Satellite-Based Evaluation of Submarine Permafrost Erosion at Shallow Offshore Areas in the Laptev Sea
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Satellite Data
2.3. Wave Reanalysis Data
3. Results
3.1. Seafloor Erosion at VS
3.2. Seafloor Erosion at AO and Small Shoals
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stroeve, J.; Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 2018, 13, 103001. [Google Scholar] [CrossRef]
- Box, J.E.; Colgan, W.T.; Christensen, T.R.; Schmidt, N.M.; Lund, M.; Parmentier, F.-J.W.; Brown, R.; Bhatt, U.S.; Euskirchen, E.S.; Romanovsky, V.E. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 2019, 14, 045010. [Google Scholar] [CrossRef]
- Lantuit, H.; Overduin, P.P.; Couture, N.; Wetterich, S.; Aré, F.; Atkinson, D.; Brown, J.; Cherkashov, G.; Drozdov, D.; Frobes, D.L.; et al. The Arctic coastal dynamics database: A new classification scheme and statistics on Arctic permafrost coastlines. Estuaries Coasts 2012, 35, 383–400. [Google Scholar] [CrossRef]
- Fritz, M.; Vonk, J.E.; Lantuit, H. Collapsing Arctic coastlines. Nat. Clim. Chang. 2017, 7, 6–7. [Google Scholar] [CrossRef]
- Ramage, J.L.; Irrgang, A.M.; Morgenstern, A.; Lantuit, H. Increasing coastal slump activity impacts the release of sediment and organic carbon into the Arctic Ocean. Biogeosciences 2018, 15, 1483–1495. [Google Scholar] [CrossRef]
- Martens, J.; Romankevich, E.; Semiletov, I.; Wild, B.; van Dongen, B.; Vonk, J.; Tesi, T.; Shakhova, N.; Dudarev, O.V.; Kosmach, D.; et al. CASCADE—The Circum-Arctic Sediment CArbon DatabasE. Earth Syst. Sci. Data 2021, 13, 2561–2572. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Gustafsson, O.; Sergienko, V.; Lobkovsky, L.; Dudarev, O.; Tumskoy, V.; Grigoriev, M.; Mazurov, A.; Salyuk, A.; et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nat. Commun. 2017, 8, 15872. [Google Scholar] [CrossRef]
- Angelopoulos, M.; Overduin, P.P.; Miesner, F.; Grigoriev, M.; Vasiliev, A. Recent advances in the study of Arctic submarine permafrost. Permafr. Periglac. Process. 2020, 31, 442–453. [Google Scholar] [CrossRef]
- Paull, C.K.; Dallimore, S.R.; Jin, Y.K.; Melling, H. Rapid seafloor changes associated with the degradation of Arctic submarine permafrost. Proc. Natl. Acad. Sci. USA 2022, 119, e2119105119. [Google Scholar] [CrossRef]
- Gavrilov, A.V.; Romanovskii, N.N.; Hubberten, H.-W.; Romanovskii, V.E. Distribution of islands—Ice complex remnants on the East Siberian arctic shelf. Earth's Cryosphere 2003, 7, 18–32. [Google Scholar]
- Romanovskii, N.N.; Tumskoy, V.E. Retrospective approach to the estimation of the contemporary extension and structure of the shelf cryolithozone in east Arctic. Earth's Cryosphere 2011, 15, 3–14. [Google Scholar]
- Overduin, P.P.; Wetterich, S.; Günther, F.; Grigoriev, M.N.; Grosse, G.; Schirmeister, L.; Hubberten, H.-W.; Makarov, A. Coastal dynamics and submarine permafrost in shallow water of the central Laptev Sea, East Siberia. Cryopshere 2016, 10, 1449–1462. [Google Scholar] [CrossRef]
- Gavrilov, A.V.; Pizhankova, E.I. Dynamics of permafrost in the coastal zone of Eastern-Asian of the Arctic. Geogr. Environ. Sustain. 2018, 11, 20–37. [Google Scholar] [CrossRef]
- Irrgang, A.M.; Bendixen, M.; Farquharson, L.M.; Baranskaya, A.V.; Erikson, L.H.; Gibbs, A.E.; Ogorodov, S.A.; Overduin, P.P.; Lantuit, H.; Grigoriev, M.N.; et al. Drivers, dynamics and impacts of changing Arctic coasts. Nat. Rev. Earth Environ. 2022, 3, 39–54. [Google Scholar] [CrossRef]
- Vonk, J.; Sánchez-García, L.; van Dongen, B.E.; Alling, V.; Kosmach, D.; Charkin, A.; Semiletov, I.P.; Dudarev, O.V.; Shakhova, N.; Roos, P.; et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 2012, 489, 137–140. [Google Scholar] [CrossRef]
- Wild, B.; Shakhova, N.; Dudarev, O.; Ruban, A.; Kosmach, D.; Tumskoy, V.; Tesi, T.; Grimm, H.; Nybom, I.; Matsubara, F.; et al. Organic matter composition and greenhouse gas production of thawing subsea permafrost in the Laptev Sea. Nat. Commun. 2022, 13, 5057. [Google Scholar] [CrossRef]
- Semiletov, I.P. Destruction of frozen coastal rocks as an important factor in the biogeochemistry of Arctic shelf waters. Dokl. Earth Sci. 1999, 368, 679–682. [Google Scholar]
- Semiletov, I.; Pipko, I.I.; Repina, I.A.; Shakhova, N. Carbonate dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in the Arctic Ocean Pacific sector of the Arctic. J. Mar. Syst. 2007, 66, 204–226. [Google Scholar] [CrossRef]
- Semiletov, I.; Pipko, I.; Gustafsson, O.; Anderson, L.; Sergienko, V.; Pugach, S.; Dudarev, O.; Charkin, A.; Gukov, A.; Bröder, L.; et al. Acidification of East Siberian Arctic Shelf waters through addition of freshwater and terrestrial carbon. Nat. Geosci. 2016, 9, 361–365. [Google Scholar] [CrossRef]
- Friedlingstein, P.; Cox, P.; Betts, R.; Bopp, L.; von Bloh, W.; Brovkin, V.; Cadule, P.; Doney, S.; Eby, M.; Fung, I.; et al. Climate–carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Clim. 2006, 19, 3337–3353. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Sergienko, V.; Salyuk, A.; Kosmach, D.; Chernikh, D.; Stubbs, C.; Nicolsky, D.; Tumskoy, V.; et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 2014, 7, 64–70. [Google Scholar] [CrossRef]
- Vetrov, A.A.; Romankevich, E.A. Carbon Cycle in the Russian Arctic Seas; Springer: Berlin, Germany, 2004. [Google Scholar]
- Charkin, A.V.; Dudarev, O.V.; Semiletov, I.P.; Kruhmalev, A.V.; Vonk, J.E.; Sánchez-García, L.; Karlsson, E.; Gustafsson, Ö. Seasonal and interannual variability of sedimentation and organic matter distribution in the Buor-Khaya Gulf: The primary recipient of input from Lena River and coastal erosion in the southeast Laptev Sea. Biogeosciences 2011, 8, 2581–2594. [Google Scholar] [CrossRef]
- Semiletov, I.P.; Pipko, I.I.; Shakhova, N.E.; Dudarev, O.V.; Pugach, S.P.; Charkin, A.N.; McRoy, C.P.; Kosmach, D.; Gustafsson, Ö. Carbon transport by the Lena River from its headwaters to the Arctic Ocean, with emphasis on fluvial input of terrestrial particulate organic carbon vs. carbon transport by coastal erosion. Biogeosciences 2011, 8, 2407–2426. [Google Scholar] [CrossRef]
- Wegner, S.; Hölemann, J.A.; Dmitrenko, I.; Kirillov, S.; Tuschling, K.; Abramova, E.; Kassens, H. Suspended particulate matter on the Laptev Sea shelf (Siberian Arctic) during ice-free conditions. Estuar. Coast. Shelf Sci. 2003, 57, 55–64. [Google Scholar] [CrossRef]
- Wegner, S.; Hölemann, J.A.; Dmitrenko, I.; Kirillov, S.; Kassens, H. Seasonal variations in Arctic sediment dynamics—Evidence from 1-year records in the Laptev Sea (Siberian Arctic). Glob. Planet. Chang. 2005, 48, 126–140. [Google Scholar] [CrossRef]
- Wegner, S.; Bauch, D.; Hölemann, J.A.; Janout, M.A.; Heim, B.; Novikhin, A.; Kassens, H.; Timokhov, L. Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer. Biogeosciences 2013, 10, 1117–1129. [Google Scholar] [CrossRef]
- Drits, A.V.; Pasternak, A.F.; Arashkevich, E.G.; Kravchishina, M.D.; Sukhanova, I.N.; Sergeeva, V.M.; Flirt, M.V. Influence of riverine discharge and timing of ice retreat on particle sedimentation patterns on the Laptev Sea shelf. J. Geophys. Res. Ocean. 2021, 126, e2021JC017462. [Google Scholar] [CrossRef]
- Osadchiev, A.; Medvedev, I.; Shchuka, S.; Kulikov, M.; Spivak, E.; Pisareva, M.; Semiletov, I. Influence of estuarine tidal mixing on structure and spatial scales of large river plumes. Ocean Sci. 2020, 16, 781–798. [Google Scholar] [CrossRef]
- Osadchiev, A.; Frey, D.; Spivak, E.; Shchuka, S.; Tilinina, N.; Semiletov, I. Structure and inter-annual variability of the freshened surface layer in the Laptev and East-Siberian seas during ice-free periods. Front. Mar. Sci. 2021, 8, 735011. [Google Scholar] [CrossRef]
- Osadchiev, A. Spreading and transformation of river discharge in the Arctic Ocean. Her. Russ. Acad. Sci. 2021, 91, 694–699. [Google Scholar] [CrossRef]
- Spivak, E.A.; Osadchiev, A.A.; Semiletov, I.P. Structure and variability of the Lena River plume in the south-eastern part of the Laptev Sea. Oceanology 2021, 61, 839–849. [Google Scholar] [CrossRef]
- Xie, L.; Yakushev, E.V.; Semiletov, I.; Grinko, A.; Gangnus, I.; Berezina, A.; Osadchiev, A.; Zhdanov, I.; Polukhin, A.; Moiseeva, J.; et al. Biogeochemical structure of the Laptev Sea in 2015, 2017-2020 associated with the river Lena plume. Front. Mar. Sci. 2023, 10, 1180054. [Google Scholar] [CrossRef]
- Eicken, H.; Reimnitz, E.; Alexadrov, V.; Martin, T.; Kassens, H.; Viehoff, T. Sea-ice processes in the Laptev Sea and their importance for sediment export. Cont. Shelf Res. 1997, 17, 205–233. [Google Scholar] [CrossRef]
- Dethleff, D. Entrainment and export of Laptev Sea ice sediments, Siberian Arctic. J. Geophys. Res. Ocean. 2005, 110, C07009. [Google Scholar]
- Wegner, C.; Wittbrodt, K.; Hölemann, J.A.; Janout, M.A.; Krumpen, T.; Selyuzhenok, V.; Novikhin, A.; Polyakova, Y.; Krykova, I.; Kassens, H. Sediment entrainment into sea ice and transport in the Transpolar Drift: A case study from the Laptev Sea in winter 2011/2012. Cont. Shelf Res. 2017, 141, 1–10. [Google Scholar] [CrossRef]
- Clarke, T.L.; Lesht, B.; Young, R.A.; Swift, D.J.P.; Freeland, G.L. Sediment resuspension by surface-wave action: An examination of possible mechanisms. Mar. Geol. 1982, 49, 43–59. [Google Scholar] [CrossRef]
- Kularatne, S.; Pattiaratchi, C. Turbulent kinetic energy and sediment resuspension due to wave groups. Cont. Shelf Res. 2008, 28, 726–736. [Google Scholar] [CrossRef]
- Carlin, J.A.; Lee, G.-h.; Dellapenna, T.M.; Laverty, P. Sediment resuspension by wind, waves, and currents during meteorological frontal passages in a micro-tidal lagoon. Estuar. Coast. Shelf Sci. 2016, 172, 24–33. [Google Scholar] [CrossRef]
- Dmitrenko, I.A.; Hölemann, J.; Kirillov, S.A.; Berezovskaya, S.L.; Kassens, H. Role of barotropic sealevel changes in current formation on the eastern shelf of the Laptev Sea. Dokl. Earth Sci. 2001, 5, 243–249. [Google Scholar]
- Juhls, B.; Overduin, P.P.; Hölemann, J.; Hieronymi, M.; Matsuoka, A.; Heim, B.; Fischer, J. Dissolved organic matter at the fluvial–marine transition in the Laptev Sea using in situ data and ocean colour remote sensing. Biogeosciences 2019, 16, 2693–2713. [Google Scholar] [CrossRef]
- Osadchiev, A.; Silvestrova, K.; Myslenkov, S. Wind-driven coastal upwelling near large river deltas in the Laptev and East-Siberian seas. Remote Sens. 2020, 12, 844. [Google Scholar] [CrossRef]
- Pavlov, V.K.; Timokhov, L.A.; Baskakov, G.A.; Kulakov, M.Y.; Kurazhov, V.K.; Pavlov, P.V.; Pivovarov, S.V.; Stanovoy, V.V. Hydrometeorological Regime of the Kara, Laptev, and East-Siberian Seas; Technical Memorandum, APL-UW TM 1-96; Defense Technical Information Center: Fort Belvoir, VA, USA, 1996. [Google Scholar]
- Chuvilin, E.; Bukhanov, B.; Yurchenko, A.; Davletshina, D.; Shakhova, N.; Spivak, E.; Rusakov, V.; Dudarev, O.; Khaustova, N.; Tikhonova, A.; et al. In-situ temperatures and thermal properties of the East Siberian Arctic shelf sediments: Key input for understanding the dynamics of subsea permafrost. Mar. Pet. Geol. 2022, 138, 105550. [Google Scholar] [CrossRef]
- Bukhanov, B.; Chuvilin, E.; Zhmaev, M.; Shakhova, N.; Spivak, E.; Dudarev, O.; Osadchiev, A.; Spasennykh, M.; Semiletov, I. In situ bottom sediment temperatures in the Siberian arctic seas: Current state of subsea permafrost in the Kara Sea vs Laptev and East Siberian seas. Mar. Pet. Geol. 2023, 157, 106467. [Google Scholar] [CrossRef]
- Koshurnikov, A.V.; Tumskoy, V.E.; Shakhova, N.E.; Sergienko, V.I.; Dudarev, O.V.; Gunar, A.Y.; Pushkarev, P.Y.; Semiletov, I.P. The first ever application of electromagnetic soundings for mapping of submarine permafrost table on the Laptev Sea shelf. Dokl. Earth Sci. 2016, 469, 860–863. [Google Scholar] [CrossRef]
- Alekseev, D.A.; Koshurnikov, A.V.; Gunar, A.Y.; Balikhin, E.I.; Semiletov, I.P.; Shakhova, N.E.; Palshin, N.A.; Lobkovsky, L.I. Time-domain electromagnetics for subsea permafrost mapping in the Arctic: The synthetic response analyses and uncertainty estimates from numerical modelling data. Geosciences 2023, 13, 144. [Google Scholar] [CrossRef]
- Dudarev, O.V.; Charkin, A.N.; Shakhova, N.E.; Semiletov, I.P.; Sergienko, V.I.; Pipko, I.I.; Pugach, S.P.; Chernykh, D.V. Features of modern morpholithogenesis on the shelf of the Laptev Sea: Semenovskoe shoal (“Vasema Land”). Dokl. Erath Sci. 2015, 462, 223–229. [Google Scholar]
- Tolman, H.L. User Manual and System Documentation of WAVEWATCH III TM Version 3.14; Technical note, MMAB Contribution; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2009. [Google Scholar]
- Rogers, W.E.; Babanin, A.V.; Wang, D.W. Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations. J. Atmos. Ocean. Technol. 2012, 29, 1329–1346. [Google Scholar] [CrossRef]
- Zieger, S.; Babanin, A.V.; Rogers, W.E.; Young, I.R. Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Model. 2015, 96, 2–25. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.L.; Wu, X.; Wang, J.; Nadiga, S.; Goldberg, M. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1057. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Becker, E. The NCEP climate forecast system Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Liu, Q.; Rogers, W.E.; Babanin, A.V.; Young, I.R.; Romero, L.; Zieger, S.; Qiao, F.; Guan, C. Observation-based source terms in the third-generation wave model WAVEWATCH III: Updates and verification. J. Phys. Oceanogr. 2019, 49, 489–517. [Google Scholar] [CrossRef]
- Myslenkov, S.; Kruglova, E.; Medvedeva, A.; Silvestrova, K.; Arkhipkin, V.; Akpinar, A.; Dobrolyubov, S. Number of storms in several Russian seas: Trends and connection to large-scale atmospheric indices. Russ. J. Earth Sci. 2023, 23, ES3002. [Google Scholar] [CrossRef]
- Myslenkov, S.A. Modeling of the wind waves in the Laptev, East Siberian and Chukchi seas. Hydrometeorol. Res. Forecast. 2023, 1, 87–101. [Google Scholar] [CrossRef]
- Myslenkov, S.A.; Platonov, V.S.; Dobrolyubov, S.A.; Silvestrova, K.P. Increase in storm activity in the Kara Sea from 1979 to 2019: Numerical simulation data. Dokl. Earth Sci. 2021, 498, 502–508. [Google Scholar] [CrossRef]
- Jakobsson, M.; Mayer, L.A.; Coakley, B.; Dowdeswell, J.A.; Forbes, S.; Fridman, B.; Hodnesdal, H.; Noormets, R.; Pedersen, R.; Rebesco, M.; et al. The international bathymetric chart of the Arctic Ocean (IBCAO), Version 3.0. Geophys. Res. Lett. 2012, 39, L12609. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Parkinson, C.L. Arctic sea ice variability and trends, 1979–2010. Cryosphere 2012, 6, 881–889. [Google Scholar] [CrossRef]
- Rachold, V.; Grigoriev, M.N.; Are, F.E.; Solomon, S.; Reimnitz, E.; Kassens, H.; Antonow, M. Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas. Int. J. Earth Sci. 2000, 89, 450–460. [Google Scholar] [CrossRef]
- Sukhanova, I.N.; Flirt, M.V.; Georgieva, E.J.; Lange, E.K.; Kravchishina, M.D.; Demidov, A.B.; Nedospasov, A.A.; Polukhin, A.A. The structure of phytoplankton communities in the eastern part of the Laptev Sea. Oceanology 2017, 57, 75–90. [Google Scholar] [CrossRef]
- Korotkina, O.A.; Zavialov, P.O.; Osadchiev, A.A. Submesoscale variability of the current and wind fields in the coastal region of Sochi. Oceanology 2011, 51, 745–754. [Google Scholar] [CrossRef]
- Korotkina, O.A.; Zavialov, P.O.; Osadchiev, A.A. Synoptic variability of currents in the coastal waters of Sochi. Oceanology 2014, 54, 545–556. [Google Scholar] [CrossRef]
- Korotenko, K.A.; Osadchiev, A.A.; Zavialov, P.O.; Kao, R.-C.; Ding, C.-F. Effects of bottom topography on dynamics of river discharges in tidal regions: Case study of twin plumes in Taiwan Strait. Ocean Sci. 2014, 10, 865–879. [Google Scholar] [CrossRef]
- Osadchiev, A.A.; Korotenko, K.A.; Zavialov, P.O.; Chiang, W.-S.; Liu, C.-C. Transport and bottom accumulation of fine river sediments under typhoon conditions and associated submarine landslides: Case study of the Peinan River, Taiwan. Nat. Hazards Earth Syst. Sci. 2016, 16, 41–54. [Google Scholar] [CrossRef]
Number of Cases | Mean | Median | Min | Max | Standard Deviation | Coefficient of Variation | Skewness |
---|---|---|---|---|---|---|---|
2948 | 0.33 | 0.31 | 0 | 1.05 | 0.17 | 53.22 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osadchiev, A.; Adamovskaya, P.; Myslenkov, S.; Dudarev, O.; Semiletov, I. Satellite-Based Evaluation of Submarine Permafrost Erosion at Shallow Offshore Areas in the Laptev Sea. Remote Sens. 2023, 15, 5065. https://doi.org/10.3390/rs15205065
Osadchiev A, Adamovskaya P, Myslenkov S, Dudarev O, Semiletov I. Satellite-Based Evaluation of Submarine Permafrost Erosion at Shallow Offshore Areas in the Laptev Sea. Remote Sensing. 2023; 15(20):5065. https://doi.org/10.3390/rs15205065
Chicago/Turabian StyleOsadchiev, Alexander, Polina Adamovskaya, Stanislav Myslenkov, Oleg Dudarev, and Igor Semiletov. 2023. "Satellite-Based Evaluation of Submarine Permafrost Erosion at Shallow Offshore Areas in the Laptev Sea" Remote Sensing 15, no. 20: 5065. https://doi.org/10.3390/rs15205065
APA StyleOsadchiev, A., Adamovskaya, P., Myslenkov, S., Dudarev, O., & Semiletov, I. (2023). Satellite-Based Evaluation of Submarine Permafrost Erosion at Shallow Offshore Areas in the Laptev Sea. Remote Sensing, 15(20), 5065. https://doi.org/10.3390/rs15205065