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Vegetation phenology, i.e., the recurring events of plant growth, is an integrated in-
dicator delineating terrestrial ecosystem dynamics [1,2] and plays a key role in realizing
climate-henology-hydrology associations in response to climate change, natural distur-
bances, and anthropogenic forces [3-5]. A comprehension of the intertwined, concurrent
relationship between vegetation growth and climatic variations is critical to understand-
ing the major regulation of biotic and abiotic factors in ecosystem dynamics. Several
decades of in situ plant phenological records from the IPG (International Phenological
Garden—http:/ /ipg.hu-berlin.de/, accessed on 1 May 2023), NPN (National Phenology
Network—https://www.usanpn.org/, accessed on 1 May 2023), and CPON (Chinese
Phenological Observation Network—http://www.cpon.ac.cn/, accessed on 1 May 2023)
have revealed that earlier leaf unfolding and later senescence have resulted in a longer
growing season in many regions [6-9]. Temperature is the main controlling factor in plant
phenological dynamics in the temperate region [6,7,9-11]. However, recent reports show
that the importance of later senescence on the extension of the growing season is greater
than the contribution of earlier green-up [8,12]. Information from ground observation is
valuable, but its geographic extent is limited (Figure 1), and long-term observations are
rare in harsh settings such as arctic, tundra, desert, and tropics/subtropics [13,14].

With the advances in remote sensing techniques over the past decades, vegetation
indices (VIs), such as the normalized difference vegetation index (NDVI) and the enhanced
vegetation index (EVI), have been utilized widely to detect land surface phenology (LSP),
from the landscape to global scales (Figure 1; [15-17]). The patterns in VI-derived phenolog-
ical metrics, including the SOS (start of the growing season), the EOS (end of the growing
season), and the LOS (length of the growing season), have been extensively investigated.
These local patterns are closely linked to three dominant drivers of phenology: temperature,
water, and light [17-21]. Additionally, they are influenced by large-scale atmospheric fluc-
tuations, such as ENSO (El Nifio-Southern Oscillation) [17,22-25]. Many researchers have
pointed out that the continuing alterations in phenological patterns associated with the
ongoing climatic warming require long-term attention. A study conducted at Leinhuachi
Experimental Forest (LHC) in central Taiwan indicated that the shortage of spring rainfall
(i.e., spring drought) related to ENSO events likely plays an important role in not only the
SOS and the LOS but also the water budget (Figure 2; [5]). The LHC is projected to have
more frequent and longer drought events. The increase in drought and potential land-use
change can greatly affect the climate-phenology-biogeochemistry relationship, which affects
the provision of water resources that are important to socio-ecological systems (Figure 2).
The phenological information regarding plant growth is also beneficial in identifying trees
species and their composition in forested landscapes [26]. The application of a near-surface
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Vegetation phenology

remote sensing approach based on a digital camera (i.e., the PhenoCam) (Figure 1) over the
last decade is helpful for collecting time-series data concerning plant development across
various climates and biomes. The PhenoCam also provides ground-truth or validation for
remotely sensed data [27-30] and carbon (C) flux calculations [31]. The real-time images
can capture the effects of sporadic events on vegetation on the landscape scale [32]; this
has often been a challenge for satellite images due to the frequent cloud cover in the upper
atmosphere.
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Figure 1. The effects of climate warming and anthropogenic activities on vegetation phenology
and animal phenology, and the subsequent impacts on the ecosystem structure and function. The
approaches used to monitor vegetation phenology include (a) in situ observation, (b) CO, flux
instrumentation, (c) a near-surface digital camera (PhenoCam), (d) an unmanned aerial vehicle (UAV)
or drone, and (e) satellite images. The black and red arrows stand for the possible impacts of human
activities and climatic warming on vegetation phenology and ecosystem function, and blue arrows
indicate the associations between vegetation phenology and animal phenology and hydrological and
biogeochemical cycling.

In addition to climatic and anthropogenic factors, nutrients and their interactions with
water availability can also affect vegetation growth and phenology in regions limited by
nutrients [33,34]. Concerns have been raised around a nutritional phenological mismatch
between consumers (foraging species) and resources (habitats) owing to rapid climate
change, which will likely alter the above- and below-ground vegetation biomass (produc-
tivity) and animal reproduction [35,36]. Further exploration is needed not only into the
phenological modeling of individual phenological indicators from the plant to the land-
scape scale, but also into the interactions between the climate and phenology, phenology
and hydrology, phenology and biogeochemistry, animal and vegetation phenology, and
new emerging fields (Figures 1 and 2). This Special Issue aims to encompass the latest
developments in LSP responses to hydroclimate regimes, the application of phenological
information to identify tree species or the species composition of forest ecosystems, and the
subsequent effects on ecosystems.
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Figure 2. The interrelationships among the climate, vegetation growth, and hydrology of watershed
#4 at the Leinhuachi Experimental Forest (LHC), central Taiwan [5]. (a) The relationship between
meteorological drought and hydrological drought; (b) the relationship between seasonal rainfall and
phenology; (c) the relationship between phenology and water budget (e.g., P-Q deficit [precipita-
tion minus streamflow]); (d) the concept of interrelationships among the climate, phenology, and
hydrology based on an SEM (structural equation model); and (e) the projected meteorological and
hydrological droughts under a high-emission scenario (RCP8.5) and land-use alterations, and their
potential impacts on vegetation growth, the water budget, and the biogeochemical cycle. SPI12 and
SDI12 stand for Standardized Precipitation Index and Streamflow Drought Index at 12-month time
scales, respectively; these are commonly utilized to characterize meteorological and hydrological
drought conditions. Blue lines indicate positive effects, while red lines indicate negative effects. The
gray dashed lines stand for uncertain associations among observations.

In this Special Issue, we share current studies and development of vegetation-climate
relationships, land surface phenology based on satellite images, PhenoCam observations,
and the possible effects on the hydrology and biogeochemical cycles of ecosystems. After
calling for studies during 2022-2023, we published 10 papers in this Special Issue, with
the study regions covering Asia, Europe, Russia, and North America. The topics include
the associations between vegetation and the hydroclimate, the applications of LSP across
landscapes, and the applications of the PhenoCam.

To investigate vegetation and hydroclimate associations, Yang et al. [37] used GIMMS
NDVI3g (third-generation GIMMS [Global Inventory Modeling and Mapping Studies]
NDVI from AVHRR sensors) to explore elevational gradients and vegetation types respond-
ing to the climate in arid central Asia (ACA) from 1982 to 2015. The results indicate that
the eastern ACA is greening (>300 m) as a result of increased growing season precipitation;
in contrast, the western ACA is browning (<300 m) due to decreasing soil water and a
higher temperature combined with little precipitation. Medvedkov et al. [38] assessed
the influences of various degrees of permafrost on boreal vegetation growth on thermal
conditions at the northern Yenisei Ridge, a spruce—cedar—larch taiga landscape in Russia,
and suggest that the regions covered by forest with the highest evapotranspiration had
the lowest land surface temperature (LST). In contrast, higher LSTs were usually observed
in areas with sparse vegetation cover characterized by a higher sensible heat and lower
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evapotranspiration. Shaik et al. [39] examined the relationship between the tree canopy
temperature based on a moderate imaging spectroradiometer (MODIS) LST and emissivity
products with the canopy heights of various vegetation types obtained from the Global
Ecosystem Dynamics Investigation (GEDI) L2A product for Sardinia, the largest Italian
island. The results show that there were negative relationships between the canopy height
and tree canopy temperature. More detailed synthesis is required to determine the local
forest climate associated with the forest structure. Jing et al. [40] used long-term Landsat
images (1988-2021) and the random forest (RF) algorithm to investigate wetland vegetation
dynamics responding to the flow regime in East Dongting Lake, in the middle Yangtze
River of China. They found distinct patterns in various vegetation types (Carex meadow,
reedbed, mudflat, and shallow water) according to variations in the flow regime. For
example, Carex meadows increased with earlier water withdrawal and a longer dry season,
and reedbeds expanded independently of the increase in winter rainfall, while the lost
mudflats majorly converted to meadows, reeds, and water.

For the application of phenological information, Xiao et al. [41] compared the differ-
ences in the SOS and EOS patterns derived from the GIMMS NDVI3g and MODIS NDVI
datasets. They found that there were no significant trends in the SOS and the EOS during
2000 and 2015. The discrepancies were larger in the SOS than in the EOS between the
two datasets, and the differences in the SOS in forests were smaller than in shrublands
and grasslands in temperate China. However, the differences in the EOS in forests were
higher than those in the SOS, and the discrepancies in the EOS in shrublands and grass-
lands were much lower than those in the SOS. The comparisons offer essential baseline
information for using NDVI datasets in the study of vegetation patterns and dynamics.
Polyakova et al. [42] compared two recognizing methods, random forest (RF) and genera-
tive topographic mapping (GTM), and combined the phenological variability in vegetation
cover for the automated identification of tree species in coniferous—deciduous forests in
western Kazan, Russia. The phenological curves of coniferous and deciduous species are
separately retrieved from Sentinel-2 data, and they perform well in separating tree species
to determine their composition in forest landscapes, especially using the RF approach.

To explore the applications of PhenoCam, Cui et al. [43] calculated green chromaticity
coordinates (GCC) as reference data for landscape phenology across 79 deciduous broadleaf
forests (DBFs) from PhenoCam Network sites in North America, and examined the feasi-
bility for detecting LSP of commonly used NDVI, EVI, or NIRv (near-infrared reflectance
of vegetation) derived from Landsat, Sentinel-2 (30 m), and MODIS products (MCD43A4,
500 m). The major findings showed that the various remotely sensed indices captured
phenological metrics consistently. For the SOS, NIRv revealed a better result than EVI
and NDVI; however, NDVI performed better than EVI and NIRv in deriving the EOS.
On the other hand, the 30 m data indicated a prominent improvement in obtaining the
SOS, while the 500 m indices outperformed the 30 m indices for detecting the EOS of DBF
phenology. Vasquez et al. [44] developed a new vegetation index combining cyan (C),
orange (O), and near-infrared (NIR) bands from the camera to evaluate soybean growth
dynamics at Lakehead University Agriculture Research Station, Thunder Bay, Canada.
They found that the VINir o,c index showed the best relation to the leaf area index (LAI)
for mid-growing seasons, while the VI ¢ index displayed good results for the first and last
stages of vegetation development. The new proposed index provides a viable means of
analyzing the vegetation development of soybeans.

From field observations to large-scale monitoring, the remote sensing of climate-
vegetation dynamics is critical when it comes to comprehending the complex interactions
of the atmosphere, biosphere, and hydrosphere. In this Special Issue, several related topics
are still touched on less frequently, and further efforts are required to extend our knowledge
and synthesize it across regions, on topics such as the climate-phenology-hydrology at
watersheds, the variations in LSP in biogeochemistry, and phenological projection. To
evaluate future global vegetation growth and ensure the C and nitrogen (N) cycles, it
is critical to consider not only climatic factors, such as the temperature, precipitation,
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and cloud cover [45,46], but also the atmospheric CO; concentration, N deposition, or
phosphorus (P) limitation [47-52], as well as land cover changes [53,54]. We also expect the
collection of papers in this Special Issue to offer some inspiration for subsequent discussions
and potential collaborations across regions and disciplines.
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