64 nodes, and a rectified linear activation function [69]. They optimized the model using an
Adam optimizer with a learning rate of 0.001 in 3000 epochs. The model could estimate
the biomass value with RMSE = 356 kg/ha. The ANN model in this study was designed
with the parameters resulting from the grid search strategy, which includes two hidden
layers with 128 nodes in the first layer, 15 nodes in the second layer, tanh, and ReLu
activation functions. The Adam optimizer could train this model with a learning rate of
0.001 in 1000 iterations and 500 epochs. The ANN model estimated the biomass with an
RMSE of 6.88 kg in the standard area unit, which performed significantly better than SVR
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and RF models, and it could reach potential accuracies of 400–700 kg/h, as reported in
previous studies.

When training the ANN model, the number of layers and neurons are two essential
parameters that must be considered to reduce the algorithm’s complexity. Adding more
layers with neurons for full connectivity between the layers increases the probability of
overfitting occurring, and the model becomes less generalizable and reliable, especially
when there are few samples for training. Therefore, in contrast with the ANN model
developed by Chen et al., instead of adding more nodes in the hidden layers, we designed
our model with only 15 nodes, using far fewer than Chen’s model. Figure 6 displays the
convergence rate of training and testing the neural network model, which has a similar
trend over 500 epochs, demonstrating there is no overfitting or underfitting in the ANN
model of this study. The ANN model outperforms the RF and SVR models, which is also
evident from the error bar plot and scatterplot in Figure 6. The fitted line in the scatterplot
and error bar plot demonstrates the closeness of the observed and estimated values from
the neural network model. The line has a slope and intercept of 1 and 0.73, respectively,
which are values close to 1 and 0. We used all three optimal SVR, RF, and ANN models to
generate a biomass map over April, May, and June. Figure 7 presents biomass maps of the
study area in April, May, and June.
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The biomass mapping results obtained from the artificial neural network (ANN)
exhibit a discernible growth pattern and a consistent increase in biomass volume from
April to June, as indicated by the range of values on the legend. In contrast, the random
forest (RF) model demonstrates an inadequate performance in terms of capturing the
temporal growth pattern of the pasture during this period. Furthermore, the RF model fails
to depict the spatial variation in biomass across the different paddocks of the study area.
On the other hand, the support vector regression (SVR) model produces a biomass map
that differs somewhat from the other two models. However, the quantitative evaluation of
the SVR model reveals a tendency to underestimate biomass samples, particularly those
collected in June. This weakness is also reflected in the biomass maps, where the maximum
value on the legend does not correspond with the expected biomass volume. Despite
this limitation, the SVR model successfully maps the variation in biomass across various
locations (paddocks) within the study area.
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4.3. Feature Importance Evaluation Using SHAP

Figure 8 illustrates the statistical estimates of SHAP values for features in the ANN
model. Figures 9 and 10 present the SHAP values for features in the RF and SVR models,
respectively. By comparing these results with previous studies, we can gain further insights
into the importance of spectral variables in biomass estimation using multispectral imagery.

Regarding the ANN model, Figure 8 displays the statistical estimates of SHAP values,
and it presents the importance of features in descending order. The blue band is the most
important, whereas the VRE1 variable is deemed the least significant. The VH and VV
polarizations are also identified as being informative features of the ANN model. These
findings align with our initial assumptions from the time series analysis, where these
features exhibited substantial variability over the three months in the three paddocks. This
finding was also mentioned by Richard et al. [44], who found that Sentinel-1 polarization is
responsive to pasture biomass variation.

The summary plot in Figure 8 provides further clarity on the impact of each variable
on the ANN model predictions. For example, variables such as blue, SWIR1, VRE2, VH,
and VV demonstrate a negative effect, meaning that higher values of these variables lead to
a more negative impact on estimations. Conversely, green, red, and NDVI exhibit a slightly
positive effect, indicating that higher values contribute positively to the model’s estimations.

The SHAP values for features in the RF model are shown in Figure 9. The horizontal
bar chart shows that the first four variables of blue, green, VV, and NNIR have greater
importance than other variables in the RF model. The blue, VV, and green bands were also
significant in the ANN model.
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This result can also be seen in the summary plot in Figure 9, where the first four
variables directly impact the RF model prediction. The higher the values of these variables,
the more positive the impact on the model performance.

Figure 10 displays the SHAP values for the SVR model, providing insights into the
relative importance of different features. The horizontal bar chart reveals that the variables
blue, VRE1, VV, SWIR2, and BSR hold higher significance than the others in the RF model.
These findings align with the results shown in the summary plot in Figure 9, wherein
the positive impact of blue and VV polarization on model performance is evident and
consistent with the SHAP values observed in previous models. Conversely, variables such
as VER1, SWIR2, and BSR negatively influence the SVR model predictions. Irrespective
of the model type, the spectral variables of blue, red edge, and green bands consistently
emerge as highly informative when estimating pasture biomass. VV and VH polarizations
are also identified as the most crucial SAR variables across all models.

Overall, given the summary plots, two points should be mentioned. First, there is a
direct relationship between the SWIR1 band and biomass estimation in all three models,
whereas the SWIR2 band displayed a more diverse relationship. This discrepancy may
arise from variations in the spectral properties of the two bands and their sensitivity
to different aspects of pasture biomass, such as moisture content, vegetation structure
(regarding the type of paddocks), or soil characteristics (the impact of soil in bale grazing
and sacrificed paddocks).

Second, the red band did not emerge as a significant variable in the ANN or SVR
models. This finding suggests that the information captured by the red band may contribute
less to the estimation of pasture biomass in the study area. The reason for this is that
among the spectral bands in the visible region (red, green, and blue), the red band is the
most sensitive to spectral saturation in pasture vegetation [70]. As the biomass levels
increase, the reflectance values in the red band approach their upper limit, thus limiting its
ability to capture further variations in biomass. However, the blue and green bands are
moderately sensitive to spectral saturation in pasture biomass estimation. As the biomass
value increases, the reflectance values in the blue band approach saturation, reducing its
sensitivity to further changes in biomass.

On the other hand, the green band is relatively less sensitive to spectral saturation
in pasture vegetation. It has a more comprehensive, dynamic range and can capture
changes in biomass across a broader range of values before reaching saturation. The green
band is often considered more suitable for biomass estimation in pastures due to its lower
susceptibility to saturation effects. Thus, the green and blue bands are more significant
than the red bands, and should be selected as influential bands in the models.

5. Conclusions

In this study, biomass estimation in grassland areas was successfully performed by
employing machine learning techniques and leveraging Sentinel products. The analysis of
time series variables derived from Sentinel-1 and Sentinel-2 revealed significant temporal
variability, which was crucial for accurately estimating biomass. The artificial neural
network demonstrated the highest performance among the employed models, achieving
an impressive root mean square error of 6.88 kg. Consistently across different algorithms,
variables such as blue band, VRE, NIR, NDVI, and VH and HH polarization emerged as
critical indicators of pasture biomass estimation.

Moving forward, there are two critical avenues for further exploration. Firstly, the
models developed in this study were trained and evaluated based on observations from
specific extension farms, showcasing good accuracy. It is recommended that the general-
izability and applicability of these models are assessed on a larger or national scale. This
would provide valuable insights into the models’ performance under diverse environ-
mental and geographical conditions. Secondly, incorporating additional meteorological
variables such as precipitation and temperature, as well as soil type and texture information
derived from optical images, could enhance the model’s predictive capabilities. These
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complementary variables would contribute to a more comprehensive understanding of the
factors influencing biomass estimation.

This study presented noteworthy theoretical and practical implications in the realm of
remote sensing and biomass estimation. The research, driven by the integration of Sentinel
1 and Sentinel 2 data, advances theoretical understanding by analyzing pasture properties
across distinct paddock types, such as Bale Grazing, Sacrifice, and Rest. This innovative
approach not only enriches knowledge regarding these paddocks’ manifestations in Sentinel
imagery, but it also underscores the potential of optical and SAR data fusion for biomass
estimation. Additionally, our exploration of variable importance in various machine
learning algorithms provides new perspectives on the role of spectral and backscattering
features in biomass models. On a practical note, the research equips land managers,
policymakers, and stakeholders with detailed biomass maps, promising transformative
impacts on sustainable land management, grazing strategies, and ecological restoration.
The models’ adaptability to diverse regions and customizable algorithmic parameters mean
that they can extend their applicability to precision agriculture, land-use planning, and
addressing contemporary land management challenges.

In conclusion, integrating Sentinel-1 and Sentinel-2 data represents a valuable re-
source for remote sensing-based biomass mapping in agricultural landscapes. The resulting
biomass maps offer numerous benefits to farmers, including the improved management of
feeding systems, enhanced pasture productivity, and it can assist with making informed
assessments of financial services. Furthermore, this study lays a solid foundation for ad-
vancing biomass estimation and facilitating sustainable agricultural practices by harnessing
machine learning and remote sensing technologies.
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