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Abstract: In this study, we investigate the performances of a commercial Global Navigation Satellite
System (GNSS) Radio Occultation (RO) mission and a new-generation RO constellation, i.e., Spire and
Constellation Observing System for Meteorology, Ionosphere, and Climate 2 (COSMIC-2), respectively.
In the statistical comparison between Spire and COSMIC-2, the results indicate that although the
average signal-to-noise ratio (SNR) of Spire is far weaker than that of COSMIC-2, the penetration
of Spire is comparable to, and occasionally even better than, that of COSMIC-2. In our analysis,
we find that the penetration depth is contingent upon various factors including SNR, GNSS, RO
modes, topography, and latitude. With the reanalysis of the European Centre for Medium-Range
Weather Forecasts and Radiosonde as the reference data, the identical error characteristics of Spire
and COSMIC-2 reveal that overall, the accuracy of Spire’s neutral-atmosphere data products was
found to be comparable to that of COSMIC-2.

Keywords: GNSS-RO; Spire; COSMIC-2

1. Introduction

For nearly two decades, Global Navigation Satellite System (GNSS) Radio Occultation
(RO) has served as a remote sensing technique providing vast amounts of data for numeri-
cal weather prediction [1,2], space weather analyses [3], and climate change research [4,5].
During GNSS-RO measurements, spaceborne receivers on low-Earth-orbiting (LEO) satel-
lites collect GNSS signals affected by refraction from the Earth’s atmosphere when GNSS
satellites disappear or emerge past the Earth’s horizon, yielding atmospheric profiles
with the advantages of high accuracy, high vertical resolution, all-weather capability, and
global coverage [6,7].

With the successful GPS/MET [8] experiment, the GNSS-RO technique has been
identified as a promising technique for the retrieval of atmospheric profiles. The GPS/MET
experiment, launched in April of 1995, played a pivotal role in demonstrating the feasibility
and effectiveness of GNSS-RO for atmospheric research. Thus, atmospheric monitoring
research of Earth involving GNSS-RO observations has been in demand, contributing to
a series of RO missions, including the Ørsted [9], Sunsat [10], Challenging Minisatellite
Payload [11], Satellite for Scientific Applications C/D [12], Gravity Recovery and Climate
Experiment [13], Constellation Observing System for Meteorology, Ionosphere, and Climate
1/2 (COSMIC-1/2) [14,15], Meteorological Operational satellite program-A/B/C [16], and
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Feng Yun-3C/D [17] missions. Notably, COSMIC-2 is a joint mission launched by Chinese
Taiwan and the U.S. involving multiple satellites designed to collect RO data using signals
from GNSS. The mission aims to enhance global weather prediction, ionospheric research,
and climate monitoring. Although the number of RO profiles produced by operational
GNSS-RO missions is currently far below the minimum profile number required for global
observing systems, notably, a frequency of 16,000–20,000 globally distributed occultations
per day can achieve the requirement of assimilation in numerical weather prediction [18].
Recently, due to the advantages of small-satellite technologies, including their low economic
costs and short research and development periods, RO techniques have been rapidly
developed; thus, some commercial GNSS-RO missions have been performed with small
satellites to complement the shortage of scientific GNSS-RO data, such as Spire [19]. Spire
is a commercial space-based company that operates a constellation of nanosatellites for
various purposes, including RO measurements. In the Spire program, a constellation
of nanosatellites, known as the LEO Multi-Use Receiver Satellite Bus, has been built to
generate a tremendous amount of RO data.

Many evaluations of GNSS-RO data have been implemented to verify the high quality
of GNSS-RO retrievals, including GPS/MET [8], Challenging Minisatellite Payload [20],
Gravity Recovery and Climate Experiment [13], Meteorological Operational satellite
program [21], COSMIC-1 [14], etc. However, comprehensive investigations into the paral-
lels and distinctions between scientific occultation missions and commercial nanosatellite
occultation missions, such as COSMIC-2 and Spire, have been limited. Ho et al. (2020) [15]
preliminarily investigated the COSMIC-2 neutral atmospheric profile quality using ra-
diosonde data and other RO profiles in terms of profile precision, stability, accuracy, and
uncertainty. They found that COSMIC-2 data had a relatively consistent quality with
that of COSMIC-1, and the higher signal-to-noise ratio (SNR) of the COSMIC-2 mea-
surements allowed RO signals to penetrate deeper into the lower troposphere, slightly
improving the retrieval accuracy. Chen et al. (2021) [22] made a statistical comparison
of COSMIC-2 with data from radiosonde, RO data from other missions, global analyses
from ECMWF and the National Centers for Environmental Prediction final, and other
satellite products, and all the datasets had consistent vertical variations. The temper-
ature profiles showed a mean difference of <0.5 ◦C and a standard deviation (STD) of
1.5 ◦C, and the water vapor pressure showed deviations within 2 hPa in the lower tropo-
sphere. Spire has operated a constellation of more than 110 LEO nanosatellites since 2019,
and Spire’s RO refractivity profiles have comparable quality with that of COSMIC-2 [23].
Johnston et al. (2021) conducted a comparison between specific humidity profiles derived
from COSMIC-2 RO data and those from ERA5 and MERRA-2 reanalysis datasets. The find-
ings reveal a strong concordance between COSMIC-2 specific humidity and ERA5 while
highlighting more pronounced discrepancies with MERRA-2, especially within the bound-
ary layer [24]. Forsythe (2020) et al. validated the ionospheric electron density through
Spire’s CubeSats RO measurements, and the RO ionospheric inversion results showed
significant consistency with the digisonde measurements and Arecibo incoherent scatter
radar data [25].

Although the studies above already estimated the RO profiles of Spire and COSMIC-2
and obtained some preliminary results, the properties of the Spire and COSMIC-2 RO
retrievals, such as their global coverage and SNR influence, discrepancies between their
retrieval qualities, have not been studied. The GNSS-RO constellation observation distri-
bution exhibits global coverage [26], and the SNR is the critical factor limiting the deeper
penetration of the GNSS-RO observations [27]. Additionally, the limited payloads of the
small satellites result in low power consumption and low gain antennas, thereby reduc-
ing the RO retrieval quality. In this study, we aimed to systematically analyze Spire and
COSMIC-2 RO profiles from UCAR with other datasets, including ECMWF Reanalysis and
radiosonde datasets.

This paper is organized as follows. An introduction to the data and methodology is
given in Section 2. The systematic comparison of the Spire and COSMIC-2 retrievals with
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the ECMWF reanalysis and radiosonde data is discussed in Section 3. Finally, conclusions
are provided in Section 4.

2. Data and Methodology
2.1. GNSS-RO Data

The Spire and COSMIC-2 RO data involved in this study, including the neutral atmo-
spheric excess phase and “wet” profile products, are available to freely download from the
COSMIC Data Analysis and Archive Center (CDAAC) (https://www.cosmic.ucar.edu/
accessed on 21 October 2023) [28]. The SNRs of RO events are recorded in the excess phase
files and meteorological parameters, such as the refractivity, pressure, temperature, relative
humidity, specific humidity, and water vapor pressure, are provided in the “wet” profile
files [15]. In the current study, Spire and COSMIC-2 RO data from the day of year (DOY)
60 in 2022 to 059 in 2023 are used. It is important to emphasize that the Spire data comprises
three navigation satellite systems: GPS, GLONASS, and GALILEO, whereas the COSMIC-2
data only includes GPS and GLONASS.

The equation representing refractivity (N), which is a function of pressure (P in hPa or
mbar), temperature (T in K), and water vapor pressure (e in hPa or mbar) in the neutral
atmosphere, is given as follows by Smith et al. (1953) [29].

N = 77.6
P
T
+ 3.73 × 105 e

T2 . (1)

Based on the assumption that water vapor could be negligible, RO “dry” profiles,
including “dry pressure” and “dry temperature”, are obtained by Equation (1). However,
this assumption is unreasonable because more moisture exists below the upper troposphere.
Hence, RO “wet” profiles (level-2 products, named “wetPrf” or “wetPf2”) including mois-
ture information are extracted using the one-dimensional variational (1DAR) method from
the RO bending angle profiles [30]. The vertical resolution of the “wet” profiles is 0.05 km
from the surface to below 20 km altitude and 0.1 km from above 20 km to 60 km altitude.

2.2. ERA5 Datasets

ERA5 is the fifth-generation global atmospheric reanalysis product [31], and hourly
ERA5 data representing pressure levels during 2019, used in this study, are among the
most advanced three-dimensional global analyses available for estimating the quality of
Spire and COSMIC-2 RO profiles as benchmark values. As shown in Table 1, the required
variables in the ERA5 dataset related to this study, including the specific humidity (kg/kg),
temperature (K), and geopotential (m2/s2), are available at a horizontal resolution of
0.25◦ × 0.25◦ on 37 pressure levels from 1000 hPa to 1 hPa. It can be downloaded publicly
from the provided URL https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-
era5-pressure-levels?tab=form (accessed on 21 October 2023).

Table 1. ERA5 hourly data on pressure levels used in this study.

Projection Regular Latitude-Longitude Grid

Horizontal coverage Global
Horizontal resolution 0.25◦ × 0.25◦

Vertical coverage 1000 hPa to 1 hPa
Vertical resolution 37 pressure levels

Temporal resolution Hourly
Required variables Specific humidity, temperature, and geopotential

2.3. Radiosonde Data

The Integrated Global Radiosonde Archive version 2 (IGRA2) provided by the National
Centers for Environment Information is a radiosonde dataset [32] containing variables
such as pressure, geopotential height, temperature, and relative humidity from high-
quality sounding performed at more than 2800 globally distributed stations; these data

https://www.cosmic.ucar.edu/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form
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are accessible at the website https://www.ncei.noaa.gov/pub/data/igra/ (accessed on
21 October 2023). Here, IGRA2 data are used as the other benchmark values to eliminate the
effect of the assimilation of COSMIC-2 and Spire data in the ECMWF Integrated Forecasting
System since March and May of 2020, respectively [33]. The IGRA2 observation data are
very limited above the 30 km altitude due to the flight limits of radiosondes. Hence, the
limit height for comparison between the GNSS-RO and radiosonde data is set to 30 km in
this work.

2.4. Methodology

In the comparison of radiosonde and GNSS-RO data, data pairs are collocated within
the spatiotemporal windows of 1 h and 100 km. Furthermore, the vertical resolutions
of both the ERA5 and radiosonde data are not comparable to that of the GNSS-RO data.
Therefore, the ERA5 and radiosonde data are interpolated into the vertical resolutions of
the GNSS-RO data.

In this study, the mean difference and STD used in the statistical calculations are
defined using the following equations to evaluate the GNSS-RO product properties:

∆xa =
1
n∑n

i=1

(
xro

i − xt
i
)
, (2)

STD∆xa =

√
1
n∑n

i=1

((
xro

i − xt
i
)
− ∆xa

)2, (3)

∆xr =
1
n ∑n

i=1
(
xro

i − xt
i
)

xt
i

, (4)

STD∆xr =

√√√√ 1
n∑n

i=1

((
xro

i − xt
i
)

xt
i

− ∆xr

)2

, (5)

where xro
i and xt

i represent the GNSS-RO and benchmark temperature, relative humid-
ity, pressure, and refractivity, respectively, the subscript i stands for the ith GNSS-RO-
benchmark collocation, and n is the number of collocations.

Emphasis should be placed on the fact that data quality control is conducted as part
of the data quality assessment process. The reference values were derived from ERA5 or
radiosonde data. RO refractivity profiles with relative errors surpassing 5%, as well as wet
pressure profiles exceeding 900% or dropping below −90%, were eliminated.

3. Comparison Results
3.1. Initial Analysis

The GNSS-RO constellation pattern impacts the distribution of RO event observations
over the globe. Without the specific configuration for Spire, consisting of a diverse set
of orbits compounding Sun-Synchronous Orbits (SSO), 83–85◦ Orbits, Equatorial Orbit,
51.6◦ Orbits, and 37◦ Orbits and the continuous changing of satellites owing to their short
operational lifetime of 2+ years [34]. As for COSMIC-2, six satellites orbit around the
Earth at an altitude of 550 km with a 24◦ inclination [35]. Furthermore, given that GNSS
constellations encompass diverse signal frequencies, constellation configurations, and
modulation-demodulation techniques, potentially influencing RO events. Hence, separate
investigations will be conducted for GPS, GLONASS, and GALILEO RO events.

The spatial distribution of the Spire RO events obtained from satellites with a different
orbit type has an obvious difference. As shown in Figure 1, the Spire RO events observed
on DOY 60 in 2022 are scattered globally. The red dots signify GPS RO events, the green
dots indicate GLONASS RO events, whereas the blue dots represent GALILEO RO events.
For COSMIC-2, Chen et al. (2021) [22] mention that RO events only cover the low-latitude
area (±45◦). Notably, few RO events recorded by COSMIC-2 occurred slightly beyond the

https://www.ncei.noaa.gov/pub/data/igra/
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edges of the ±45◦ region; these events are regarded as occurring on the scale within the
latitude area of ±45◦ in this study. The coverage areas of the RO events by Spire are wider
than those by COSMIC-2; thus, Spire can provide global RO data due to the constellation
characteristics of LEMUR-2 consisting of a series of orbits.
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Figure 1. Spire RO event distribution on DOY 060 in 2022 (red: GPS, green: GLONASS, and
blue: GALILEO).

Furthermore, the RO events can be classified into two modes, setting occultation or
rising occultation, based on the relative movement trend on the occultation observation.
Considering the different navigation satellite systems, here, the RO events were divided
into six groups: GPS/Set, GPS/Rise, GLONASS/Set, GLONASS/Rise, GALILEO/Set, and
GALILEO/Rise.

Table 2 shows the percentage for six groups of profiles (wetPf2) from the Spire and
COSMIC-2 satellite data obtained from CDAAC from DOY 060 in 2022 to 059 in 2023 under
quality control. Generally, there were more setting occultation events than rising occultation
events (except GLONASS-derived RO events for Spire). The number of atmospheric profiles
for Spire amounts to 1,663,197, surpassing COSMIC-2 with the number of 1,440,424, which is
a great supplement to the high-latitude regions that COSMIC-2 data cannot cover. However,
the Spire satellite constellation comprises dozens of satellites, whereas COSMIC-2 consists
of only six. Daily data produced by individual Spire satellites from UCAR contain no
more than 300 RO soundings, which is much smaller than those recorded by individual
COSMIC-2 satellites, each providing over 700 RO soundings.

Table 2. The percentage for six groups of profiles (wetPf2) from the Spire and COSMIC-2 data
obtained from CDAAC from DOY 060 in 2022 to 059 in 2023 under quality control.

GNSS-RO
Mission

Number of
Profiles Mode GPS GLONASS GALILEO

Spire 1,663,197
Set 26.46% 14.80% 12.14%

Rise 19.97% 15.29% 11.34%

COSMIC-2 1,440,424
Set 34.08% 18.71% None

Rise 29.43% 17.78% None
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With the RO events observed from DOY 060 in 2022 to 059 in 2023 by Spire and
COSMIC-2, we carried out an investigation on the RO events obtained with different
navigation satellite systems, i.e., GPS, GLONASS, and GALILEO. As shown in Table 2, the
percentages of the GPS-derived RO events are much larger than GLONASS- and GALILEO-
derived RO events for both Spire and COSMIC-2. This is reasonable considering the
number of operational GPS satellites is larger than GLONASS and GALILEO satellites. For
Spire, GLONASS-derived RO events are slightly higher than those derived from GALILEO.
Although there is no significant difference in the number of satellites in orbit for GLONASS
and GALILEO, it is important to note that some Spire satellites do not receive GALILEO
signals, including S128, S115, S117, and others.

3.2. SNR

The SNR is the key factor impacting deeper occultation, especially for surface and
tropical RO soundings. Currently, Spire and COSMIC-2 have developed new-generation
GNSS-RO payloads, i.e., STRATOS and the Tri-GNSS Radio-occultation System (TGRS),
respectively, to improve their retrieval quality in the low troposphere. It should be noted
that, compared to other payloads with high-gain antennas (e.g., the TGRS and CION [27]),
STRATOS is equipped with relatively low-gain antennas to track GNSS signals, thus directly
leading to relatively low SNR values in their measurements.

Figure 2 features a dual x-axis. The top x-axis represents the altitude in km, being
the straight-line height between the GNSS and LEO satellites, while the bottom x-axis
represents the time sequence in seconds. The y-axis corresponds to the SNR for two GPS
frequency bands. In this context, there are two GPS frequency bands, L1 at 1575.42 MHz
and L2 at 1227.60 MHz. In Figure 2, the SNR time series of two examples of a typical rising
occultation, observed in an adjacent area in the tropics nearly simultaneously by STRATOS
and the TRGS, are depicted. The 1-s average SNR of the two rising occultation events
shown with the black and green lines increases with increasing altitude. Furthermore,
obvious fluctuations or oscillations in the SNR curve can be observed at altitudes between
−100 km and −50 km, resulting from signals being temporarily captured and then abruptly
disappearing due to atmospheric ducting and super refraction [12]. It appears that the
SNR time series of the Spire is lower than that of the COSMIC-2. For example, at altitudes
above 0 km, the L1 SNR of the Spire is ~320 volts/volt, approximately one quarter of the
L1 SNR of the COSMIC-2, which is ~1400 volts/volt. Similarly, the L2 SNR of the Spire
is ~200 volts/volt, nearly half of the L2 SNR of the COSMIC-2, which is ~500 volts/volt.
Moreover, according to the study by Sokolovskiy et al. (2014) [36], the L1 and L2 SNRs
of the COSMIC-1 during several rising occultation events were ~600–800 volts/volt and
~200–600 volts/volt, respectively, at altitudes above 0 km. Therefore, the results that
STRATOS, which has relatively low-gain antennas, has a slightly weaker ability to capture
and track signals compared to IGOR, the payload of the COSMIC-1. Also, TRGS has an even
stronger ability to capture and track signals compared to both STRATOS and IGOR.

To generally compare the capability of STRATOS and the TRGS in capturing and
tracking signals, we also investigated the SNR in the altitude range of 60–80 km. The
60–80 km altitude range is optimal for evaluating signal strength, unaffected by atmo-
spheric interference. It’s sufficiently high to render attenuation from typical atmospheric
refraction negligible, yet it doesn’t extend to the E-layer where disturbances are more
pronounced [21,27]. As a result, the average L1-signal SNR within the 60–80 km altitude
range (hereafter referred to as the SNR average) is related to the signal strength of the RO
event. Figure 3 shows the average SNR histograms of the normalized probabilities for
the Spire, while Figure 4 displays the average SNR histograms of the normalized prob-
abilities for the COSMIC-2. For both GPS and GLONASS, the SNR averages of all the
Spire data (blue) range from ~200–1600 volts/volt with only one peak, which is much
weaker than the COSMIC-2 averages (brown), which vary from ~200–2250 with two peaks
(see Figures 3a and 4a). To investigate the influence of the navigation satellite systems
and occultation mode (setting or rising occultation) received by LEO on the SNR, all the
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data were divided into six groups: GPS/Set, GPS/Rise, GLONASS/Set, GLONASS/Rise,
GALILEO/Set, and GALILEO/Rise.

In Figure 3b,c and Figure 4b,c, the tops and bottoms of the x-axes represent the SNR av-
erages of the setting and rising occultation-normalized probability histograms, respectively.
Both the GPS/Set and GPS/Rise SNR averages of the Spire range from ~200–600 volts/volt,
while those of COSMIC-2 range from ~300–2000 volts/volt. In Figure 3c, the SNR aver-
ages for both the GLONASS/Set and GLONASS/Rise of the Spire range from ~300 to
1500 volts/volt, while those of COSMIC-2 range from ~250–2500 volts/volt in Figure 4c.
In Figure 3d, the SNR averages for both the GALILEO/Set and GALILEO/Rise of the
Spire range from ~300 to 1500 volts/volt. The SNR averages for both the GALILEO/Set
and GALILEO/Rise of the Spire span from ~300 to 750 volts/volt. It is possible that the
broader range of the SNR averages for GPS- or GALILEO-derived RO data is due to its
utilization of CDMA wireless data transmission, while GLONASS utilizes FDMA. It’s
worth noting that the occultation mode does not affect the scale of the SNR averages, while
the navigation satellite system (either GPS, GLONASS, or GALILEO) has an outstanding
effect on the range of the SNR averages. The SNR averages of the GPS-derived RO exhibit
a sharper peak compared to that of the GLONASS-derived RO, as shown in the comparison
between Figure 3b,c. The GPS- and GLONASS-derived RO data of the Spire produce two
distinct peaks that are widely separated from each other, as shown in Figure 3a. In contrast,
Figure 4a displays only one peak due to the proximity of the COSMIC-2 peaks, while the
SNR averages for GALILEO-derived RO data do not exhibit a clear peak in Figure 4c.
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time 1845 UTC, 1 March 2022, located at 30.52◦N, 142.44◦W. (The top x-axis represents the alti-
tude in km, being the straight-line height between the GNSS and LEO satellites, while the bottom
x-axis represents the time sequence in second. The y-axis corresponds to the SNR for two GPS
frequency bands).
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Ho et al. (2020) mentions that enhancing SNR can improve penetration and data
quality [15], and Jing et al. (2023) points out the correlation between the penetration of
COSMIC-2 and latitude [37]. Therefore, based on these insights, to analyze the correlations
between the SNR and penetration and between the SNR and data quality, it was necessary to
compare the mean SNRs at different latitudes. Thus, a statistical comparison was performed
on all the data and for the four data groups at latitudinal intervals of 15◦. As shown in
Figure 5, the influence of the RO mode on the mean SNR with latitudinal variations was not
significant. Figure 5a shows that the mean SNR values of the GPS- and GALILEO-derived
RO data of the Spire do not show a clear dependence on latitude, while the mean SNR
values of the GLONASS-derived RO data of the Spire show some fluctuation with latitude.
For COSMIC-2, Figure 5b shows that generally, the mean SNR values are much higher in
the low latitudes than in the high latitudes.
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In summary, the mean SNR values of the Spire were significantly smaller than that of
the COSMIC-2. In addition, the mean SNR values of the GPS-derived RO showed a sharper
peak for both the Spire and COSMIC-2 than mean SNR values of the GLONASS-derived
RO, with no effect of the occultation mode observed. Notably, the SNR averages of the
GALILEO-derived RO data show no obvious peak. We then examined the penetrations of
different missions in relation to the varying SNR strengths in Section 3.3.

Table 3 presents the mean SNR values for the Spire, COSMIC-2, and COSMIC-1. The
mean SNR values of the Spire for the GPS-, GLONASS, and GALILEO-derived RO were 371,
708, and 480 volts/volts, respectively, and the total mean SNR for Spire was 503 volts/volts.
As for the COSMIC-2, the mean SNR values for the GPS- and GLONASS-derived RO
were 1315 and 1210 volts/volt, respectively, and the total mean SNR for COSMIC-2
was 1276 volts/volt. The mean SNR value for the COSMIC-1, obtained from [38], was
704 volts/volt. These results indicate that the ability of the Spire to track only GPS signals
is significantly weaker than that of the COSMIC-1, and with the joint consideration of
GLONASS and GALILEO, Spire can achieve a slightly weaker capability than COSMIC-1.
The COSMIC-2 has a superior ability to track signals compared to both the COSMIC-1
and Spire.
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Table 3. Mean L1 SNR values of Spire, COSMIC-2 and COSMIC-1 (unit: volts/volt).

GNSS-RO
Mission GPS GLONASS GALILEO Total

Spire 371 708 480 503
COSMIC-2 1315 1210 None 1276
COSMIC-1 704 None None 704 [38]

3.3. Penetration

The lower atmosphere is important for numerical weather prediction and atmospheric
science research. Because of thick water vapor near the surface, RO observations are limited
in their ability to provide atmospheric information in the lower troposphere. As a result,
the penetration GNSS-RO detected is also an important indicator of the quality of RO
sound. In this section, statistical analysis was conducted on the penetration of COSMIC-2
and Spire, and the effect of SNR on the penetration was analyzed.

As shown in Table 4, 76.60% of the Spire data can achieve penetration depths below
1 km in the lower troposphere. The COSMIC-2 was able to detect the surface atmosphere at
a 1 km height in about 78.12% of RO events, which is better than the Spire. According to Ho
et al. (2020), increasing the SNR can improve the RO penetration depth, which improves the
ability of COSMIC-2 in penetrating deep into the lowest 100 m of the troposphere. Therefore,
the conclusion that the COSMIC-2 can penetrate deeper than the Spire is consistent with
previous experiments [15] that attribute this difference to the higher SNR of the COSMIC-2.
Moreover, in comparison to the capability to detect the surface atmosphere at a 1 km height,
it is noteworthy that setting occultation events can achieve greater penetration depths than
rising occultation events for both Spire and COSMIC-2, independent of the navigation
satellite system’s influence.

Table 4. Penetration depth percentages of Spire and COSMIC-2 from DOY 060 in 2022 to 059 in 2023.
(altitude of penetration Hp).

GNSS-RO
Mission Group Hp ≤ 1 km 1 km < Hp ≤ 5 km 5 km < Hp ≤ 10 km Hp > 10 km

Spire

GPS/Set 78.62% 19.75% 1.55% 0.08%
GPS/Rise 77.38% 21.08% 1.46% 0.09%

GLONASS/Set 78.29% 20.16% 1.49% 0.06%
GLONASS/Rise 74.31% 23.93% 1.64% 0.12%
GALILEO/Set 79.05% 19.29% 1.56% 0.10%

GALILEO/Rise 73.29% 24.57% 2.02% 0.12%
Total 76.60% 22.20% 1.07% 0.13%

COSMIC-2

GPS/Set 79.20% 19.87% 0.90% 0.03%
GPS/Rise 75.34% 23.61% 1.01% 0.04%

GLONASS/Set 78.21% 20.57% 1.02% 0.21%
GLONASS/Rise 75.09% 23.62% 1.21% 0.08%

Total 78.12% 20.79% 1.01% 0.08%

However, it is important to note that the statistical method used above is not perfect
due to the influence of topography (e.g., mountains) on the penetration depth. Taking
terrain into account (using data from ETOPO2 v2), we plotted the Spire RO events in a global
topographic map where areas at Ht ≤ 1 km, 1 km < Ht ≤ 5 km, and Ht > 5 km (terrain
high Ht) are denoted with white, brown, and deep brown colors, as shown in Figure 6.
Figure 6 shows that RO events at Hp ≤ 1 km (altitude of penetration Hp) are scattered in the
region at Ht ≤ 1 km (Figure 6a), those at 1 km < Hp ≤ 5 km (Figure 6b) are found mainly
in the region at 1 km < Ht ≤ 5 km (e.g., the South Pole and mountainous areas), those at
5 km < Hp ≤ 10 km (Figure 6c) are concentrated mainly in the region at Ht > 5 km (e.g., the
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Himalayan Mountains and Andes Mountains), and those at Hp > 10 km (Figure 6d) are
few and dotted around the world.
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deep brown: Ht > 5 km (terrain high Ht).

Although the RO events recorded by the COSMIC-2 are limited to the lower-latitude
area (±45◦) (as mentioned in Section 3.1), similar phenomena between the COSMIC-2 and
Spire records are shown in Figure 7. Due to the great number of RO events recorded by
COSMIC-2, the influences of topography are clearly visible, particularly for RO events at
5 km < Hp ≤ 10 km, which are concentrated in the Himalayan Mountains and Andes
Mountains, as indicated by the red points in Figure 7c.

Table 4 summarizes the percentages of RO data recorded below 1 km for the Spire
and COSMIC-2, using the division scheme described in Section 3.1. The table shows
that, in general, the percentages of the setting occultation events (except for GPS-derived
RO events for the Spire, highlighted in gray) are slightly higher than those of the rising
occultation events. Additionally, the ability to penetrate the lower troposphere during
rising occultation events is slightly weaker than during setting occultation events. When
compared to the COSMIC-2 data, the percentages of the corresponding items in the Spire
data are higher, indicating that the Spire has a superior ability to penetrate the lower
troposphere globally compared to the COSMIC-2 in lower-latitude regions. By considering
the information in Table 4, the penetration depth also depends on the navigation satellite
system and occultation mode.
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Figure 7. Penetration map of global-topography RO events recorded by COSMIC-2 from DOY
060 in 2022 to 091 in 2022: (a) Hp ≤ 1 km (altitude of penetration Hp), (b) 1 km < Hp ≤ 5 km,
(c) 5 km < Hp ≤ 10 km, and (d) Hp > 10 km; white: Ht ≤ 1 km brown: 1 km < Ht ≤ 5 km, and
deep brown: Ht > 5 km (terrain high Ht).

To quantify the ability of the studied systems to detect the lower troposphere, the
influences of topography were minimized by subtracting the terrain height from the
penetration depth. Figure 8a shows the cumulative percentages of data below 1 km for
the Spire and COSMIC-2 at different latitudes, indicating that the global Spire data are
susceptible to topographic effects, particularly at the South Pole. With topographic effects
accounted for, the COSMIC-2 surpasses the Spire within the latitude range of ±45◦. In
general, the ability of the Spire global data, with topographic effects fixed, to penetrate the
lower troposphere becomes stronger with increasing latitude. Combining Figures 5–7, the
penetration depth is also determined by topography and latitude. Figure 8b exhibits the
cumulative percentages of RO events at various penetration depths. The Spire RO events
recorded with fixed topographic data show better performance in detecting the near-surface
atmosphere, and similar results are seen for the COSMIC-2 data, which perform slightly
worse than the fixed Spire data (see Figure 8).

After fixation, the Spire and COSMIC-2 data below an altitude of 1 km make up
88.7% and 85.3% of all the data, respectively. Due to topographic changes and water vapor
variations with increasing latitude, the penetration depth is affected, thus leading to the
retrieval statistics. Through comparing the fixed Spire data within the lower-latitude range
of ±45◦ to the fixed COSMIC-2 data, it is found that the fixed Spire (±45◦) data below the
1 km altitude accounted for 84.2% of all the data. In ascending sequence, the ability of
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the systems to perform deeper soundings could be ranked as follows: Spire fixed (±45◦),
COSMIC-2 fixed, and Spire fixed.
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latitudes (light green: Spire, orange: COSMIC-2, red: Spire with the topographic data fixed, and blue:
COSMIC-2 fixed) and (b) cumulative percentages at each penetration for Spire and COSMIC-2 (blue
solid line: Spire, orange dashed line: Spire fixed, green with dashed-dotted line: Spire fixed within
the latitude area of ±45◦, red solid line: COSMIC-2, and purple: COSMIC-2 fixed).

Therefore, COSMIC-2 has a better performance in sounding the deeper troposphere
than Spire. Owing to topographic effects, especially the effects of mountains, the penetration
depth is obviously affected. After removing the effects of terrain, the penetration of Spire is
improved significantly, but under the same circumstances (e.g., at latitudes within ±45◦),
COSMIC-2 still has a better performance than Spire w.r.t deep penetration.

3.4. RO Retrieval Quality Assessment

The GNSS-RO product “wetPf2” includes atmospheric refractivity, temperature, spe-
cific humidity, and pressure. The other parameters are retrieved from the refractivity
using the 1DAR method, so we preliminarily analyzed the refractivity characteristics. The
COSMIC-2 RO data evaluated herein [15] have sufficient accuracy to assess the Spire data
using stringent collocation criteria of a 1 h temporal window and a spatial distance of
100 km. Over 10 km, the differences were uniformly distributed on both sides of the y-axis
at the zero point, as shown in Figure 9. Below 10 km, the differences between Spire and
COSMIC-2 are largest, with more positive differences compared to the other heights, al-
though these findings may have resulted from the increased water vapor or few considered
collocation pairs.

Figure 10a shows that the root mean square (RMS) for the absolute difference of the
refractivity below 30 km decreased with increasing latitude in comparison with the ERA5
dataset. In addition, the refractivity profiles of COSMIC-2 are chiefly in the tropics and
diminish sharply as the latitude increases, while those of Spire are primarily situated in
middle latitudes and few near the poles. Owing to the lower moisture at high latitudes,
the Spire data was limited to the latitude range of ±45◦ to facilitate a comparison with the
COSMIC-2 data.
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Figure 10. RMS of refractivity below 30 km and profile counts at different latitudes (red: Spire, blue:
COSMIC-2). (a) RMS of refractivity below 30 km and (b) counts (Kilo-).

The evaluated GNSS RO data covers the entire year, enabling the analysis of the neutral
atmospheric refractivity error seasonal characteristics below 30 km as shown in Figure 11.
The solid lines represent the mean fractional differences in refractivity, while the dotted
lines indicate the STD of fractional differences in refractivity. The black, red, green, and
blue lines correspond to spring, summer, autumn, and winter, respectively. Figure 11a–c
represent refractivity error seasonal characteristics for Spire and COSMIC-2 for Spire, Spire
(±45◦), and COSMIC-2, respectively. Based on the mean and STD of fractional differences
in refractivity observed across different seasons, there does not appear to be any significant
seasonal variation in refractivity errors. This may be due to the fact that GNSS uses L-Band
navigation signals, which have the ability to penetrate clouds and rain, resulting in minimal
weather-related interference.
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Due to the coarse coordinate scale in Figure 11 displayed, in Figure 12, the mean
and STD of fractional differences in refractivity are presented separately to analyze the
refractivity error characteristics. Also, it conducts an analysis of how different satellite
navigation systems and RO event modes affect these refractivity error characteristics.

The neutral-atmosphere refractivity data acquired from Spire and COSMIC-2 were
compared with the ERA5 dataset under the division scheme described in Section 3.1. The
results obtained for all the data and for the six data groups are plotted in Figure 12. The
statistics of those four groups (GPS/Set, GPS/Rise, GLONASS/Set, and GLONASS/Rise)
have identical results, while GALILEO/Set and GALILEO/Rise show better statistics
than the others, especially below 10 km shown in Figure 12d,e. Thus, the RO event
modes did not impact the retrieval quality. The better statistics for GALILEO may be
related to the fact that the precision of GALILEO code and phase observations outperforms
those of the GPS and GLONASS ones [39,40]. Figure 12a–c show the statistical results
obtained for Spire, revealing that below 10 km, the mean fractional differences for GPS/Set,
GPS/Rise, GLONASS/Set, and GLONASS/Rise were negative within the magnitude of
~0.8% and maximal STD of ~2.0%, while the mean fractional differences for GALILEO/Set
and GALILEO/Rise were negative within the magnitude of ~0.6% and maximal STD of
~1.8%; at heights between 10 and 25 km, the mean fractional differences were negative
within the magnitude of ~0.20% and maximal STD of ~0.4%; and above 25 km, the mean
fractional differences were positive within the magnitude of ~0.25% and maximal STD of
~0.75%. Within the latitude range of ±45◦, a smaller proportion of Spire GNSS RO data
were analyzed compared to the global data as shown in Figure 12d,e. Below 10 km, the
mean fractional differences for GPS/Set, GPS/Rise, GLONASS/Set, and GLONASS/Rise
were negative within the maximum value of ~1.2% and maximal STD of ~2.2%, while the
mean fractional differences for GALILEO/Set and GALILEO/Rise were negative within
the maximum value of ~0.5% and maximal STD of ~1.8%; at heights between 10 and 25 km,
the mean fractional differences were within the magnitude of 0.2%, with a maximal STD of
~0.5%; and above 25 km, the mean fractional differences were positive within the maximum
value of ~0.3% and maximal STD of ~0.8%. For the COSMIC-2 data shown in Figure 12g–i,
below 10 km, the mean fractional differences were negative within the maximum value of
~1.8% and maximal STD of ~2.0%; at heights between 10 and 25 km, the mean fractional
differences were within the magnitude of ~0.2% and maximal STD of ~0.7%; and above
25 km, the mean fractional differences were positive within the maximum value of ~0.2%
and maximal STD of ~1.0%.

It is evident that the Spire data collected within latitudes of ±45◦ has comparable
quality to the COSMIC-2 data. Beyond the ±45◦ latitude range, the retrieval quality of the
Spire data was higher than that of the COSMIC-2 data, perhaps because less moisture is
present at higher latitudes.
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Figure 12. Neutral atmospheric refractivity comparison of the Spire and COSMIC-2 wetPf2 products
with ERA5 data from DOY 351 in 2020 to 015 in 2021 below 30 km (black: all data, red: GPS/Set,
green: GPS/Rise, blue: GLONASS/Set, yellow: GLONASS/Rise, purple: GALILEO/Set, and
gray: GALILEO/Rise). (a–c) Mean fractional differences, STDs, and counts in the Spire record,
(d–f) mean fractional differences, STDs, and counts in the Spire record (±45◦), and (g–i) mean
fractional differences, STDs, and counts in the COSMIC-2 record.

Furthermore, we performed a statistical comparison of the specific humidity, absolute
temperature, and pressure obtained from RO events through the 1DAR method with those
of the ERA5 dataset under the same circumstances. Figure 13 shows the mean differences
and STDs in the meteorological parameters retrieved from the Spire (±45◦) and COSMIC-
2 data. The mean differences and STDs of both the Spire and COSMIC-2 data exhibit
identical statistical results, especially above the 10 km altitude. Below 10 km, the mean
differences in specific humidity for both the Spire and COSMIC-2 data were negative,
with maximal values of ~0.45 g/kg and ~0.70 g/kg and maximal STDs of ~0.9 g/kg and
~0.8 g/kg, respectively; the mean differences in temperature in the Spire and COSMIC-2
data were positive within ~0.25 K and ~0.4 K with maximal STDs of ~0.7 K and ~0.7 K,
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respectively, and the mean differences in pressure in the Spire and COSMIC-2 data were
negative within ~0.2 hPa and ~0.1 hPa, with maximal STDs of ~1.1 hPa and ~1.3 hPa,
respectively. Above 10 km, according to the statistics obtained for the Spire and COSMIC-2
data, the specific humidity exhibited mean differences and STDs of nearly equal zero;
the temperature exhibited mean differences and STDs that fluctuated near zero within
a maximum value of ~0.3 K and a maximal STD of ~1.8 K, and the pressure exhibited mean
differences and positive STDs within the maximum value of ~0.1 hPa and maximal STD
of ~0.5 hPa, indicating very similar results between the two data sources. Compared to
the ERA5 product, the specific humidity, temperature, and pressure of Spire (±45◦) and
COSMIC-2 indicated identical retrieval qualities.
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Figure 13. Meteorological parameter comparison of the Spire (±45◦) and COSMIC-2 wetPf2 prod-
ucts compared with ERA5 data from DOY 351 in 2020 to 015 in 2021 below 30 km ((a,b) specific
humidity for Spire and COSMIC-2, respectively; (c,d) absolute temperature for Spire and COSMIC-2,
respectively; (e,f) pressure for Spire and COSMIC-2, respectively).
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To remove the coupling effect that arises when assimilating data into the ERA5 dataset,
Spire (±45◦) and COSMIC-2 data were compared with radiosonde data. Above an altitude
of approximately 25 km, insufficient radiosonde data were used to perform the statistical
comparison; thus, at this height, the results were not credible. The mean differences
in the refractivity, specific humidity, temperature, and pressure of the Spire data were
negative within ~1.8%, ~0.80 g/kg, ~0.45 K, and ~1.0 hPa below 10 km, respectively,
with maximal STDs of ~3.0%, ~1.8 g/kg, ~1.7 K, and ~2.2 hPa, respectively, as shown
in Figure 14. Above the altitude of 10 km, the mean differences in refractivity, specific
humidity, temperature, and pressure in the Spire data fluctuated near zero within 0.2%,
0.1 g/kg, ~0.2 K, and ~0.3 hPa, respectively, with maximal STDs of ~1.0%, ~0.1 g/kg,
~1.3 K, and ~0.7 hPa, respectively.
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Figure 14. Mean differences and STDs of the Spire (±45◦) wetPf2 product compared to radiosonde
data from DOY 060 in 2022 to 059 in 2023 below 30 km: (a) refractivity, (b) specific humidity,
(c) absolute temperature, and (d) pressure.

Figure 15 shows that the mean differences in refractivity, specific humidity, tempera-
ture, and pressure in the COSMIC-2 data were negative within ~2.2%, ~1.2 g/kg, ~0.2 K,
and ~0.2 hPa below 10 km, with maximal STDs of ~2.8%, ~1.5 g/kg, ~1.7 K, and ~1.2 hPa,
respectively. Above 10 km, the mean differences in refractivity, specific humidity, and
pressure in the COSMIC-2 data fluctuated near zero within values of 0.1%, 0.1 g/kg, and
~0.1 hPa, with maximal STDs of ~0.3%, ~0.2 g/kg, and ~0.8 hPa below 10 km, respectively.
The difference in temperature was negative above 10 km within ~0.3 K and with a maximal
STD of ~1.3 K. Apparently, compared to the radiosonde data, the retrieval quality of the
Spire and COSMIC-2 data exhibited similar statistics, and in the refractivity comparison,
the COSMIC-2 data had slightly smaller differences than the Spire data.
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4. Discussion

The quality of Spire and COSMIC-2 RO data is assessed Radio Occultation (RO) data
is assessed comprehensively.

Nowadays, Spire can receive three navigation systems: GPS, GLONASS, and GALILEO,
while the COSMIC-2 is limited to GPS and GLONASS. The initial analysis of GNSS-RO
data from Spire and COSMIC-2 shows that Spire can offer a broader global coverage of RO
events because of consisting of a diverse set of orbits. GPS-derived RO events were more
than GLONASS and GALILEO, due to the greater number of operational GPS satellites.
Although there is no significant difference in the number of satellites in orbit for GLONASS
and GALILEO, GLONASS-derived RO events for Spire slightly outnumber those derived
from GALILEO due to some Spire satellites, such as S128, S115, S117, and others, not
receiving GALILEO signals.

The results of SNR indicate that the ability of the Spire to track only GPS signals
is significantly weaker than that of the COSMIC-1, and with the joint consideration of
GLONASS and GALILEO, Spire can achieve a slightly weaker capability than COSMIC-1.
The COSMIC-2 has a superior ability to track signals compared to both the COSMIC-1
and Spire.

COSMIC-2 outperforms Spire in achieving better penetration, primarily attributed to
COSMIC-2’s higher SNR. Moreover, setting occultation events consistently showed greater
penetration depths than rising occultation events for both Spire and COSMIC-2, regardless
of the satellite navigation system used. After fixation on the influence of topography, such
as mountains, on penetration depth, the Spire and COSMIC-2 data below an altitude of
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1 km make up 88.7% and 85.3% of all the data, respectively. Due to topographic changes
and water vapor variations with increasing latitude, the penetration depth is affected, thus
leading to the retrieval statistics. Through comparing the fixed Spire data within the lower-
latitude range of ±45◦ to the fixed COSMIC-2 data, it is found that the fixed Spire (±45◦)
data below the 1 km altitude accounted for 84.2% of all the data. In ascending sequence, the
ability of the systems to perform deeper soundings could be ranked as follows: Spire fixed
(±45◦), COSMIC-2 fixed, and Spire fixed. Therefore, COSMIC-2 has a better performance
in sounding the deeper troposphere than Spire.

With the ERA5 and Radiosonde as the reference data, it is evident that the Spire
data collected within latitudes of ±45◦ has comparable quality to the COSMIC-2 data.
Beyond the ±45◦ latitude range, the retrieval quality of the Spire data was higher than
that of the COSMIC-2 data, perhaps because less moisture is present at higher latitudes.
Additionally, the analysis of mean and STD of fractional differences in refractivity across
different seasons does not reveal significant seasonal variations in refractivity errors. In
addition, Spire can produce a great number of atmospheric profiles with quality comparable
to that of COSMIC-2 to complement the limitation of COSMIC-2 and cover the low-latitude
area (±45◦).

5. Conclusions

In this study, we mutually analyzed the coverage, SNR, and penetration characteristics
of Spire and COSMIC-2 data and assessed the corresponding RO neutral-atmospheric
products through comparisons with ERA5 and radiosonde datasets considering the division
of GNSS and RO modes. Based on the above assessment and analysis, the conclusions are
as follows:

• Spire’s RO events demonstrated global coverage due to various orbiting geometries,
while COSMIC-2 events were concentrated in the tropics and reduced at higher latitudes.

• GPS-derived RO events were generally more abundant than GLONASS-derived events
in both Spire and COSMIC-2 datasets. And GLONASS-derived RO events slightly
outnumbered those derived from GALILEO for Spire.

• STRATOS payload on Spire, equipped with lower-gain antennas, exhibited weaker
signal capturing compared to IGOR (COSMIC-1) and significantly weaker than TRGS
(COSMIC-2).

• The SNR averages of the GLONASS-derived RO events in the Spire data are much
stronger than those of the GPS-derived events, while for COSMIC-2, the strengths of
the SNR averages had the same magnitudes, with little difference observed between
the GPS- and GLONASS-derived RO events.

• In the same coverage area (±45◦), COSMIC-2 demonstrated better penetration ability
than Spire.

• Based on the research by Gorbunov et al. (2022) [27], it has been revealed that the
SNR serves as an indicator of signal strength and holds a crucial role in penetration.
Penetration depth was found to be influenced by SNR, GNSS, RO modes, topography,
and latitude, as revealed by combined results obtained in Sections 3.2 and 3.3.

• Compared to the ERA5 and radiosonde products, the Spire and COSMIC-2 datasets
have identical retrieval qualities when considering the RO data of Spire and COSMIC-
2. The accuracy of the neutral-atmosphere Spire data products acquired herein was
comparable with those of COSMIC-2.

Corroborated the COSMIC-2 retrieval quality assessments made by Ho et al. (2020),
our study contributes to the understanding of the capabilities and performance of Spire and
COSMIC-2 RO retrievals. These findings emphasize the valuable role of nanosatellite GNSS-
RO techniques like Spire in advancing atmospheric monitoring. Incorporating commercial
initiatives such as Spire supplements scientific GNSS-RO data and addresses the need for
global observing systems.
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