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Abstract: Keypoint detection and description play a pivotal role in various robotics and autonomous
applications, including Visual Odometry (VO), visual navigation, and Simultaneous Localization
And Mapping (SLAM). While a myriad of keypoint detectors and descriptors have been extensively
studied in conventional camera images, the effectiveness of these techniques in the context of LIiDAR-
generated images, i.e., reflectivity and ranges images, has not been assessed. These images have
gained attention due to their resilience in adverse conditions, such as rain or fog. Additionally, they
contain significant textural information that supplements the geometric information provided by
LiDAR point clouds in the point cloud registration phase, especially when reliant solely on LIDAR
sensors. This addresses the challenge of drift encountered in LIDAR Odometry (LO) within geo-
metrically identical scenarios or where not all the raw point cloud is informative and may even be
misleading. This paper aims to analyze the applicability of conventional image keypoint extractors
and descriptors on LiDAR-generated images via a comprehensive quantitative investigation. More-
over, we propose a novel approach to enhance the robustness and reliability of LO. After extracting
keypoints, we proceed to downsample the point cloud, subsequently integrating it into the point
cloud registration phase for the purpose of odometry estimation. Our experiment demonstrates
that the proposed approach has comparable accuracy but reduced computational overhead, higher
odometry publishing rate, and even superior performance in scenarios prone to drift by using the
raw point cloud. This, in turn, lays a foundation for subsequent investigations into the integration of
LiDAR-generated images with LO.

Keywords: LiDAR; LiDAR-generated images; keypoint detector and descriptor; point cloud
registration; LIDAR odometry

1. Introduction

LiDAR technology has become a primary sensor for facilitating advanced situational
awareness in the domains of robotics and autonomous systems ranging from LiDAR
Odometry (LO), Simultaneous Localization And Mapping (SLAM), object detection and
tracking, and navigation. Among these applications, LO, as a fundamental component in
robotics, has significantly drawn our attention. Extensive research efforts have focused on
the integration of diverse sensors, including Inertial Measurement Units (IMUs), to bolster
LO performance. However, in scenarios where LiDAR data lacks geometric distinctness or
even contains misleading information, the process of point cloud registration continues to
present challenges in achieving precise estimations and even causing drift in certain cases
(Figure 1a).

Notably, recent years have witnessed substantial progress in LiDAR technology,
marked by the emergence of numerous high-resolution spinning and solid-state LIDAR
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devices offering various modalities of sensor data [1,2]. The increased density of the
point cloud brings a challenge for point cloud registration with a significant computation
overhead, especially for devices with limited computational resources.

(b)
Figure 1. Samples of LIDAR odometry results run in our experiment. (a) Raw point cloud with
point cloud matching approach (KISS-ICP), a drift happened after a certain period. (b) Our proposed
LiDAR-generated keypoint extraction-based approach.

Within the aforementioned modalities, LIDAR-generated images, including reflectivity
images, range images, and near-infrared images, have introduced the potential to apply
conventional camera image processing techniques to LiDAR-generated images. These
images are low-resolution but possibly panoramic and exhibit heightened resilience and
robustness in challenging environments, such as those characterized by fog and rain, com-
pared to conventional camera images. Additionally, these images can potentially provide
crucial information for point cloud registration when there is a deficiency of geometric
data, or the raw point cloud lacks useful information so as to avoid drift (Figure 1b).

Keypoint detectors and descriptors have found extensive utility across diverse do-
mains within visual tasks such as place recognition, scene reconstruction, Visual Odometry
(VO), Visual Simultaneous Localization And Mapping (VSLAM), and Visual Inertial Odom-
etry (VIO). Nevertheless, there remains a lack of investigation into the performance of
extant keypoint detectors and descriptors when applied to LIDAR-generated imagery.

Contemporary methodologies for Visual Odometry (VO) or Visual Inertial Odometry
(VIO) rely significantly on the operability of visual sensors, necessitating knowledge of
camera intrinsics to facilitate Structure from Motion (SfM)—a requisite not met by LiDAR-
generated images. This poses the difficulty of extracting keypoints from LiDAR-generated
images in a certain way to further apply them in the odometry estimation.

In summary, the extant LIDAR-based point cloud registration paradigm confronts
notable challenges, principally arising from the presence of drifts or misalignments engen-
dered by the inherent density of the point cloud, coupled with the substantial computational
overhead it imposes. Given the escalating ubiquity of LIDAR-derived imagery in contem-
porary contexts, there exists a propitious potential to leverage these data modalities for the
amelioration of these prevailing challenges.
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Therefore, to address the above issues, in this study:

(i) We investigate the efficacy of the existing keypoint detectors and descriptors on
LiDAR-generated images with multiple specialized metrics providing a quantitative
evaluation.

(i) We conduct an extensive study of the optimal resolution and interpolation approaches
for enhancing the low-resolution LiDAR-generated data to extract keypoints
more effectively.

(iii) We propose a novel approach that leverages the detected keypoints and their neigh-
bors to extract a reliable point cloud (downsampling) for the purpose of point cloud
registration with reduced computational overhead and fewer deficiencies in valuable
point acquisition.

The structure of this paper is as follows. In Section 2, we survey the recent progress
on keypoint detectors and descriptors, including approaches and metrics, point cloud
matching, and the status of LO for the support of the selected methods utilized in the
following sections. Section 3 provides an overview of the quantitative evaluation of the
existing keypoint detectors and descriptors. Based on the above analysis, we propose our
LiDAR-generated image keypoint-assisted point cloud registration and describe the details
of the approach in this section. Section 4 demonstrates the experimental results in detail. In
the end, we conclude the work and sketch out some future research directions in Section 5.

2. Related Work

In this section, we commence by presenting a comprehensive review of the prevailing
detector and descriptor algorithms documented in the literature. Subsequently, a brief
summary of the current advancements in the domain of LiDAR-imaged techniques is
offered. We conclude with a concise analysis of the leading algorithms for point cloud
registration in LO for the purpose of justifying the selected methods.

2.1. Keypoint Detector and Descriptor

In recent years, there have been multiple widely applied detectors and descriptors
in the field of computer vision. As illustrated in Table 1, we have captured the essential
characteristics of different detectors and descriptors. And Table 2 includes more about the
explanation of the pros and cons of the different detectors and descriptors.

Harris detector [3] can be seen as an enhanced version of Moravec’s corner detector [4,5].
It is used to identify corners in an image, which are the regions with large intensity variations
in multiple directions. The Shi-Tomasi Corner Detector [6] is an improvement upon the Harris
Detector with a slight modification in the corner response function that makes it more robust
and reliable in certain scenarios. The Features from Accelerated Segment Test (FAST) [7]
algorithm operates by examining a circle of pixels surrounding a candidate pixel and testing
for a contiguous segment of pixels that are either significantly brighter or darker than the
central pixel.

For descriptor-only algorithms, Binary Robust Independent Elementary Features
(BRIEF) [8] utilizes a set of binary tests on pairs of pixels within a patch surrounding one
keypoint. Fast Retina Keypoint (FREAK) [9] is inspired by the human visual system, which
constructs a retinal sampling pattern that is more densely sampled towards the center and
sparser towards the periphery. Then, it compares pairs of pixels within this pattern to
generate a robust binary descriptor.

With respect to the combined detector—descriptor algorithms, the Scale-Invariant
Feature Transform (SIFT) [10,11] detects keypoints by identifying local extrema in the
difference of Gaussian scale-space pyramid, then computes a gradient-based descriptor
for each keypoint. Speeded-Up Robust Features (SURF) [12] is designed to address the
computational complexity of SIFT while maintaining robustness to various transformations.
Binary Robust Invariant Scalable Keypoints (BRISK) [13] uses a scale—space FAST [7]
detector to identify keypoints and computes binary descriptors based on a sampling
pattern of concentric circles. Oriented FAST and Rotated BRIEF (ORB) [14] extends the
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FAST detector with a multi-scale pyramid and computes a rotation-invariant version of
the BRIEF [8] descriptor, aiming to provide a fast and robust alternative to SIFT and SURF.
Accelerated-KAZE (AKAZE) [15] employs a fast explicit diffusion scheme to accelerate the
detection process and computes a Modified Local Difference Binary (M-LDB) descriptor [16]
for robust matching.

Table 1. Keypoint detectors and descriptors.

Method  Detector Descriptor Description
. Corner detection method focusing on local im-

Harris v e
age variations.

Shi- Variation of Harris with modification in the re-

. v .

Tomasi sponse function to be more robust.

FAST v Efﬁaent corner detection for real-time applica-
tions.

FREAK Robus/t to transformations, based on human
retina’s structure.

BRIEF Efficient short binary descriptor for keypoints.

SIFT v v Inv‘.au‘lant to scale, orientation, and partial illumi-
nation changes.

SURF v v Adfiresse§ the- cpmputatlonal complexity of SIFT
while maintaining robustness.
Faster binary descriptor method, efficient com-

BRISK v v pared to SIFT/SURFE.

ORB v v Combines FAST detection and BRIEF descriptor,
commonly used now.

AKAZE v v Bullds on KAZE but faster, good for wide base-
line stereo correspondence.
A state-of-the-art Al approach that exhibits su-

Superpoint v/ v perior performance when applied to traditional

camera images.

Table 2. Pros and cons of keypoint detectors and descriptors.

Method Pros Cons
Harris fig?lple’ effective for corner detec- Not invariant to scale or rotation.
. . Improvement over Harris, morero-  Still not invariant to scale or rota-
Shi-Tomasi .
bust. tion.
FAST Very efficient, suitable for real- Not robust to scale and rotation
time applications. changes.
Robust to transformations, in- Only a descriptor, requires a sepa-
FREAK . -
spired by human vision. rate detector.
BRIEF f(l)ffl(:lent, compact binary descrip- Not rotation or scale invariant.
SIFT Scale and rotation invariant, ro- Computationally expensive.

bust to illumination changes.
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Table 2. Cont.

Method Pros Cons

Faster than SIFT, also scale and ro-  Still more computationally inten-
SURF L . . . .

tation invariant. sive than binary descriptors.
BRISK Efficient binary descriptor, faster Not as robust to transformations

than SIFT/SURF. as SIFT/SURF.

Combines the efficiency of FAST . .
ORB and BRIEF, rotation invariant. Not scale invariant.

Faster than KAZE, good for stereo  Less popular, not as extensively
AKAZE .

correspondence. studied as others.

. Superior performance, state-of-the- Requires deep learnmg infrastruc-

Superpoint ture, more computational over-

art with Al benefits. head.

The emergence of deep learning (DL) techniques, particularly convolutional neural
networks (CNN) [17,18], has revolutionized computer vision over the last decade. Super-
Point [19] detector employs a full CNN to predict a set of keypoint heatmaps, where each
heatmap corresponds to an interest point’s probability at a given pixel location. Then,
the descriptor part generates a dense descriptor map for the input image by predicting a
descriptor vector at each pixel location.

To sum up, while numerous detector and descriptor algorithms have gained popularity,
itis imperative to note that they have primarily been designed for traditional camera images,
not LiDAR-based images. Consequently;, it is of paramount importance for this study to
identify the algorithms that maintain efficacy for LIDAR-based images.

2.2. LiDAR-Generated Images in Robotics

Within the realm of robotics, some studies over the years have delved into the uti-
lization of LiDAR-based images. But before exploring specific applications, it is vital to
know the process by which range images and signal images are generated from the point
cloud, as detailed in [20,21]. And it is also essential to understand the effectiveness of
LiDAR-based images, through an extensive evaluation in the article [22], showing that
LiDAR-based images have remarkable resilience to seasonal and environmental variations.

Perception emerges as the indisputable first step in the use of LIDAR within robotics.
In [23], Ouster introduced their work to explain the possibility of using LIDAR as a camera.
They demonstrate the effectiveness of car and road segmentation by putting the LiDAR-
based image into a pre-trained DL model. In the work [24], Tsiourva et al. proposed a
saliency detection model based on LiDAR-generated images. In the model, the attributes
of reflectivity, intensity, range, and ambient images are carefully contrasted and analyzed.
After several advanced image processing steps, multiple conspicuity maps are created.
These maps help make a unified saliency map, which identifies and emphasizes the most
distinct objects in the image. In [25], Sier et al. explored using LiDAR-as-a-camera sensors
to track Unmanned Aerial Vehicles (UAVs) in GNSS-denied environments, fusing LIDAR-
generated images and point clouds for real-time accuracy. In the study conducted by Lacopo
et al. [26], images were synthesized utilizing reflectivity and depth data derived from solid-
state LIDAR, serving as an initialization procedure for UAV tracking tasks. The work [27]
explores the potential of general-purpose deep learning perception algorithms, specifically
detection and segmentation neural networks, based on LiDAR-generated images. The
study provides both a qualitative and quantitative analysis of the performance of a variety
of neural network architectures, proving that the DL models built for visual camera images
also offer significant advantages when applied to LiDAR-generated images.



Remote Sens. 2023, 15, 5074

6 of 20

Delving deeper into subsequent applications, for example, localization, the research
in [28] explores the problem of localizing mobile robots and autonomous vehicles within a
large-scale outdoor environment map, by leveraging range images produced by 3D LiDAR.

2.3. Evaluation Metrics for Keypoint Detectors and Descriptors

The efficacy of detector and descriptor algorithms is typically assessed through some
specific evaluation metrics. As illustrated in Table 3, the first three metrics, number of
keypoints, computational efficiency, and robustness of detector are straightforward to
comprehend and implement, and also widely adopted in numerous studies [12,29,30]. For
instance, the robustness of the detector [31] is implemented by contrasting keypoints before
and after the transformations like scaling, rotation, and Gaussian noise interference.

Table 3. Metrics for evaluating keypoint detectors and descriptors.

Metrics Description

A high number of keypoints can always lead to more detailed
Number of keypoints image analysis and better performance in subsequent tasks like
object recognition.

Computational efficiency remains paramount in any computer vi-
Computational efficiency sion algorithms. We gauge this efficiency by timing the complete
detection, description, and matching process.

An efficacious detector should recognize identical keypoints un-
Robustness of detector der varying conditions such as scale, rotation, and Gaussian
noise interference.

The ratio of successfully matched points to the total number of
Match ratio detected points offers insights into the algorithm’s capability in
identifying and relating unique keypoints.

A homography matrix is estimated from two point sets, to distin-
Match Score guish spurious matches, then the algorithm precision is quanti-
fied by the inlier ratio.

Distinctiveness entails that the keypoints isolated by a detection
Distinctiveness algorithm should exhibit sufficient uniqueness for differentiation
among various keypoints.

When assessing the precision of the entire algorithmic procedure, which is priori-
tized by the majority of tasks, the prevalent metrics often necessitate benchmark datasets,
such as KITTI [32] or HPatches [33]. These datasets either provide the transformation
matrix between images or directly contain the keypoint ground truth. For example, in
Mukherjee et al.’s study [34], one crucial metric, “Precision”, is defined as correct matches/all
detected matches, where correct matches are ascertained through the geometric verification
based on a known camera position provided by dataset [35]. Similarly, in another recent
work [36], the evaluation tasks, including “keypoint verification”, “image matching”, and
“keypoint retrieval”, all rely on the homography matrix between images in the benchmark
dataset [33].

Nevertheless, given that research predicated on LiDAR images is at a nascent stage,
no benchmark dataset exists in the field of LIDAR-based images. And the effort required
for data labeling [37,38] to produce such a dataset is considerable and challenging. To
bridge this gap, we select multiple key evaluation metrics: match ratio, match score, and
distinctiveness, as shown in Table 3 from previous studies. Match ratio [34] is quantitatively
defined as the number of matches/number of keypoints. A high match ratio can suggest that
the algorithm is adept at identifying and correlating distinct features; while the exact
homography matrix between images remains unknown when lacking benchmark datasets,
it can be approximated using mathematical methodologies from two point sets. This
computed homography can subsequently be utilized to find correct matches. The number
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of estimated correct matches/number of matches is denoted as match score in our work. And
distinctiveness is computed as follows: For every image, the k-nearest neighbors algorithm,
with k = 2, is employed to identify the two best matches [10]. If the descriptor distance
of the primary match is notably lower than that of the secondary match, it demonstrates
the algorithm’s competence in recognizing and describing highly distinctive keypoints.
Consequently, this defines the metric distinctiveness.

2.4. 3D Point Cloud Downsampling

Point cloud downsampling is crucial in operating LO or SLAM within a computation-
constrained device. Nowadays, there is a substantial body of work focusing on the em-
ployment of DL networks, for example, a lightweight transformer [39]. Other approaches
utilized various filters in order to achieve not only point cloud downsampling but also
denoising [40].

2.5. 3D Point Cloud Matching in LO

LO has been widely studied, yet is challenging due to the complexity of the envi-
ronment in the robotic field. Contemporary research endeavors have witnessed a notable
surge in efforts integrating supplementary sensors, such as Inertial Measurement Units
(IMUs), aimed at augmenting the precision and resilience of LO. However, as we focus on
the point cloud registration phase of LO, this is out of the scope of the related work of this
part. We primarily discuss the solely LIDAR-based LO. Among these solely LiDAR-based
approaches, LOAM [41], as a popular matching-based SLAM and LO approach, has en-
couraged a significant amount of other LO approaches, including Lego-LOAM [42] and
F-LOAM [43].

Point cloud matching or registration constitutes the key component in LO. Since its
inception approximately three decades ago, the Iterative Closest Point (ICP) algorithm,
introduced by Besl and McKay [44], has spawned numerous variants. These include notable
adaptations such as Voxelized Generalized ICP (GICP) [45], CT-ICP [46], and KISS-ICP [47].
Among these ICP iterations, KISS-ICP, denoting “keep it small and simple”, distinguishes
itself by providing a point-to-point ICP approach characterized by robustness and accuracy
in pose estimation. Furthermore, the Normal Distributions Transform (NDT) [48] represents
another prominent point cloud registration technique frequently employed in LO research.
As the latest ICP approach, KISS-ICP is the designated methodology for the point cloud
registration we adopted in this study:.

3. Methodology

In this section, we first introduce the dataset we used in the paper, including the
detailed specifications of the sensors, data modality, and the data sequences. Then, we
describe our experimental procedure in detail including the optimal pre-processing config-
uration for the keypoint detectors and the workflow of our proposed LiDAR-generated
image keypoints assisted the point cloud registration approach.

3.1. Dataset

For the evaluation of keypoint detectors and descriptors and our proposed approach,
we utilized the published open-source dataset for multi-modal LiDAR sensing [1]. The
dataset is available and accessible via the Github repos ((https:/ /github.com/TIERS/tiers-
lidars-dataset-enhanced, accessed on 18 October 2023); https://github.com/TIERS/tiers-
lidars-dataset, accessed on 18 October 2023). The dataset consists of various LiIDARs and
among them, Ouster LiDAR provides not only point cloud but also its generated images.
The Ouster LiDAR applied in the dataset is OS0-128 with its detailed specifications shown
in Table 4.


https://github.com/TIERS/tiers-lidars-dataset-enhanced
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Table 4. Specifications of Ouster OS0-128.

Image Angular .
IMU Type Channels Resolution FoV Resolution Range Freq Points
Ouster L o o V:07°,H: 2,621,440
050-128 ICM-20948 spinning 128 2048 x 128 360° x 90 0.18° 50 m 10 Hz pts/s

The images generated by OS0-128 shown in Figure 2 include signal images, reflectivity
images, near-infrared images, and range images with its expansive 360° x 90° field of view.
Signal images are representations of the signal strength of the light returned to the sensor
for a given point, which depends on various factors, such as the angle of incidence, the
distance from the sensor, and the material properties of the object. In near-infrared images,
each pixel’s intensity is represented by the amount of detected photons that are not emitted
by the sensor’s own laser pulse but may come from sources such as sunlight or moonlight.
And every pixel in a reflectivity image represents the calculated calibrated reflectivity. Then,
range images demonstrate the distance from the sensor to objects in the environment.

Figure 2. Samples of LiDAR-generated images, from above to bottom, are signal image, range image,
reflectivity image, and point cloud.

As indicated by the findings of our previous research, signal images have exhibited
superior performance in the execution of conventional DL tasks within the domain of
computer vision [27]. In light of this, for the first two parts of our experiment, we opted to
employ signal images from the “indoor_01_square” scene provided by the dataset, which
is a scene that spans 114 s and comprises 1146 image messages.

3.2. Optimal Pre-Processing Configuration Searching for LIDAR-Generated Images

LiDAR-generated images at hand are typically panoramic but low-resolution. More-
over, these images often exhibit a substantial degree of noise. This prompts a concern of
utilizing the original images for facilitating the functionality evaluation of the keypoint
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detector and descriptor algorithms. And our preliminary experiments have evinced un-
satisfactory performance across an array of detectors and descriptors when employing
the unaltered original LiDAR-generated images. To identify the optimal resolution and
interpolation methodology for augmenting image resolution, an extensive comparative
experiment was conducted.

In this part, we implement an array of interpolation techniques on the original images,
employing an extensive spectrum of image resolution combinations. The interpolation
methodologies encompass bicubic interpolation (CUBIC), Lanczos interpolation over 8 x 8
neighborhood (LANCZOS4), resampling using pixel area relation (AREA), nearest neighbor
interpolation (NEAREST), and bilinear interpolation (LINEAR). The primary procedure of
the pre-processing is elucidated in Algorithm 1.

Algorithm 1: Preprocessing configuration evaluation

Input:

N number of signal images: {S;},i ~ N;

Interpolation methods: A = {CUBIC,LANCZOS4, AREA, NEAREST,LINEAR};
Targeted Width: TW = {min : 512; max : 4096; step : 128};

Targeted Height: TH = {min : 32; max : 256;step : 32};

Detectors and descriptors:

DET = {SURF,SIFT,SHITOMASI, HARRIS, BRISK, FAST, AKAZE,ORB};

DES = {FREAK, SIFT,BRISK, SURF, BRIEF, AKAZE,ORB};

Output: Metrics

foreach interplation approach in 1A do
foreach width in TW do
foreach height in TH do
foreach det in DET and des in DES do

foreach S; do
L Calculate the value of aforementioned metrics;

Save the calculated value;

Analyze the metric values.

More specifically, we iterate a range of image dimensions and interpolation methods in
conjunction with the suite of detector and descriptor algorithms designated for evaluation.
Each iteration involves a rigorous evaluation of a comprehensive metrics set detailed in
Table 3. Following a quantitative analysis, we compute mean values for these metrics. This
extensive assessment aims to identify the optimal pre-processing configuration that offers
balanced performance for different keypoint detectors and descriptors.

3.3. Keypoint Detectors and Descriptors for LIDAR-Generated Images

The evaluation workflow of detector—descriptor algorithms typically comprises
three stages, including feature extraction, keypoint description, and keypoint matching
between successive image frames. In this section, the specific procedures for executing
these stages in our experimental setup will be elaborated upon.

3.3.1. Designated Keypoint Detector and Descriptor

An extensive array of keypoint detectors and descriptors, as detailed in Table 1 from
Section 2.1, were investigated. The employed keypoint detectors include SHITOMASI,
HARRIS, FAST, BRISK, SIFT, SURF, AKAZE, and ORB. Additionally, we integrated Su-
perpoint, a DL-based keypoint detector, into our methodology. The keypoint descriptors
implemented in our experiment are BRISK, SIFT, SURF, BRIEF, FREAK, AKAZE, and ORB.

3.3.2. Keypoints Matching between Images

Keypoint matching, the final stage of the detector—descriptor workflow, focuses on
correlating keypoints between two images, which is essential for establishing spatial
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relationships and forming a coherent scene understanding. The smaller the distance of the
descriptors between two points, the more likely it is that they are the same point or object
between two images. In our implementation, we employ a technique termed “brute-force
match with cross-check”, which means for a given descriptor D4 in image A and another
descriptor Dp in image B, a valid correspondence requires that both descriptors recognize
each other as their closest descriptors.

3.3.3. Selected Evaluation Metrics

As explained in Section 2.3, we have opted not to rely on ground truth-based eval-
uation methodologies due to the lack of benchmark datasets and the substantial labor
involved in data labeling. Instead, we combined some specially designed metrics that are
independent of ground truth, together with several intuitive metrics, to form the complete
indicators listed in Table 3. To our best understanding, this represents the most extensive
set of evaluation metrics currently available in the absence of a benchmark dataset.

3.3.4. Evaluation Process

The flowchart shown in Algorithm 2 below provides an outline of the steps carried
out by the program. Two nested loops are employed to iterate over different detector—
descriptor pairs. For each image, the algorithm detects and describes its keypoints. If
more than one image has been processed, keypoints from the current image are matched
to the previous one. And metrics are placed in corresponding positions to assess the
algorithm’s performance.

Algorithm 2: Overall evaluation pipeline of keypoint detectors and descriptors

Input: )

N number of signal images: {S'},i ~ N;

DET = {SURF,SIFT,SHITOMASI, HARRIS, BRISK, FAST, AKAZE,ORB};

DES = {FREAK, SIFT,BRISK, SURF, BRIEF, AKAZE,ORB};

Output: Metrics: Number of keypoints, Robustness of Detector, Computational Efficiency, Match Ratio, Match
Score, Distinctiveness

foreach Detector € DET do

foreach Descriptor € DES do

foreach S' do )

S’ «— Preprocess(S') ;

KP!, D' «— detect_and_compute(S', Detector, Descriptor) ;

Running time of detection and descripton : T;i;

Number of Keypoints : Ni ;

Apply different transformations to image S;, then calculate robustness: Ri,, RL .,
ifi > 1then

Vi wien <— Match(D',D'71,) ;

Running time ofmatching : T,;

Computational Ef ficiency : T{ + T5;

if NV, op > O then

match

Match Ratio = N,/ Ni 3

"
KPres «— find_matched_points (ICPi, V:rm,‘:h);
KPource — find_matched_points (ICPi’l,V,’;xatch);
HiEstimm‘edJmmn

foreach Pros € KPhes, Psource € KPguree d0
L if H’PSnuvrcc - PR(’/ * ,HxEanmtadjmnm H < 3 then

i
Rblur’

<— estimate_homo_matrix (ICP;OWM, lCPkgf);

i —_ .
good_match — +1

_ A
Match Score = deﬂmh

i .
/Nmntch’

else
Match Ratio = 0;
Match Score = 0;

i Vi
Primary_match’ ¥ Secondary_match

+— KnnMatch(D!, D'~} k =2);
foreach Matchl € V}’rimmy,mmch’ Match2 € Véecnndmy,mmch do
if Disctanceyaien / Disctanceygeny < 0.8 then
L NlDislinctichnalclx =41

) i — A\ i
Distinctiveness = NDistinctiveertch /'/\[kp’

Analyze the metric values.
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3.4. LiDAR-Generated Image Keypoints Assisted Point Cloud Registration
3.4.1. Selected Data

The selected data for the evaluation from the dataset mentioned in Section 3.1 includes
indoor and outdoor environments. The outdoor environment is from the normal road,
denoted as “Open road”, and a forest, denoted as “Forest”. The indoor data include a hall
in a building, denoted as “Hall (large)”, and two rooms, denoted as “Lab space (hard)”,
and “Lab space (easy)”.

3.4.2. Point Cloud Matching Approach

In this part, we applied KISS-ICP (https:/ /github.com/PRBonn/kiss-icp.git, accessed
on 18 October 2023) as our point cloud matching approach. It also provides the odometry
information, affording us the means to assess the efficacy of our point cloud downsam-
pling approach through an examination of a positioning error, namely translation error
and rotation error. To generalize our proposed approach, we tested an NDT-based sim-
ple SLAM program (https://github.com/Kin-Zhang/simple_ndt_slam.git, accessed on
18 October 2023) as well.

3.4.3. Proposed Method for Point Cloud Downsampling

Following the pre-processing of LIDAR-generated images outlined in Section 3.3, we
derive optimal configurations for the keypoint detectors and descriptors. Utilizing these
configurations as a foundation, we establish the workflow of our proposed methodology,
illustrated in Figure 3. Within this process, we conduct distinct pre-processing procedures
for both the range and signal images, employing them individually for keypoint detection
and descriptor extraction. Subsequently, we combine the keypoints obtained from both
images and search the K nearest points to each of these keypoints. We systematically varied
K within the range of 3 to 7, adhering to a maximum threshold of 7 to align with our primary
objective of downsampling the point cloud. Consequently, we find the corresponding point
cloud of the keypoints and their neighbors within the raw point cloud, thereby constituting
the downsampled point cloud. And then, we feed the downsampled point cloud into the
point cloud registration for the odometry-generating purpose.

”. Raw point cloud

Range image Signal image

=

1 e

Preprocessing Extract
1 1 =~  Corresponding
Point Cloud
Keypoint Detector 1

1
Merge Key Points

Point Cloud
Nearest Points Search - Registration

Figure 3. The process of the proposed LiDAR-generated images assisting point cloud registration.
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In our analysis, we examined not only the positional error but also the rotational
error, computational resource utilization, downsampling-induced alterations in point cloud
density, and the publishing rate of LO.

3.5. Hardware and Software Information

Our experiments are run on the ROS Noetic on the Ubuntu 20.04 system. The platform
is equipped with an i7 8-core 1.6 GHz CPU and an Nvidia GeForce MX150 graphics card.
Primarily, we used libraries like OpenCV and PCL. Note that we have used some non-free
copyright-protected algorithms from OpenCV, such as SUREF, just for research.

The assessment of keypoint-based point cloud downsampling was conducted on a
Lenovo Legion notebook equipped with the following specifications: 16 GB RAM, a 6-core
Intel i5-9300H processor (2.40 GHz), and an Nvidia GTX 1660Ti graphics card (boasting
1536 CUDA cores and 6 GB VRAM). Within this study, our primary focus was on the
evaluation of the two open-source algorithms delineated in Section 3.4.2, namely, KISS-ICP
and Simple-NDT-SLAM. It is imperative to highlight that a consistent voxel size of 0.2 m
was employed for both algorithms. Our project is primarily written in C++ (including the
DL approach, Superpoint), publicly available in GitHub (https://github.com /TIERS /ws-
lidar-as-camera-odom, accessed on 18 October 2023).

4. Experiment Result

Through this section, we first cover the final results of our exploration of the prepro-
cessing workflow of LiDAR-based images. Subsequently, an in-depth analysis of keypoint
detectors and descriptors for LIDAR-based images is conducted. Then, a detailed quantita-
tive assessment of the performance of LO facilitated by LiDAR-generated image keypoints
is presented.

4.1. Results of Preprocessing Methods for LIDAR-Generated Image

As elucidated in Section 2.3, distinctiveness and match score are considered as paramount
measures for the overall accuracy of the entire algorithm pipeline. Consequently, in
scenarios where different sizes and interpolation methods show peak performance on
different metrics, these two metrics are our primary concern. Based on such criteria, the
size 1024 x 64 demonstrated better performance across all detector and descriptor methods.
Then, in Table 5, our evaluation also revealed that the linear interpolation method yielded
the most optimal results among the various interpolation techniques.

Table 5. Evaluation metrics under different interpolation approaches.

Robustness of (Rotation,

Interpolation Scaling, Noise) Distinctiveness Matching Score
AREA (0.81, 0.106, 0.574) 0.309 0.415
CUBIC (0.82,0.121, 0.569) 0.292 0.408

LANCZOS4 (0.819, 0.127, 0.559) 0.286 0.405
NEAREST (0.818,0.128, 0.573) 0.275 0.401
LINEAR (0.815,0.1, 0.583) 0.314 0.415

The findings in Table 6 also suggest that there is a clear advantage in properly reducing
the size of an image as opposed to enlarging it. Additionally, in the process of image
downscaling, one pixel often corresponds to several pixels in the original image. So overly
downscaled images might lead to substantial deviations in the detected keypoints when
re-projected to their original positions, suggesting that extreme image size reductions
should be avoided.

Here is a more intuitive result to show how reducing the size of an image is far better
than enlarging it. In Figure 4a,b, Superpoint detectors identify keypoints as green dots. The
enlarged image Figure 4a displays many disorganized points. Conversely, the downscaled
image Figure 4a reveals distinct keypoints, such as room corners and the points where
various planes of objects meet. Note that we resized the two images for paper readability:
originally, their sizes varied.
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Table 6. Evaluation metrics under different resized resolutions.

Robustness of (Rotation,

Size Scaling, Noise) Distinctiveness Matching Score
512 x 32 (0.856, 0.157, 0.551) 0.267 0.366
896 x 128 (0.827, 0.156, 0.591) 0.37 0.515
896 x 256 (0.843, 0.146, 0.663) 0.309 0.486
1024 x 64 (0.809, 0.124, 0.54) 0.427 0.53

1024 x 128 (0.832,0.147, 0.584) 0.372 0.504
1024 x 256 (0.851, 0.134, 0.659) 0.32 0.483
1280 x 64 (0.798, 0.116, 0.527) 0.41 0.5

1280 x 128 (0.823,0.138, 0.575) 0.353 0.479
1280 x 256 (0.849, 0.127, 0.652) 0.301 0.464
1920 x 128 (0.808, 0.124, 0.553) 0.321 0.436
1920 x 256 (0.844, 0.114, 0.644) 0.274 0.43
2048 x 128 (0.799, 0.129, 0.544) 0.309 0.425
2048 x 256 (0.837,0.119, 0.633) 0.263 0.421
2560 x 128 (0.802,0.111, 0.547) 0.294 0.4

2560 x 256 (0.842, 0.106, 0.644) 0.249 0.401
4096 x 128 (0.799, 0.087, 0.557) 0.257 0.339

(b)

Figure 4. Keypoint detected in the resized signal images. (a) Detected keypoints in an enlarged image.

(b) Detected keypoints in a downscaled image.

4.2. Results of Keypoint Detectors and Descriptors for LIDAR Image

As presented in Table 3, different metrics offer a comprehensive evaluation of the
detector-descriptor pipeline from various perspectives.

The metric “Number of key points” is shown in Figure 5, which is only related to
detectors. FAST and BRISK algorithms detected the highest number of keypoints, but there
were significant fluctuations in the counts. Comparatively, AKAZE, ORB, and Superpoint
identified a reduced number of keypoints, but the consistency was notable. It i important
to note that for this metric, a high number of keypoints could still contain numerous false
detections. Therefore, this metric should be considered in conjunction with other accuracy
indicators, especially match score, match ratio, and distinctiveness, to be more convincing.

Figure 6 depicts the computational efficiency, where the majority of the algorithms
operate in less than 50 ms. After CUDA was enabled, SuperPoint runs significantly faster
with minimal variance. Among all algorithms, BRISK is the most time-consuming one, and
using BRISK solely as a descriptor with other detectors will hinder the overall efficiency.
And descriptors utilizing BRIEF exhibit enhanced performance speed.

Figure 6 shows the robustness of the detector. Superpoint consistently demonstrates ro-
bust performance across various transformations. Among conventional detectors, AKAZE
has proven effective, especially in handling rotated transformations and noise interference.
Most detectors exhibit marked poor performance under scale invariance. The horizontal
textures inherent in LIDAR-based images might explain such weakness: when the images
are enlarged, these textures can be erroneously detected as keypoints. Another thing we
may notice is that the ORB detector does not show a good robust performance for LIDAR-
based images, especially considering that ORB-SLAM is one of the most famous algorithms
of the last few decades.
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Figure 6. Computational efficiency.

As emphasized in Section 2.3, a multitude of keypoint detections and rapid matches
could be useless if their accuracy is not guaranteed. Therefore, match ratio, match Score,
and distinctiveness, which pertain to algorithmic accuracy, can be regarded as the most
pivotal indicators across various application perspectives. Figures 7-10 present the results
of these three metrics, indicating that Superpoint, when augmented with CUDA, is the
most effective solution. Moreover, among traditional algorithms, AKAZE demonstrates
top-tier performance across the majority of evaluated metrics, making it a commendable
choice. Other methods such as AKAZE, FAST_BRIEF, HARRIS_BRIEF, have also shown
good accuracy performance. It is discerned that some fusion algorithms like FAST_BRIEF
combination really offer robust accuracy performance metrics. Conversely, other combina-
tions, such as integrating the SURF descriptor with alternative detectors, yield less accurate
results when compared to the complete SURF detector and descriptor algorithm.
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4.3. Results of LIDAR-Generated Image Keypoints Assisted LO
4.3.1. Downsampled Point Cloud

In Figure 11, we demonstrate the sample result of the downsampled point cloud in
Figure 11a compared with the raw point cloud in Figure 11b. Notably, in the downsampled
point cloud in Figure 11a, the red points are extracted based on signal images and the green
ones are from range images. We draw the keypoints from both images to the signal image
shown in the lower part of Figure 11a. The disparity between the points extracted based
on these two types of images shows the significance of different LIDAR-generated images.
Additionally, in the preliminary evaluation of LO, we found the accuracy of LO is lower
if we only integrated the signal images instead of both modalities. This encourages us to
utilize both signal and range images in the latter part.

(b)

Figure 11. Samples of point cloud data. (a) The upper part presents the downsampled point cloud
from our LiDAR-based method, while the bottom illustrates keypoint distribution in the signal image:
red from the signal image and green from the distance image. (b) Raw point cloud and signal image.

4.3.2. LO-Based Evaluation

In our experiment, various numbers of neighbor points are utilized, ranging from
three to seven for each type of LIDAR-generated image. We selected part of them to show
the result here based on the principle that it is more accurate but with fewer points. As we
found in the previous section, the Superpoint has reliable keypoints detected, so we utilize
this DL method to extract keypoints in our proposed approach while KISS-ICP is the point
cloud registration and LO method. Table 7 shows the performance of LO based on different
sizes of neighbor point sizes in both indoor (Lab space, Hall) and outdoor (Open road and
Forest) environments.

As shown in Table 7, in the scenarios of Open road, Lab space (hard), and Hall (Large),
the LO from KISS-ICP applying raw point cloud cannot work properly with large drift,
which the error can not be calculated. Meanwhile, our proposed approach works all the
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time. Additionally, even when applying raw point cloud to KISS-ICP works, our approach
can achieve comparable translation state estimation while being more robust in the rotation
state estimation across most of the situations.

Table 7. Performance evaluation of LO (KISS-ICP) with raw point cloud and our downsampled point
cloud, ‘Sig” and ‘Rng’ represent the size of neighboring point areas for the signal and range images,
respectively, denoted as Sig_Rng.

Neighbor Size Forest Lab Space (Hard)  Lab Space (Easy)

(Sig_Rng) Open Road (Translation Error (Mean/Rmse) (m), Rotation Error (Deg)) Hall (Large)
4.4 N/A (0.079/0.090, 6.58)  (0.052/0.062,1.44) (0.027/0.031,0.99) (1.111/1.274, 3.37)
45 N/A (0.086/0.096,7.22) (0.043/0.051,1.51) (0.031/0.035,1.05) (0.724/0.819, 2.95)
4.7 (0.817/0.952,2.33)  (0.082/0.102,7.78)  (0.039/0.046,1.46) (0.028/0.033,0.98)  (0.583/0.660, 2.88)
54 (1.724/2.038,2.10)  (0.085/0.100, 6.81)  (0.059/0.070,1.71) ~ (0.025/0.028,0.98) (1.065/1.242,2.73)
55 (2.176/2.410,1.76)  (0.108/0.203, 6.96)  (0.037/0.043,1.35)  (0.028/0.032,0.97) (0.707/0.801, 2.66)
57 (1.298/1.443,2.71)  (0.076/0.084, 6.11)  (0.064/0.075,1.54)  (0.025/0.028,0.94) (0.676/0.746, 3.67)
7 4 (1.696/1.888,2.31) (0.082/0.094, 6.98) (0.074/0.085,1.64) (0.027/0.032,0.99) (0.806/0.917, 3.68)
75 (1.784/2.006, 2.30)  (0.080/0.102,7.72) ~ (0.033/0.047,1.59)  (0.025/0.028,0.97) (0.698/0.803, 3.11)

Raw PC N/A (0.057/0.073, 8.91) N/A (0.020/0.022, 0.62) N/A

In outdoor settings, a neighbor size 4_7 (4 x 4 for signal images and 7 x 7 for range
images) exhibits notable efficacy in both translation and rotation state estimation. Con-
versely, in indoor environments, a neighbor size 5_5 (5 x 5 for signal images and 5 x 5 for
range images) demonstrates commendable performance in the estimation of translation and
rotation states, in addition to exhibiting efficient downsampling capabilities, as delineated
in Table 8.

Table 8. The number of points left after downsampling with varied neighbor size: ‘Sig” and ‘Rng’
represent the size of neighboring point areas for the signal and range images, respectively, denoted

as Sig_Rng.
Neighbor Size Lab Space (Hard) Lab Space (EASY)

(Sig_Rng) Open Road  Forest Ntfmber of Points (p ts)p Hall (Large)
4.4 2650 7787 6435 6360 4742
4.5 3206 7812 6416 6302 4792
4.7 4784 11,447 9518 9392 7094
54 3182 7843 6409 6333 4776
55 3183 7568 6446 6292 4783
57 4763 11,519 9513 9386 7066
74 4760 11,631 9445 9356 7070
7.5 4756 11,627 9469 9378 7078

Raw PC 131,072 131,072 131,072 131,072 131,072

Based on the above result, we apply the neighbor size 4_7 for outdoor settings and
the neighbor size 5_5 for indoor settings to further extend the performance evaluation by
including the conventional keypoint detector approach and another point cloud matching
approach, NDT. It is worth noting that the purpose of applying NDT here is not to compare
it with KISS-ICP but to show the generalization of our proposed approach among other
point cloud registration methods.

The results in Tables 9 and 10 prove that the conventional keypoint extractor can
achieve comparable LO translation estimation and more accurate rotation estimation than
Superpoint. This performance is obtained with much less CPU and memory utilization
and fewer cloud points, but higher odometry publishing rates. Similar results are achieved
by the NDT-based approach, which validates the above result in a certain way. Notably,
the memory consumption using KISS-ICP with raw point cloud in Table 9 is lower than
others. As our observation indicates, the primary reason behind this is the drift, resulting
in few points for the point cloud registration.
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Table 9. Evaluation of LO based on conventional and DL keypoint detectors with KISS-ICP.

Approaches KISS-ICP
Evaluation Outdoor Indoor
Indicators AKAZE Superpoint Raw PC AKAZE Superpoint Raw PC
Translation Error (m) 0.096/0.107  0.082/0.102 N/A  0.092/0.099 0.037/0.043 N/A
Rotation error (deg) 4.27 7.78 N/A 1.22 1.71 N/A
CPU (%) 263.16 457.59 544.61 82.57 425.93 572.50
Mem (MB) 247.62 308.67 165.73 198.27 232.85 84.37
Avg Pts 4849 11,447 131,072 1176 6446 131,072
Odom Rate (Hz) 10.0 4.0 2.95 10.0 7.6 2.82

Table 10. Evaluation of LO based on conventional and DL keypoint detectors with NDT.

Approaches NDT
Evaluation Outdoor Indoor
Indicators AKAZE Superpoint Raw PC AKAZE Superpoint Raw PC
Translation Error (m) 0.115/0.126  0.090/0.098 N/A 0.102/0.114  0.054/0.071 N/A
Rotation error (deg) 4.84 5.66 N/A 1.15 1.31 N/A
CPU (%) 100.39 325.69 571.12 82.20 338.54 581.30
Mem (MB) 285.06 548.16 705.43 253.95 290.34 645.21
Avg Pts 4849 11,447 131,072 1176 6446 131,072
Odom Rate (Hz) 10.0 4.6 3.34 10 8.21 1.20

5. Conclusions and Future Work

To mitigate computational overhead while ensuring the retention of a sufficient num-
ber of dependable keypoints for point cloud registration in LO, this study introduces a
novel approach that incorporates LIDAR-generated images. A comprehensive analysis
of keypoint detection and descriptors, originally designed for conventional images, is
conducted on the LiDAR-generated image. This not only informs subsequent sections of
this paper but also sets the stage for future research endeavors aimed at enhancing the
robustness and resilience of LO and SLAM technology. Building upon the insights gleaned
from this analysis, we propose a methodology for down-sampling the raw point cloud
while preserving the integrity of salient points. Our experiments demonstrate that our pro-
posed approach exhibits comparable performance to utilizing the complete raw point cloud
and, notably, surpasses it in scenarios where the full raw point cloud proves ineffective,
such as in cases of drift. Additionally, our approach exhibits commendable robustness in
the face of rotational transformations. The computation overhead of our approach is lower
than the LO utilizing raw point cloud but with a higher odometry publishing rate.

Building on the methodologies and insights of this study, there exists a clear trajec-
tory for enhancing the LiDAR-generated image keypoint extraction process within the
comprehensive framework of the SLAM system. Subsequent research could focus on the
synergistic integration of features extracted from LiDAR-generated images with those from
point cloud data, with an objective to capitalize on the unique advantages of each modality
to achieve superior mapping and localization accuracy. Additionally, conceptualizing and
implementing a lightweight yet robust SLAM system, augmented by sensory data from
devices such as an IMU, can further advance the domain, addressing inherent challenges
like drift and swift orientation alterations in real-world navigation scenarios. Beyond
traditional methodologies, the incorporation of deep learning techniques into the SLAM
pipeline offers potential avenues for refinement, especially in the domains of keypoint
extraction, feature matching, and adaptability to varied environmental conditions.
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