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Abstract: The goal of cross-view image based geo-localization is to determine the location of a given
street-view image by matching it with a collection of geo-tagged aerial images, which has important
applications in the fields of remote sensing information utilization and augmented reality. Most
current cross-view image based geo-localization methods focus on the image content and ignore the
relations between feature nodes, resulting in insufficient mining of effective information. To address
this problem, this study proposes feature relation guided cross-view image based geo-localization.
This method first processes aerial remote sensing images using a polar transform to achieve the
geometric coarse alignment of ground-to-aerial images, and then realizes local contextual feature
concern and global feature correlation modeling of the images through the feature relation guided
attention generation module designed in this study. Specifically, the module includes two branches
of deformable convolution based multiscale contextual feature extraction and global spatial relations
mining, which effectively capture global structural information between feature nodes at different
locations while correlating contextual features and guiding global feature attention generation. Finally,
a novel feature aggregation module, MixVPR, is introduced to aggregate global feature descriptors to
accomplish image matching and localization. After experimental validation, the cross-view image
based geo-localization algorithm proposed in this study yields results of 92.08%, 97.70%, and 98.66%
for the top 1, top 5, and top 10 metrics, respectively, in CVUSA, a popular public cross-view dataset,
and exhibits superior performance compared to algorithms of the same type.

Keywords: cross-view; geo-localization; relation guided; deformable convolution; multiscale
contextual information; global spatial relations mining

1. Introduction

Image based geo-localization has drawn significant attention over the past years in the
computer vision community due to its potential applications in autonomous driving [1] and
robot navigation. Traditional image based geo-localization is normally performed in the
context where both the query images and geo-tagged reference images in the database are
taken from the ground view; however, due to the difficulty of ground image acquisition in
some areas, it is difficult to construct a reference image database covering the whole world.
Thus, this technology lacks wide applicability. Considering the dense global coverage
of satellite and unmanned aerial vehicle (UAV) imagery today, matching ground view
photos to aerial imagery is gradually becoming an increasingly popular geo-localization
approach. However, because of the considerable difference in shooting viewpoints between
ground-to-aerial images, it is difficult to effectively establish the feature correlations of
the same scene on images from different viewpoints, making this technique a challenging
scientific task since its conception.

Notably, the development of deep learning technology has provided an effective
solution for this task. Currently, most cross-view image geo-localization methods [2–4]
based on deep learning transform the problem into a metric learning task. Specifically,
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a feature extraction network is developed to extract the depth features of the images.
Subsequently, the network is trained such that the image pairs with a high matching degree
are closer and the image pairs with a low matching degree are farther away from each other.
Therefore, the extraction of robust global image feature descriptors is the key to realizing
this task.

Previous studies have shown that algorithmic networks based purely on the image
content (image appearance or semantics) without considering the geometric correspon-
dence between ground-to-aerial images are often difficult to train and perform poorly.
To reduce the feature gaps caused by cross views, Shi et al. [5–7] explored the geometric
correspondence between ground-to-aerial images. They reported that (1) horizontal lines in
the ground panorama image have an approximately constant depth and thus correspond to
concentric circles in the aerial remote sensing image, and that (2) vertical lines in the ground
panorama image have a depth that increases with the y-coordinate and thus correspond to
radial lines in the aerial remote sensing image. Based on this geometric correspondence,
they applied polar transform to the aerial remote sensing image for the transformed aerial
remote sensing image to have a geometric configuration similar to that of the corresponding
ground panorama image, thus realizing an approximate image-domain alignment between
image pairs. However, as polar transform relies completely on priori knowledge of the
corresponding geometric structures of the two views without considering the image scene
content, it can lead to serious distortion of the image content while generating a large geo-
metric deformation. In response to the above issues, a common solution is to incorporate
attention mechanisms into an algorithmic network to enhance the extraction ability of the
key features of an image. However, as these attention mechanisms generate local feature
attention through ordinary convolution with a restricted sensory field without mining
the positional layout between individual feature objects from a global perspective, it is
difficult to utilize rich structural knowledge on a global scale, which also limits the effect
enhancement of the algorithm.

In fact, in the process of cross-view image based geo-localization, effective global
structural knowledge is a beneficial information supplement, in addition to image scene
content. For example, in the process of cross-view image based geo-localization by the
human eye, in addition to comparing the features at the target location, we typically
repeatedly compare the location layout and spatial relations among the features. Therefore,
in addition to focusing on the content of the feature itself, this study also focuses on the
correlation extraction of the features, and skillfully uses the geometric structure knowledge
of the location corresponding to the features to guide the completion of image geolocation
across different views.

To better capture the spatial layout and relative positional relations between image
features and guide the generation of global image attention, we design a multiscale contex-
tual information extraction and global relation guided attention generation module based
on deformable convolution [8,9]. Based on the polar transform to realize basic alignment
in the image domain, deformable convolution is introduced to deal with the geometric
deformation of images caused by the imaging principle of ground panorama images and
polar transform of aerial images. The deformable convolution of multiple different re-
ceptive fields is used to extract rich image details and multiscale contextual association
information, which enhances the understanding of the image content and improves the
robustness and adaptability of the features. This enables the features to respond to complex
image scenes and changed perspectives. To mine global information, we establish a rela-
tion affinity matrix between feature nodes and extract the relations between each feature
node, thus realizing the modeling of global relations. Finally, the relations extracted by the
two branches are combined to guide the reweighting of different positions and to apply
different concerns. The MixVPR [10] feature aggregation strategy is also used to generate
global image feature descriptors. Through experiments, the proposed method achieves
satisfactory results for cross-view correlation datasets.

The contributions of this paper can be summarized as follows:
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(1) We propose a cross-view image based geo-localization method based on feature
relation guidance. Feature position reweighting is guided by learning the location
layout and spatial structure among the image features. Simultaneously, deformable
convolution is introduced to reduce the geometric deformation of ground and aerial
remote sensing images. This is the first cross-view image based geo-localization
method that attempts to solve the effect of geometric distortion.

(2) Multiscale contextual information extraction based on deformable convolution and a
global relations jointly guided attention generation module is designed. The module
extracts multiscale contextual information of images according to the deformable
convolution with different convolution kernel sizes, simultaneously achieving rela-
tion mining between different feature nodes using global relations awareness, and
guiding attention generation according to these two relations. Consequently, a feature
descriptor jointly characterized by contextual information and global relations is
obtained, which enhances the discriminability of the image features.

(3) The method proposed in this study outperforms other methods of the same type
on a public dataset and shows good accuracy results. We also attempt to study the
practicality of cross-view image based geo-localization methods by testing several
public algorithms on a self-built dataset.

2. Related Work

Image based geo-localization is generally regarded as an image retrieval task [11–13],
and extracting feature descriptors that are more robust to images has become the key
to achieving this task. In early cross-view image based geo-localization methods, man-
ual feature extraction operators [14] were widely used; however, the extreme differences
in perspective limited the application of this technique. In recent years, as deep learn-
ing technology gradually dominates the field of computer vision, the cross-view image
based geo-localization has also found more advanced solutions. Workman and Jacobs [15]
first introduced deep features to the cross-view matching task. They used a fine-tuned
AlexNet network on ImageNet and Places [16] to extract deep features for cross-view image
matching. Lin et al. [2] proposed the first deep learning method to achieve ground-to-
aerial geo-localization based on two Siamese CNNs. Comparative experiments demon-
strated a significant improvement in performance compared with handcrafted descriptors.
Hu et al. [17] proposed CVM-Net, which adopts the NetVLAD module [18] to aggregate
CNN feature units for the generation of discriminative image representations. In order to
bridge the huge domain gap between ground images and aerial remote sensing images,
Regmi and Shah [19] used a generative adversarial network (GAN) to synthesize aerial
view images from ground images, and then fused the features of ground images and
synthesized aerial images into descriptors for retrieval matching. Shi et al. [5–7] applied a
polar transform to aerial remote sensing images in the geometric correspondence between
ground-to-aerial images, and realized the basic geometric alignment between aerial images
and ground images.

On the other hand, as a ground panorama image has a shooting range far beyond
that of ordinary images, it can provide rich feature information for cross-view image
matching; however, at the same time, the complex background and redundant information
can cause interference to the feature extraction. Therefore, the effective extraction of
useful information and the discarding of useless information constitute a major research
focus in cross-view image based geo-localization tasks. Kin et al. [20] integrated context-
aware feature reweighting networks into their model to focus on regions that contributed
positively to matching positioning. Cai et al. [21] proposed a lightweight attention module
that introduced a context-aware feature reweighting strategy into the feature extraction
operator through spatial attention and channel attention, and improved the representation
ability of CNN features. SSA-Net [22] is a multiscale spatial attention mechanism that can
automatically select appropriate features according to the scale of different objects and
weigh important features according to location to achieve more robust feature extraction. To
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eliminate geometric deformation and content distortion caused by polar transform, a spatial-
aware feature aggregation (SAFA) attention module, which embeds the relative positions
of features into image descriptors to make it more distinguishable, was developed [5].

Compared with the existing work, we hope that the newly designed network can fully
learn the relations between image features while focusing on the image content, and use
these relations to guide the generation of attention to improve the discriminative power of
image descriptors.

3. Methods

Similar to most existing cross-view image based geo-localization methods [5,17,22],
we utilize a Siamese neural network as the overall architecture of the algorithm, as shown
in the flowchart in Figure 1. The inputs of the network contain the ground panorama image
and aerial remote sensing image after polar transform. ResNet50, based on deep residual
networks, has been widely used in a variety of feature extraction applications and has
shown convincing results in a variety of deep learning tasks [23,24]. Therefore, our feature
extraction backbone network selects the ResNet50 operator, which removes the fourth
residual block, pooling layer, and full connection layer. The Multiscale Context and Global
Relations Attention (MC_GRA) module designed in this study is added to the backbone
network. A new feature aggregation module, the MixVPR model, is also introduced to
aggregate global features. Finally, a weighted soft-margin triplet loss function is used to
train the model.
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Figure 1. Overall architecture of the algorithm.

3.1. Polar Transform

To narrow the gap in the image domain between ground and aerial images, accord-
ing to the geometric correspondence between image pairs, a polar transform is used to
preprocess aerial remote sensing images. First, the polar origin is set as the center of the
aerial remote sensing image corresponding to the geographic label, and the 0◦ direction is
selected as the north direction, corresponding to the positive direction of the y-axis on the
ground image aligned with the geographic coordinates. Subsequently, the image size after
polar transform is limited to the same value as that of the ground panorama image, and the
angle corresponding to each column of the aerial remote sensing image the polar transform
is the same as that of the ground panorama image. Finally, a uniform sampling strategy is
applied along the radial line in the aerial remote sensing image in order for the innermost
and outermost circles of the aerial remote sensing image to be mapped to the bottom and
top lines of the transformed image, respectively.
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Polar transform between the original aerial remote sensing image points
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where Sa is the size of aerial remote sensing image; Hg and Wg represent the height and
width of the target-transformed aerial remote sensing image, respectively. The aerial
remote sensing image after polar transform produces a ground-view image that respects
the scene content of the image, that is, the corresponding ground-to-aerial image pair has
approximately the same arrangement of scene objects. However, this alone is not sufficient
to completely close the domain gap between the two views, mainly because the overlap
between the image pairs is incomplete, and many features, such as the sky present in
the ground view, cannot be recovered in this manner. By exploring the principle of polar
transform and the imaging principle of ground panorama images, it was found that both
types of images have huge geometric distortion, which is reflected in the appearance of
the image as a distortion of the content, as shown in Figure 2. Figure 2a shows the real
ground panorama image, and Figure 2b shows the aerial remote sensing image after the
polar transform. This universal geometric deformation affects the generation of image
feature descriptors to a certain extent, thereby affecting the accuracy of the algorithm.
Therefore, this is a new attempt to find a suitable method for reducing geometric distortion
in cross-view image based geo-localization algorithms.
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Figure 2. Geometrically distorted ground-to-aerial image pair. (a) Ground panorama image. (b) Aerial
remote sensing image after polar transform.

3.2. Multiscale Contextual Information and Global Relations Jointly Guide the Attention
Generation Module

The multiscale contextual information and global relations jointly guide the atten-
tion generation module, MC_GRA, which includes two branches. The first branch uses
two deformable convolution kernels of different sizes to process feature images, which
not only reduces the effect of geometric deformation but also enhances the extraction of
image contextual information through changes in different receptive fields. The second
branch uses position coding to embed position layout information into image features, and
introduces a relations affinity matrix to mine the relative relations between feature nodes
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after position coding. Finally, by combining the feature relation information extracted from
the two branches, the model guide assigns weights to the features of different positions
to realize the joint representation of the image. The detailed architecture of MC_GRA is
shown in Figure 3.
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3.2.1. Multiscale Contextual Information Extraction Based on Deformable Convolution

In deep learning-based image processing tasks, the contextual information of an image
refers to the fact that the current pixel is affected by the information of its surrounding
pixels or regions. Contextual information can provide relations between the concerned
features and the surrounding features, including the layout information between the
features, to provide additional information for cross-view image based geo-localization
tasks. Therefore, a branch for contextual information extraction is added to the relation
guided attention generation module.

Influenced by the CBAM [25] spatial attention operator, we designed a contextual
information extraction operator with the same architecture (Figure 3). However, unlike
the CBAM operator, we used the deformable convolution with sizes of 3× 3 and 5× 5 to
replace the standard convolution of 7× 7 to learn the spatial attention mask. Thus, we not
only considered the scale and deformation of features, but we also achieved the purpose of
extracting the image contextual information through changes in different receptive fields.

Deformable convolution is primarily used to address the adverse effects of the geomet-
ric deformation of ground-to-aerial images. The standard conventional method typically
uses fixed geometric structures to encode feature information and then captures the recep-
tive field. However, due to the variable and irregular shape of the object, it is difficult for
this coding method to capture the appropriate receptive fields, which leads to a limited
expression ability of the network. The deformable convolution proposed in [8] allows
the sampling points to adapt according to the semantic region of the object through a
convolution kernel with deformable ability.

The traditional convolution structure is defined in Equation (3). Taking a 3× 3 con-
volution as an example, for each output c, nine positions are sampled from x, all of
which are spread out at the central position x(p0). Therefore, the output of the traditional
convolution is

y(p0) = ∑
pn∈R

w(pn)·x(p0 + pn) (3)

where p0 represents location on the feature map; R denotes a regular grid of convolution
sampling that defines the receptive field size and dilation; pn enumerates the locations in
R; w denotes the weight.
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Deformable convolution adds an offset to the traditional convolution operation to
transform the regular convolution into an irregular convolution, and the output of the
deformable convolution is

y(p0) = ∑
pn∈R

w(pn)·x(p0 + pn + ∆pn) (4)

where ∆pn is the predicted offset, and the calculation of the offset is shown in Figure 4. For
an input feature map, assuming that the original convolution operation is 3× 3, in order
to learn the offset, we first learn the offset of each pixel with another 3× 3 convolution.
The number of channels in the offset feature map shown in the figure is 2N, indicating that
each pixel is offset in the x and y directions. The calculated relative offset is then added to
the pixel index value of the original image to obtain the absolute offset of the pixel index
of the input feature map. Second, the index pixel value after the offset is obtained with
bilinear interpolation, and a new feature map is obtained. The deformable convolution is
then realized with conventional convolution.
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For the extraction of contextual information, given the input feature graph
F ∈ RH×W×C, the relational embedding graph U′ after the branch processing of contextual
information extraction can be represented as

S(F) = f c
max( f 1×1(F)) + f c

avg( f 1×1(F)) (5)

U′ = f 1×1( f 3×3
D (S(F)), f 5×5

D (S(F))) (6)

where f c
max and f c

avg denote the maximum and average pooling operators along the fea-
ture channel, respectively; f n×n represents n × n convolution; f n×n

D represents n × n
deformable convolution.

3.2.2. Global Relations Mining Module

The relation guided attention generation module designed in this study not only
uses multiscale deformable convolution to extract image contextual information but also
utilizes a global relations mining module to capture the spatial dependence between any
two positions of feature images in the self-attention mechanism. Influenced by the ideas
in [26,27], we introduce an affinity matrix of the same principle to explore the relations
between different feature nodes. The affinity matrix, also known as the association matrix,
is a statistical technique used to organize the similarities between a set of data points.
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In the global relations mining module, the relation affinity matrix provides rich global
relevant information.

The basic principles are shown in Figure 3. Given the feature graph F ∈ RH×W×C of
the input image, we take the C-dimensional feature vector of each spatial position as the
feature node, i.e., for the feature graph whose length and width are H and W, respectively,
the spatial relation mining module learns the relations between a total of N = H ×W
feature nodes. The spatial position of the feature map is raster scanned, and the label
between the feature nodes is specified as 1, . . . , N. Each feature node is then represented as
xi ∈ RC, where i = 1, . . . , N.

The relations ri,j between each pair of feature nodes (i, j) is defined as the relational
affinity in the embedding space, which is expressed as follows:

ri,j = fs(xi, xj) = θs(xi)
Tφs(xj) (7)

where θs and φs represent the embedded functions implemented with 1× 1 spatial con-
volution processing. Through a batch normalization (BN) layer and ReLU activation, the
functions are expressed as follows:

θs(xi) = ReLU(Wθ xi) (8)

φs(xi) = ReLU(Wφxi) (9)

The
(
ri,j, rj,i

)
terms are used to represent the bidirectional relations between feature

node xi and feature node xj. The relational affinity matrix Rs ∈ RN×N represents the pair
relations between all feature nodes, as shown in Figure 3. For the i-th feature node, we take
the pair relations between it and all feature nodes as the relation vector to be mined, and
stack these pair relations to obtain the attention relation features at this spatial position,
expressed as ri = [Rs(i, :), Rs(:, i)] ∈ R2N . This specific operation is performed to extract
Rs(i, :) from each feature node i according to the generated relational affinity matrix Rs,
change the number of channels to generate feature graph U′′ with the same size as the
input feature graph, and extract Rs(:, i) again to generate the feature graph U′′′ with the
same operation. The feature maps U′′ and U′′′ along the feature channel are combined to
obtain S, that is, the relation feature map obtained by the global relations mining of the
input feature map.

S = (U′′ , U′′′ ) (10)

3.2.3. Relation Guided Attention Generation

To further use the information extracted from the two relational extraction branches
to guide the attention generation, we connect the extracted contextual information and
global structure information through an embedding function to obtain the spatial relational
perception feature graph M(F):

M(F) =
[

f 1×1(U′, S
)]

(11)

where f 1×1 represents a convolution operation; the convolution kernel is 1× 1, and is aimed
at reducing the channel dimension of the feature maps to one. Subsequently, through
the modeling function, the spatial attention of each feature node is generated by the
relation feature graph M(F), which is combined with the feature node to complete the joint
representation of the feature relations. The formula used is as follows:

Ai = Sigmoid(W2ReLU(W1M(F))) (12)

F′ = Ai ⊗ F (13)
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where W1 and W2 represent the attention generation guide functions implemented using
a 1× 1 convolution and BN; Sigmoid represents the activation function; Ai is the feature
node attention diagram generated by the relation guided; ⊗ represents the multiplication
of elements.

3.3. Feature Aggregation Strategy

Global feature descriptors are mostly used in cross-view image based geo-localization
tasks to deal with sharp differences in viewpoints. Therefore, suitable feature aggregation
strategies are particularly important. In this study, we adopt the State-of-the-Art feature
aggregation strategy MixVPR [10] for the geo-localization tasks. MixVPR takes as input
the feature maps extracted from the pretrained backbone network and then iteratively
incorporates global relations into each individual feature map using multiple feature mixers
with the same structure and consisting entirely of multilayer perceptrons (MLPs), thereby
eliminating the need for local or pyramid aggregation in NetVLAD. The effectiveness and
trainability of the global descriptor are significantly improved and its principal structure is
shown in Figure 5.
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For a given input F ∈ Rc×n, after flattened, a feature mixer is used to generate an
output Z ∈ Rc×n of the same shape, which is then sent to the second feature mixer block,
and so on, until L consecutive high speeds are achieved. The formula used is as follows:

Z = FML(FML−1(. . . FM1(F))) (14)

The dimension of Z is the same as that of the extracted feature map F. To further
reduce its dimensions, two fully connected layers are added after the feature mixer to
reduce its depth (channel) and row dimensions. This operation can be considered to be a
weighted pool operation that controls the size of the final global descriptor. First, using a
depth projection, Z is mapped from Rc×n to Rd×n, as follows:

Z′ = Wd(Transpose(Z)) (15)

where Wd denotes the weight of the fully connected layer. Next, a line-by-line projection is
applied to map the output Z′ from Rd×n to Rd×r, as expressed by Equation (16).

O = Wr(Transpose(Z′)) (16)
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where Wr is the weight of the fully connected layer; the dimension of the final output O is
d× r. Finally, the global feature descriptor is output with flattening and L2 normalization.

3.4. Weighted Soft-Margin Triplet Loss

Triplet loss is often used as an objective function to find image feature embeddings
for image matching and retrieval tasks [28,29]. A triplet is composed of an anchor point,
positive (matching) example, and negative (unmatching) example. The purpose of triplet
loss is to learn a distance metric that brings a positive example closer to the anchor while
pushing negative examples far apart. Following most geo-localization methods [17], we
adopt a weighted soft-margin triplet loss [17] to train our network.

L= log(1 + eγ(dpos−dneg)) (17)

where dpos and dneg are the Euclidean distances of the positive examples and negative
examples to the chosen anchor, respectively; γ is used to adjust the loss gradient and thus
controls the convergence rate of the function.

4. Experiments
4.1. Datasets

We performed the relevant experiments using three large datasets: CVUSA [30],
VIGOR [31], and Taipei (a self-built dataset). Figure 6 shows examples of these three datasets.
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Figure 6. Three examples of cross-view datasets. Aerial images (left) and ground panorama images
(right). (a) CVUSA. (b) VIGOR. (c) Taipei.

CVUSA [28] is a cross-view image dataset that consists of ground and satellite views
aligned at the center of geographic coordinates, containing 35,532 ground-to-aerial image
pairs for training and 8884 image pairs for testing. The ground image was a panoramic
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view collected from Google Street View, while the corresponding aerial view image was
downloaded from Microsoft Bing Maps. The ground-to-aerial image pairs in the dataset
are aligned northward.

The VIGOR dataset [29] contains 238,696 ground panorama images and 90,618 aerial
images from four U.S. cities (Manhattan, San Francisco, Chicago, and Seattle). Unlike
traditional datasets, such as CVUSA [28] and CVACT [3], the VIGOR dataset assumes
that the query street-view image can belong to any position in the target area. Therefore,
the street view and satellite images in the dataset do not realize the center coordinate
alignment of geographical coordinates. In contrast, the VIGOR dataset can be adjusted
according to the difference between the center coordinates of the aerial and street-view
images; the matched image pairs were divided into positive matching and half-positive
matching (as shown in Figure 6b; the upper left satellite image is the positive satellite image
corresponding to the street-view image, and the lower left is the half-positive satellite
image). A street-view image usually corresponds to two positive and two half-positive
satellite images. As the matching image pairs are not strictly aligned in the center of the
geographic coordinates, the gap in image content is larger, and the difficulty of matching
and positioning is greater.

The Taipei dataset is a self-built dataset used in this study. It contains cross-view
image pairs of Taipei City, Taiwan, China, where the geographical coordinates of the
ground-to-aerial images are aligned at the center. However, unlike the CVUSA [28] and
VIGOR [29] datasets, the ground panorama images were acquired from an all-round 360◦

perspective. To simulate a real positioning situation by capturing street-view images with
handheld camera equipment in dense urban areas, all ground panorama images of the
Taipei dataset were obtained from a 270◦ perspective. Moreover, the shooting angle in the
vertical direction is limited, as shown in Figure 6c. Therefore, the street view content in
the Taipei dataset is very challenging; however, it is a good breakthrough for practicality
research on cross-view image based geo-localization algorithms. The dataset contained
28,530 ground-to-aerial image pairs for training and 7131 image pairs for testing.

4.2. Experimental Details

The algorithm was implemented in PyTorch using the ResNet50 [32] model of pre-
trained weights on ImageNet [4] as the backbone, and removed the fourth residual module,
subsequent pooling layer, and fully connected layer. Thus, the multiscale contextual in-
formation and global relations jointly guided the attention generation module to accept
the input of three-layer output feature maps. The value of the triplet loss function pa-
rameter γ was 10. Adam [33] was used to train and optimize the network optimizer. The
regularization strategy of weight attenuation was adopted to avoid overfitting, and the
weight attenuation coefficient was e−4. The learning rate adopted a phased learning rate
adjustment strategy; that is, the entire training process of the network was divided into
three stages. For the first 30 rounds of training, the learning rate was set to 1× 10−5, for
rounds 30− 50 of training, and the learning rate was set to 1× 10−6; for subsequent training
rounds, the learning rate was set to 1× 10−7. For the data used in the training, the size of
the aerial images was uniformly set to 256× 256, whereas the size of the ground panorama
image and the aerial images obtained after polar transform were unified to 112× 616. The
batch size B of the training was 8. In each batch, each query ground image had a unique
matching aerial image, and B− 1 unmatched aerial images. Therefore, we developed a total
of B× (B− 1) triples; similarly, for each aerial image, there was a matching ground image
and (B− 1) unmatched ground images, which also yielded B× (B− 1) triples. Thus, a
total of 2B× (B− 1) triples were constructed for each batch.

4.3. Evaluation Metric

Similar to the most widely used metrics for evaluating cross-view image based geo-
localization algorithms [3,34,35], we adopted the recall accuracy at top-K as our evaluation
metric to exam the performance of our model and computer with the same type methods
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Specifically, given a ground-level query image, it is regarded as “successfully localized” if
its ground truth aerial image is within the nearest top-K retrieved images. The percentage
of query images which were correctly localized is reported as r@K.

5. Experimental Results
5.1. Comparison with the Results of Other Related Methods

(1) Results in the CVUSA dataset: To prove the effectiveness of our proposed method,
we utilized several classical algorithms to compare the experimental results in the
CVUSA dataset. Among these, CVM-Net [17], as well as those in Workman et al. [36]
and Liu and Li [3], are more basic cross-view image based geo-localization algorithms
that focus on the construction of the feature extraction network, whereas the algorithm
by Cai et al. [21] added a spatial attention mechanism, proving the beneficial role
of the attention mechanism in the feature extraction process. However, SAFA [5],
DSM [6], and SSA-Net [22] adopt the same polar transform strategy and the idea
of an attention mechanism as in this study; therefore, the comparison of the results
better highlights the superiority of the present method. The experimental results are
listed in Table 1, and Figure 7 shows the complete recall@K plots of the experiments
of these cross-view image based geo-localization algorithms. The results show that
our algorithm achieves the best results in the top 1, top 5, and top 10 metrics, while
the metric top 1% metric is on par with that of the DSM algorithm and slightly lower
than that of the SSA-Net algorithm, which is the best in a comprehensive manner.

Table 1. Comparison of results of various methods in the CVUSA dataset.

Method
CVUSA

r@1 r@5 r@10 r@1%

Workman et al. [36] - - - 34.30
CVM-Net [17] 22.47 49.98 63.18 93.62
Liu and Li [3] 40.79 66.82 76.36 96.08
Cai et al. [21] - - - 98.30

SAFA [5] 89.84 96.83 98.14 99.64
SSA-Net [22] 91.52 97.69 98.57 99.71

DSM [6] 91.96 97.50 98.54 99.67
Ours 92.08 97.70 98.66 99.67

Note: The bold font represents the optimal value for each column, and ‘-’ indicates that the results of this method
are not available.
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(2) Results in the VIGOR dataset: As the ground-to-aerial image pairs in the VIGOR
dataset are not strictly geo-coordinate center-aligned, the method based on polar
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transform may not be suitable for processing this dataset. Therefore, we designed
two types of experiments for the algorithm based on polar transform processing and
directly matched localization. The results are compared in Table 2. For the proposed
algorithm, the accuracy of the algorithm with polar transform processing is 13% lower
than that of the algorithm with direct image matching in the top 1 metric. However,
compared with the SAFA algorithm, the accuracy of our algorithm exceeds its results
in both cases, i.e., polar transform processing and directly matched localization.
Compared with the official VIGOR algorithm, the accuracy of the proposed algorithm
exceeds it in the two indicators, in the top 5 and top 10 metrics. The complete results
of the recall@K plot are shown in Figure 8.

Table 2. Comparison of results of various methods in the VIGOR dataset.

Method
VIGOR (Same-Area)

r@1 r@5 r@10 r@1%

Siamese-VGG 18.69 43.64 55.36 97.55
SAFA+Polar [5] 24.13 45.58 - 95.26

Ours+Polar 27.54 51.16 60.88 96.78
SAFA [5] 33.93 58.42 68.12 98.24

SAFA+Mining [31] 38.02 62.87 71.12 97.63
VIGOR [31] 41.07 65.81 74.05 98.37

Ours 40.56 66.37 74.48 98.02
Note: The bold font represents the optimal value for each column, and ‘-’ indicates that the results of this method
are not available.
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(3) Results in the Taipei dataset: To verify the practicability of the cross-view image based
geo-localization methods, we used a self-built Taipei dataset for testing. The results
of this method are compared with those of two widely recognized algorithms of the
same type.

As shown in Table 3, the results of the three algorithms in the Taipei dataset are
significantly reduced compared with the other two datasets; this proves that the self-built
Taipei dataset is more challenging than other public datasets. In this study, the design of the
new algorithm, however, is still the top 1 metric compared with the other two algorithms
by 4.35% and 2.44%, respectively, and its advantages for the same type of algorithm
are verified. An experimental attempt is also made to enhance the practicality of cross-
view image based geo-localization. The complete results of the recall@K plot are shown
in Figure 9.
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Table 3. Comparison of results of various methods in the Taipei dataset.

Method
Taipei

r@1 r@5 r@10 r@1%

SAFA [5] 23.51 47.50 57.43 83.69
DSM [6] 25.42 50.32 61.57 84.87

Ours 27.86 51.43 63.54 88.74
Note: The bold font represents the optimal value for each column.
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5.2. Ablation Experiments

We designed relevant experiments to verify the effectiveness of the proposed multi-
scale contextual information and global relations that jointly guided the attention generation
module MC_GRA and the introduced deformable convolution.

(1) Role of the MC_GRA module: To verify the function of our designed MC_GRA mod-
ule, we used max pooling and the CBAM attention module to replace the MC_GRA
module in the original method. For the case of fixed algorithm parameters, the ground
panorama image and aerial remote sensing image from polar transform were used
as the network inputs. The results obtained for the CVUSA and VIGOR datasets are
listed in Table 4.

Table 4. Validation of our designed MC_GRA module in CVUSA and VIGOR datasets.

Method
CVUSA

r@1 r@5 r@10 r@1%

Baseline 59.18 80.80 87.20 97.83

CBAM [23] 88.12 96.21 97.67 99.50

Ours 92.08 97.70 98.66 99.67

Method
VIGOR (Same Area)

r@1 r@5 r@10 r@1%

Baseline 11.03 26.06 34.60 92.58

CBAM [23] 23.44 44.63 53.99 95.56

Ours 27.54 51.16 60.88 96.78
Note: The bold font represents the optimal value for each column.

As displayed in Table 4, compared with the baseline model, the attention module
designed in this study improves the top 1 metric by 33% and 16% in the cross-view datasets
of CVUSA and VIGOR datasets, respectively, and improves the top 1 metric by 3.96% and
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2.78%, respectively, compared to the CBAM attention mechanism. This proves that the
module designed in this paper has a significant effect on improving the accuracy of the
algorithm. The complete recall@K plot is shown in Figure 10.
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(2) Role of deformable convolution: In this algorithm, we innovatively introduce de-
formable convolution to deal with the deformation caused by the panorama images
imaging process and polar transform of the aerial remote sensing image. To verify
the role of deformable convolution, we replaced the deformable convolution with a
standard convolution of the same size in the MC_GRA module designed in this study,
and conducted training and testing on two cross-view image datasets, CVUSA and
VIGOR. The results are summarized in Table 5.

Table 5. Validation of deformable convolution in CVUSA and VIGOR datasets.

Method
CVUSA

r@1 r@5 r@10 r@1%

MC_GRA
(Standard

convolution)
90.17 97.02 98.08 99.63

MC_GRA 92.08 97.70 98.66 99.67

Method
VIGOR (Same Area)

r@1 r@5 r@10 r@1%

MC_GRA
(Standard

convolution)
25.24 50.47 60.35 96.72

MC_GRA 27.54 51.16 60.88 96.78
Note: The bold font represents the optimal value for each column.

As shown in Table 5 and Figure 11, after experimental verification, the deformable
convolution introduced in attention modules relative to the standard convolution plays a
significant role, with the algorithm on the two common datasets showing a certain degree
of improvement.
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5.3. Visual of Attention

To demonstrate the role of the relation guided attention generation module designed
in this study more intuitively, we used Grad-CAM [37] to generate visual feature heat
maps for the visual interpretation of the embedded feature maps. Figure 12a,c,e represent
the feature heat maps of the ground image processed with the baseline model, CBAM
attention module, and relation guided attention generation module designed in this study,
respectively. Figure 12b,d,f represent the heat maps of the corresponding aerial remote
sensing image after polar transform in the three cases. The depth of the color in the figure
is proportional to the network attention level. The lighter yellow color fades/decreases as
the network pays attention to this area; otherwise, it is the focus area.
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Figure 12. Model visualization heat map. (a) Attention heat baseline model. (b) Attention heat
baseline model. (c) Attention heatmap for CBAM model. (d) Attention heatmap for CBAM model.
(e) Attention heatmap for MC_GRA model. (f) Attention heatmap for MC_GRA model.
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6. Discussion
6.1. Comparison with Other Methods in Different Datasets

A comparison of the results in Tables 1 and 2 shows that the accuracy of the algorithms
decreased significantly when the center coordinates of the ground-to-aerial image are not
aligned. In addition, by comparing the algorithm results in the VIGOR dataset before
and after polar transform preprocessing of the aerial remote sensing images in Table 2, it
can be seen that the accuracy of the algorithm after polar transform is much lower than
that of the direct matching algorithm. The reasons for these two results are as follows.
(1) When the geographic coordinate centers of the ground-to-aerial image are not aligned,
the ground street view is usually a part of the corresponding aerial remote sensing image,
and there are fewer valuable matching features that can be extracted, which limits the
matching accuracy. (2) The premise of polar transform is the geometric correspondence
between the center of the aerial remote sensing image and the ground image. However, the
VIGOR dataset does not meet this condition, and the aerial remote sensing image after polar
transform not only fails to narrow the gap between the two image domains but also loses
more valuable matching information due to serious image distortion. The self-built Taipei
dataset is used to verify the practicality of the cross-view image based geo-localization
algorithms. As displayed in Table 3, several algorithms exhibit low accuracy in this dataset.
The reasons for this are as follows. (1) The Taipei dataset was collected from the entire
Taipei area. Most aerial remote sensing images contain dense and complex urban buildings
and high mountains and dense forests, resulting in a serious occlusion of key matching
features, such as roads, and few effective matching features. (2) To simulate the actual effect
of cross-view image geo-localization of panorama images captured with mobile phones
and other handheld photography devices in real situations, the shooting angles of the
ground panorama images in the self-built Taipei dataset were all 270◦. Compared with
traditional street-view images with cross-view datasets, a limited view angle leads to the
loss of street-view content, resulting in a sharp increase in matching ambiguity, which
seriously affects the matching accuracy of the model.

6.2. Analysis of Ablation Experiments

As can be observed from the experimental results in Tables 4 and 5, the relation guided
attention generation module designed in this research and the introduction of deformable
convolution play an important role in the model. This is because of the following reasons:
(1) Compared with the traditional attention mechanisms (CBAM, etc.) that generate local
attention solely from image content, the model designed in this study focuses on capturing
the relations between different feature nodes and driving attention generation. This mainly
mined relation contains both contextual information and global information, which can
establish the long-range dependency between the features. The attention generated in this
way is determined by the feature itself and the relational vectors between all positions;
therefore, it can locate the feature region while suppressing the background information
and while focusing on the local and global information, and finally improves the robustness
of the image descriptor. (2) The ground panorama image is imaged with equal rectangular
projection, and obvious distortion occurs in this process, specifically, the landscape near the
center of the image is be enlarged and distorted. Traditional standard convolution cannot
deal with this situation effectively because of its fixed convolution kernel center and fixed
convolution size. The deformable convolution introduces learnable offsets in the receptive
field in order for the convolution region to always be covered around the object shape and
for it to effectively deal with various situations such as target movement, size scaling, and
rotation. Before mining image feature relations, the potential relations between features are
restored as much as possible.

6.3. Experimental Analysis of Heat Map Visualization

To visualize the role of this algorithm in image processing, we generated a feature
heat map of the image. Figure 12 shows that the key features for matching are mainly
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the road information for the geospatial images that realize the geometric alignment of
the images after the polar transform. Comparing the two sets of images in Figure 12a–d,
it can be concluded that the attention mechanism helps the network focus its attention
on critical matching features, which proves the effectiveness of the attention mechanism
in the cross-view image based geo-localization task. A comparison of the two groups of
images in Figure 12c–f shows that the heat map of the image processed by the relation
guided attention generation module designed in this study is more refined and significantly
deeper in color for the key road information compared to the CBAM attention mechanism.
This indicates that through the guidance of contextual information and global relations,
the attention of worthless features is restricted, and attention is more clearly focused on
discriminative regions. Furthermore, because of the mining of information from feature
relations, the attention generated by this algorithm is more holistic, which is conducive to
better clustering of feature descriptors.

7. Conclusions

In order to make better use of feature relation to guide the image matching and
positioning tasks, a new cross-view image based geo-localization algorithm is proposed
in this paper. This algorithm designs a relation guided attention generation model. De-
formable convolution and multiscale feature extraction branches were used to deal with
the impact of the geometric deformation of the ground-to-aerial images, and the contextual
information of the target features was extracted. The global relations mining branch was
then used to obtain the correlation between each feature node according to the relation
affinity matrix between the feature nodes. On this basis, the features and relations between
them were overlaid, and the model guided the inference of the current location’s attention.
The proposed cross-view image based geo-localization algorithm designed by us fully
considers the position–layout relations between image features and effectively improves
the correlation between local and global features. Thus, the representation capability of the
feature descriptors can be significantly enhanced, making the algorithm easy to train and
significantly improving its effectiveness. The experimental results demonstrate that our
method achieves better results for the same type of cross-view image based geo-localization
algorithm, which proves the effectiveness of our proposed method. In addition, in this
study, related work was performed for eliminating the influence of the geometric defor-
mation of the image and studying the practicability of the algorithms. Although several
widely recognized algorithms were not effective on our self-built Taipei dataset, we hope
that this attempt will lead future researchers to improve the practicability of the algorithm.

Of course, there are some limitations and areas for improvement in this study. Exam-
ples are outlined as follows: (1) The algorithm designed in this paper is still powerless for
the problem of image center coordinate deviation, which limits the practical research of
the algorithm. (2) This algorithm has good experimental results for simple tasks in image
scenes. In the face of complex terrain, such as cities, mountains, and other scenes with
serious occlusion, the effect is poor. Therefore, the focus of future research on cross-view
image based geo-localization tasks should be to solve practical application problems such
as image center shift, and to explore ways to increase the robustness of the model to cope
with complex scenes in order to gradually guide the algorithm to engineering applications.
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Abbreviations

MixVPR Mixing for Visual Place Recognition
CVUSA Cross-View dataset of the United States of America
CNN Convolutional Neural Networks
NetVLAD Vector of Locally Aggregated Descriptors Net
MC_GRA Multiscale Context and Global Relations Attention Module
CBAM Convolutional Block Attention Module
VIGOR Cross-View Image Geo-Localization beyond One-to-One Retrieval
Grad-CAM Gradient-Weighted Class Activation Mapping
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