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Abstract: The North China Plain (NCP) represents a significant agricultural production region in
China, with winter wheat serving as one of its main grain crops. Accurate identification of winter
wheat through remote sensing technology holds significant importance in ensuring food security
in the NCP. In this study, we have utilized Landsat 8 and Landsat 9 imagery to identify winter
wheat in the NCP. Multiple convolutional neural networks (CNNs) and transformer networks,
including ResNet, HRNet, MobileNet, Xception, Swin Transformer and SegFormer, are used in order
to understand their uncertainties in identifying winter wheat. At the same time, these deep learning
(DL) methods are also compared to the traditional random forest (RF) method. The results indicated
that SegFormer outperformed all methods, of which the accuracy is 0.9252, the mean intersection
over union (mIoU) is 0.8194 and the F1 score (F1) is 0.8459. These DL methods were then applied
to monitor the winter wheat planting areas in the NCP from 2013 to 2022, and the results showed a
decreasing trend.

Keywords: winter wheat; deep learning; satellite image segmentation; Landsat

1. Introduction

As the second largest grain crop in China, wheat plays a great meaningful role in
ensuring food security and the sustainable utilization of cultivated land [1]. Wheat can
be divided into spring wheat and winter wheat, with winter wheat accounting for about
98% of wheat in China [2]. According to the grain statistics from 2019 to 2022 released by
the National Bureau of Statistics, the sown area of wheat in China accounted for 20.44%,
20.04%, 20.01% and 19.87% of the total sown area of grain crops [3–7], showing a slow
downward trend. In recent years, human activities have brought unprecedented impacts
on agricultural production [8–10], posing significant threats to the sustainable development
of agriculture. The North China Plain (NCP) ranks as one of the largest grain-producing
regions in China [11], the dominant planting system in this region is the rotation of winter
wheat and summer maize, and winter wheat yield in this region accounts for approximately
75% of total Chinese wheat yield [12]. Simultaneously, the NCP is also one of the regions
with the most severe shortage of water resources in the world [13,14]. The contradiction
between agriculture and water resources in the NCP is very acute [15,16], it also threatens
food security in the NCP. Traditionally, statistical methods have heavily relied on local ad-
ministrative departments to expend substantial human and material resources for making
statistical statements and reporting them step by step or taking a certain proportion of
sampling surveys [17,18]. It is not only inefficient but also susceptible to human factors
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such as omission and misstatement. In contrast, satellite remote sensing has outstand-
ing advantages such as wide coverage, fast data acquisition, high data accuracy, strong
macro-monitoring ability and low cost [19]. Thus, using remote sensing to obtain accurate
information on the planting area and distribution of winter wheat is of great practical
importance [20–22].

The prerequisite for obtaining information about the planting area and distribution of
crops lies in accurately identifying crops in remote sensing imagery. Table 1 shows previous
studies on crop extraction using various remote sensing data. Both Chu et al. [23] and
Teluguntla et al. [24] used moderate-resolution imaging spectroradiometer (MODIS) time
series data, the former extracted spatial distribution information of winter wheat in the
Yellow River Delta, China, and the latter mapped croplands of Australian. Nevertheless,
limitations of spatial resolution of the data cause the crop identification results to be coarse
and poor for identifying small parcels of farmland, making it difficult to meet application
requirements [25,26]. In recent years, Sentinel-1 and Sentinel-2 from the European Space
Agency (ESA) have provided good data for crop classification, offering a high spatial
resolution of 10 m and a high temporal resolution of 12 days [27]. Van et al. [28] used joint
Sentinel-1 radar and Sentinel-2 optical imagery to map eight crop types in Belgium, they
found that the synergistic use of radar and optical data in crop classification provided
more abundant information, thereby improving classification accuracy compared to optical
classification alone. While Sentinel-1 can be observed all day, in all weather conditions,
and has strong penetration through clouds, it introduces noise that can easily cause an
uncertain impact on crop identification [29]. Furthermore, the available years of Sentinel
data are relatively short, rendering them insufficient for meeting the demands of long-term
crop mapping. The emergence of the Gaofen (GF) series of satellites provides a very good
data source for crop distribution information extraction. You et al. [30] and Ma et al. [31]
used the GF-1 satellite with 16 m resolution to extract winter wheat at the county scale and
both achieved classification accuracy exceeding 90%. Zhang et al. [32] fused GF-2 imagery
to obtain 1 m high-resolution imagery and extracted the spatial distribution of winter
wheat by using deep learning (DL) methods, which produced superior results. However,
high-resolution imagery is expensive and is not suitable for extracting large regions. At
this point, the advantages of medium- and high-resolution satellites become apparent, such
as Landsat.

Feature extraction serves as the linchpin for image classification and segmentation.
Earlier methods for crop extraction using remote sensing primarily relied on visual inter-
pretation based on textural features and vegetation index based on spectral analysis [33,34].
Liu et al. [35] used a fuzzy decision tree classifier and normalized difference vegetation
index (NDVI)-derived climate indicators from MODIS to identify winter wheat, soybean,
corn and forage crops in southwestern Ontario, eastern Canada, achieving an overall
accuracy of 75.3%. Chen et al. [36] utilized MODIS time series NDVI data to extract the
spatial distribution of crops in three northeastern provinces and compared the area derived
from the results of crop classification with the statistical data, they obtained correlation
coefficients of 0.770, 0.710 and 0.686 for soybean, maize and rice, respectively. While these
methods could identify low-level features such as color, shape and texture in images, they
could not provide an intuitive semantic description, leading to unsatisfactory classification
accuracy [37]. Following advances in machine learning, techniques such as support vector
machine (SVM) [38], maximum likelihood classification [39], random forest (RF) [40] and
decision tree (DT) have been applied to crop classification [41]. Zheng et al. [42] and
Sisodia et al. [39] utilized Landsat imagery, the former employed an SVM to classify nine
major crop types within a cropping system, while the latter used a maximum likelihood
method for land cover classification, and both studies achieved good result. Wang et al. [43]
conducted fine classification of crops by combining feature transformation with RF and
found that this combination produced the best classification effect. Sang et al. [44] applied
a DT classification method based on the CART (classification and regression tree) algorithm
to extract land use information and investigate land use changes in Tianjin. These methods
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are also shown in Table 1. Unfortunately, these shallow learning algorithms are limited by
the network structure. When faced with the complex situation of increasing sample size or
sample diversity, these methods cannot adapt, so they cannot express the complex function
well [45].

Table 1. Previous research for crop extraction using remote sensing.

Reference Data Method Application

Chu et al., 2016 [23] MODIS Vegetation index Crop mapping

Teluguntla et al., 2017 [24] MODIS

quantitative spectrum matching
technique (QSMT) + Automatic
cultivated land classification algorithm
based on rules (ACCA)

Crop mapping

Van et al., 2018 [28] Sentinel-1, 2 RF Crop mapping
You et al., 2016 [30] GF-1 Spectral analysis Crop area extraction
Ma et al., 2016 [31] GF-1 Image interpretation + GIS analysis Crop area extraction

Zhang et al., 2018 [32] GF-2 A hybrid structure convolutional neural
network (HSCNN) Crop mapping

Liu et al., 2016 [35] MODIS A fuzzy decision tree classifier +
vegetation index Crop classification

Chen et al., 2012 [36] MODIS Spectral analysis Crop classification

Sisodia et al., 2014 [39] Landsat ETM+ Supervised maximum likelihood
classification (MLC) Land cover classification

Zheng et al., 2015 [42] Landsat OLI Support vector machine (SVM) Crop classification

Wang et al., 2022 [43] WHU-HI dataset Feature transform combined with
random forest (RF) Crop classification

Sang et al., 2019 [44] Landsat TM, OLI Classification and regression trees
(CART) Land use change

For the past few years, DL methods have been widely applied in geoscience, par-
ticularly for land cover classification and object identification [46]. DL can effectively
process various types of imagery, including optical, radar, hyperspectral and multispectral
imagery [47,48]. DL is adept at learning different levels of features in imagery and clearly
distinguishing spectral and spatial features of various objects [49], and then extracting
different land cover types, such as road extraction [50], building extraction [51] and water
extraction [52]. Compared with the traditional visual interpretation and vegetation index
methods, the DL methods do not need to define rules for specific tasks in advance [53] and
the neural network can automatically learn the deep features from the input image. The
DL methods benefit from a deeper network level and can express complex functions well
compared to machine learning. The emergence and development of DL have promoted
the solution of the problems left by traditional methods. As an important branch of DL,
convolution neural networks (CNNs) have the advantage that neurons in the same layer
share weight values, which results in a lower number of parameters compared to a fully
connected network. The result is a reduction in the complexity of the network model [54,55]
and an improvement in the computational efficiency and generality of the model. Fol-
lowing this, a variety of CNN-based segmentation models have been developed, such
as U-Net [56], SegNet [57], Deeplab [58], and more. With its impressive feature learning
capabilities, CNN models have been successfully and widely used in crop classification
scenarios. Wei et al. [27] developed an adapted U-Net for large-scale rice mapping, which
mined spatio-temporal features of rice from a multi-temporal dataset to achieve feature
segmentation, and improved the accuracy of rice mapping. Kavita et al. [59] used a CNN
for crop identification on an Indian pine tree dataset and achieved a high accuracy of
97.58%. Xie et al. [60] used GF1 satellite imagery to classify 70 smallholder agricultural
landscapes in Heilongjiang, China, and showed that CNNs are better able to differentiate
between spectrally similar crop types through the effective use of spatial information.

Over the past decade, CNNs have been a mainstream semantic segmentation method
within the realm of DL. Nevertheless, the localized nature of the convolution operations
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makes it difficult to obtain the global context features directly based on CNNs [61]. In con-
trast, the Vision Transformer (ViT) has great potential in long-term dependency modeling.
It uses a transformer structure as a feature extractor to process image identification tasks
and achieves excellent results in semantic segmentation [62]. Feng et al. [63] combined
the Swin Transformer with a Gabor filter and applied it to the classification task of remote
sensing imagery. The results demonstrated that ViT exhibits a marginally superior accuracy
in comparison to CNNs under the condition of using pre-training. This confirms that
the transformer models possess strong feature extraction capability and hold promising
potential in the domain of image processing.

This study aims to use a combination of remote sensing monitoring methods and DL
technology to accurately identify winter wheat in the NCP, while also monitoring changes
in winter wheat planting areas from 2013 to 2022. The main contributions of this work are
as follows. First, we developed a winter wheat sample dataset based on the phenological
characteristics of winter wheat in the NCP using vegetation index and visual interpretation.
Subsequently, we used six DL methods and the RF method to identify winter wheat. Lastly,
we monitored the distribution of winter wheat and the changes in planting areas in the NCP
from 2013 to 2022. Identifying and monitoring winter wheat using Landsat data has high
accuracy and efficiency, helping to promote the implementation of precision agriculture.

2. Materials and Methods
2.1. Study Region

The NCP (32◦08′N to 40◦24′N, 112◦50′E to 122◦40′E) is situated in the eastern part
of China (Figure 1). It experiences an average annual temperature of 14 ◦C and receives
an annual precipitation ranging from 500 mm to 1000 mm [64]. The NCP belongs to a
temperate continental monsoon climate, characterized by simultaneous rainfall and high
temperatures; the soil is fertile and is well suited to the growth of wheat, maize, soybeans
and other crops. Winter wheat is sown from early to middle October and harvested in June
of the following year, while summer maize is sown in middle to late June and harvested
in September of the same year [65]. Details of the major crop calendar in the NCP can be
found in Figure 2.
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2.2. Data
2.2.1. Landsat Imagery

In this study, we used data from Landsat 8 operational land imagery (OLI) and Landsat
9 operational land imagery 2 (OLI-2), with a time resolution of 16 days. Due to the absence
of panchromatic bands in Landsat 5, it is difficult to annotate winter wheat. Additionally,
Landsat 7 suffers from data stripe loss issues, despite attempts to rectify these gaps using
interpolation methods, this adversely affects data quality. We used four bands from Landsat
8 and Landsat 9, including the red, green and blue bands with a spatial resolution of 30 m,
as well as the panchromatic band with a spatial resolution of 15 m. We used a total of
13 Landsat images, which have fewer clouds and better clarity, covering a period from 2013
to 2022. As winter wheat has a large biomass at the jointing and heading period, it is easy
to identify on remote sensing imagery, so we used remote sensing imagery from 1 April to
20 May of each year. The information on the images used is shown in Table 2. We selected
images of different periods and different spatial regions, in order to make the winter wheat
samples have temporal and spatial generalization in the NCP. This approach enhances the
capabilities of the winter wheat identification model against interference.

Table 2. The information on the Landsat remote sensing data used in this study.

Product Image Region Time
Multispectral

Image
Resolution

Panchromatic
Image

Resolution

Landsat 8 OLI 124-033 17 April 2013 30 m 15 m
Landsat 8 OLI 122-034 22 April 2014 30 m 15 m
Landsat 8 OLI 123-035 18 May 2015 30 m 15 m
Landsat 8 OLI 123-035 18 April 2016 30 m 15 m
Landsat 8 OLI 123-035 7 May 2017 30 m 15 m
Landsat 8 OLI 123-035 8 April 2018 30 m 15 m
Landsat 8 OLI 122-037 17 April 2019 30 m 15 m
Landsat 8 OLI 120-036 22 April 2019 30 m 15 m
Landsat 8 OLI 124-033 18 April 2019 30 m 15 m
Landsat 8 OLI 124-037 18 April 2019 30 m 15 m
Landsat 8 OLI 123-035 29 April 2020 30 m 15 m
Landsat 8 OLI 124-037 9 May 2021 30 m 15 m
Landsat 9 OLI 122-034 20 April 2022 30 m 15 m

2.2.2. Data Pre-Processing

In accordance with the different phenological characteristics of winter wheat in dif-
ferent periods of the NCP, we first extracted a preliminary winter wheat distribution map
from the Google Earth Engine (GEE) based on NDVI and normalized burn ratio (NBR)
thresholds. The threshold extraction map is then used as auxiliary data to annotate win-
ter wheat, which can help to correctly distinguish winter wheat fields in remote sensing
imagery during visual interpretation.

Before annotating winter wheat through visual interpretation, we pre-processed the
selected 13 Landsat images, including radiometric calibration and atmospheric correction.
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To obtain higher-resolution model inputs, we fused the three multispectral bands with the
panchromatic band, resulting in multispectral data with a spatial resolution of 15 m.

We manually annotated the Landsat imagery and then filtered the labels to ensure that
the positive winter wheat samples made up the majority of the label map. Next, we unified
the size of all images and labels to 256 × 256. Finally, we obtained a total of 9956 samples of
winter wheat in our dataset. We partitioned the dataset into three subsets, 80% for training
samples, 10% for validation samples, and the remaining 10% for test purposes to evaluate
the winter wheat identification model. Figure 3 shows a portion of the winter wheat dataset
and their corresponding properties. It includes large contiguous farmlands, farmlands
interlaced with buildings, and farmlands with surrounding water bodies.
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2.3. Methods

The research in this study is structured into six steps, illustrated in Figure 4. The
first step involves data selection and pre-processing. In the subsequent phase, we create
the winter wheat threshold extraction map using GEE and annotate each Landsat image
combined with visual interpretation. In the third step, the dataset is randomly divided.
The fourth step is to build winter wheat identification models, including DL models and
traditional RF models, and then train each model. In the fifth step, the identification effect
of winter wheat of each model was evaluated qualitatively and quantitatively. Finally,
changes in winter wheat planting area will be monitored, and the best model will be used
to draw the distribution map of winter wheat in the NCP from 2013 to 2022.

2.3.1. Random Forest Classifier

RF is an integrated learning method based on decision trees proposed by Breiman [66],
which is commonly applied to address classification and regression problems [67]. Each
decision tree of the RF classifier is independent of each other and does not correlate. For
each input sample, decision trees will vote on it, and finally, all decision trees jointly
determine the optimal classification result of the sample. Compared to other classifiers, RF
solves the problem of overfitting by training multiple trees and also has the advantage of
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being less affected by outliers [68,69], all due to its integrated structure. In the parameter
settings, we set the number of estimators to 20, the maximum number of features to “sqrt”,
and the bootstrap parameter to “True” by default. We used the Gini coefficient as the
evaluation criterion and kept the minimum number of leaf samples and the minimum
number of split samples at their default values.
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2.3.2. Deeplabv3+ and Improvement

We used the Deeplabv3+ model proposed by the Google team in 2018 [70], which is a
typical supervised learning classification approach. The original backbone network in the
Deeplabv3+ model is the Xception network. In this study, we added four other backbone
networks to the original base, including three CNNs, ResNet, HRNet, MobileNet, and
the Swin Transformer network. By skipping the connections of the next layer of neurons
and connecting another layer, the ResNet weakens the strong connection between each
layer, alleviating problems such as gradient disappearance, gradient explosion and net-
work degradation. The HRNet uses a parallel approach to connect the high-resolution
network with the low-resolution network to avoid information loss, always maintains high-
resolution features and has strong feature representation ability. The Xception replaces
the convolution operation used in the original network with deep separable convolution,
further improving the accuracy without increasing its complexity [71,72]. The Swin Trans-
former proposes a hierarchical network structure so that the model can flexibly process
images of different scales [73]. In addition, it adopts window self-attention to reduce the
computational complexity. This model can produce satisfactory results in tasks such as
instance segmentation, semantic segmentation and object detection [74].

Figure 5 illustrates the network structure of the improved Deeplabv3+. This model
comprises an encoder and a decoder. Firstly, the images were fed into the deep convolu-
tional neural networks in the encoder, and 5 feature extraction backbone networks were
used for feature extraction. This produces two sets of effective feature layers, one consisting
of low-level feature layers and the other containing high-level feature layers. For high-level
feature layers, Atrous Spatial Pyramid Pooling (ASPP) [75] was introduced. It captures
multi-scale information through the use of different atrous rates, expanding the receptive
field of the network so that multi-scale features can be extracted. Next, the feature layers ex-
tracted by atrous convolution are stacked and a 1 × 1 Conv was used to adjust the number
of channels [76]. Finally, we obtained high-level semantic features in the encoder part. In
the decoder part, we first used 1 × 1 Conv to adjust the number of channels for low-level
semantic features. At the same time, high-level semantic features were upsampled, and the
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two results were concatenated to complete feature fusion, and then 3 × 3 Conv was used
to extract features from the fusion results. Finally, the output image was resized to match
the input image.
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2.3.3. SegFormer

The SegFormer [77] is a supervised learning semantic segmentation model based on
a transformer structure, comprising an encoder and a decoder. It differs from the Swin
Transformer in that it removes the position coding so that the low-resolution pre-training
model can be applied to the high-resolution downstream tasks. Figure 6 illustrates the
SegFormer framework.
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• SegFormer Encoder

We input 256× 256× 3 images into the hierarchical transformer encoder. This encoder
section comprises four transformer blocks with identical architectures, designed to produce
both high-resolution coarse features and low-resolution fine features. As opposed to ViT,
which produces a single-resolution feature map, SegFormer aims to produce multiple levels
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of features, similar to a CNN, for the input images. This method usually makes the pixel
classification more accurate and the segmentation effect of details such as edges more
refined, thus leading to improved semantic segmentation performance.

Each transformer block consists of three parts: the efficient self-attention layer, the
mix feed-forward network (Mix-FFN) layer and the overlapping patch merging layer [77].
Among these components, efficient self-attention introduces sequence reduction based on
the ordinary self-attention structure to reduce computational complexity. Mix-FFN uses a
3 × 3 Conv directly in the feed-forward network (FFN), which helps mitigate the impact
of zero-padding on the loss of position information [78]. This alleviates the problem of
ViT accuracy degradation in situations where the test resolution differs from the training
resolution [79]. To preserve local connections between patches, an overlapping patch
merging process is used, and we can obtain feature graphs with resolutions of {1/4, 1/8,
1/16, 1/32} of the original input size.

• SegFormer Decoder

The SegFormer decoder comprises a multilayer perceptron (MLP) and operates
through a four-step process. First, four feature maps of different resolutions are input
into the MLP layer, and then the dimensions of the channels are unified. Second, the feature
maps are upsampled to 1/4 of the original map using bilinear interpolation and then
merged [80]. Next, the merged features are fused with an MLP layer. In the end, another
MLP layer is used to predict the fused features for semantic segmentation of images, and
the size of the predicted result P is H

4 ×
W
4 ×NC, where NC is the category.

2.4. Evaluation Metrics

We evaluated various models using several metrics, including accuracy, precision,
mean intersection over union (mIoU), recall, F1 score (F1) and training time. Accuracy
indicates the ratio of the number of correctly classified samples to total samples. Precision
reflects the probability of actual positive samples among all predicted positive samples.
The mIoU indicates the ratio of the intersection and union of ground truth and predicted
values. Recall indicates the probability that the predicted positive sample is in the actual
sample. The F1 score takes into account both precision and recall in a comprehensive way to
evaluate the classification results. These indexes are all calculated from a confusion matrix,
which is composed of true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN) [81]. The calculation equations for these indexes are shown below [82].

Accuracy =
TN + TP

TN + TP + FN + FP
(1)

Precision =
TP

TP + FP
(2)

mIoU =
TP

TP + FP + FN
(3)

Recall =
TP

TP + FN
(4)

F1 =
2 × Precision × Recall

Precision + Recall
(5)

2.5. Experimental Setup

During the training process of these DL models, we adopted a consistent parameter
configuration, which included learning rate, training epoch, loss function and optimizer
type. We set 400 epochs for each network in our experiments, with 124 iterations within each
epoch. The stochastic gradient descent (SGD) method was selected for weight optimization.
We set the batch size to 64, with the weight_decay of 0.01, and the momentum of 0.9. After
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several experiments, we decided on 0.01 as the optimal learning rate for training this model.
In addition, we selected step mode as the learning rate scheduler policy and binary cross
entropy was used as the loss function. For all experiments, we utilized a Linux system
equipped with a GPU, NVIDIA 9.0, and 128 GB of memory, configured with the Pytorch
1.7.0 environment. Furthermore, we used the same dataset in all experiments.

3. Results

In an attempt to discuss the uncertainty of winter wheat identification, we compare
the performance of various DL methods with a traditional method, considering the training
efficiency, evaluation metrics and identification results of these methods. After that, we
use all DL methods to monitor the changes in winter wheat planting area in the NCP from
2013 to 2022 and then select the best-performing method to map the spatial distribution of
winter wheat.

3.1. Training Efficiencies

Figure 7 shows the loss curve in the training process of each model. In a semantic
segmentation model, the loss function calculates the discrepancy between the predicted
results and the actual results, which enables the weight and model to be continuously
optimized. When the loss decreases rapidly and becomes more stable over time, it indicates
that the model fit is better. It can be seen from Figure 7 that the SegFormer has the
lowest initial loss value, followed by ResNet, HRNet, MobileNet, Xception and Swin
Transformer. In the first 10 epochs, the loss curves of each model show a rapid downward
trend. Around the 30th epoch, the loss value of HRNet was reduced to the same level
as ResNet. Simultaneously, the loss value of the SegFormer continued to decrease and
the gaps with the other models gradually widened. The SegFormer initially achieved the
fastest reduction to the lowest loss value, while the other models eventually converged,
although there were still persistent fluctuations. Therefore, the SegFormer has the fastest
convergence rate and the best fitting effect of all the models.
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The training times of all models are summarized in Table 3. The RF uses fewer
parameters and is simple to implement, so it has the shortest training time. On the other
hand, the Swin Transformer has the longest train time, more than 40 h, almost twice as
long as SegFormer and four times as long as MobileNet, because it is based on numerous
parameters, making it difficult to train. Although the training time of SegFormer is not
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the shortest among all DL models, it is second only to MobileNet and Xception. However,
the SegFormer converges faster, has lower loss values and is smoother during training
than the previous two models. Therefore, the investment of time in model performance
improvement is well justified.

Table 3. Training times of the ResNet, HRNet, MobileNet, Xception, SwinTransformer, SegFormer
and the random forest (RF).

Network Time

ResNet 89,764 s
HRNet 109,321 s

MobileNet 35,280 s
Xception 48,247 s

Swin Transformer 146,523 s
SegFormer 71,048 s

RF 3396 s

3.2. Winter Wheat Crop Identification

We employ accuracy, precision, mIoU, recall and F1 score to evaluate the performance
of different models in winter wheat identification. The metrics for all the methods are listed
in Table 4, with the best values being highlighted in bold. Of all the methods, SegFormer
has the highest accuracy value of 0.9252, followed by HRNet, ResNet, MobileNet, Xception,
Swin Transformer and RF. Their accuracy values are 0.9005, 0.8960, 0.8911, 0.8693, 0.8484
and 0.6732, respectively. The accuracy indicates the proportion of correctly classified winter
wheat samples and correctly classified background samples in the total sample, so the
metrics do not adequately illustrate the high performance of the model in the winter wheat
identification task.

Table 4. The accuracy, precision, mIoU, recall and F1 score of the ResNet, HRNet, MobileNet, Xception,
Swin Transformer, SegFormer and RF. The bold font indicates that the value of the corresponding
metric is the best.

Method Accuracy Precision mIoU Recall F1

ResNet 0.8960 0.7826 0.7592 0.7885 0.7855
HRNet 0.9005 0.8051 0.7698 0.7901 0.7975

MobileNet 0.8911 0.7933 0.7522 0.7671 0.7800
Xception 0.8693 0.7426 0.7104 0.7264 0.7344

Swin
Transformer 0.8484 0.6260 0.6612 0.7155 0.6678

SegFormer 0.9252 0.8382 0.8194 0.8538 0.8459
RF 0.6732 0.5809 0.4962 0.4304 0.4945

The winter wheat precision represents the probability of there actually being winter
wheat samples among all predicted samples. The SegFormer has the highest precision
(0.8382), followed by the HRNet (0.8051) and the RF has the lowest precision (0.5809).
Despite the fact that the Swin Transformer has the lowest precision of all the DL models,
it still outperforms the RF. Recall of winter wheat identification refers to the probability
that the actual winter wheat samples are predicted to be winter wheat samples. The recall
values from high to low are the SegFormer, HRNet, ResNet, MobileNet, Xception, Swin
Transformer and RF methods with values of 0.8538, 0.7901, 0.7885, 0.7671, 0.7264, 0.7155 and
0.4304, respectively. In particular, the recall value of RF is much lower than other models.

The mIoU is used to measure the similarity between predicted results and real labels.
The higher the value, the better the model performs. From Table 4, we can see that the
SegFormer has the highest mIoU value of 0.8194, indicating that this method outperforms
others for identifying winter wheat. The mIoU values of the HRNet, ResNet, MobileNet,
Xception, Swin Transformer and RF methods are 0.7698, 0.7592, 0.7522, 0.7104, 0.6612 and
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0.4962, respectively. Compared with accuracy and recall rate, mIoU can better reflect model
performance. For example, the recall value of Swin Transformer and Xception are very
close, but the mIoU value of them is significantly different. The F1 score of winter wheat
identification comprehensively considers precision and recall and serves as a measure of the
stability of the model performance and its ability to generalize predictions. The SegFormer
has high precision and high recall, indicating that both positive and negative classes are
predicted correctly. The F1 score of SegFormer is 0.8459, which ranks first, followed by the
HRNet with the F1 score of 0.7975, which is about 5% lower than that of SegFormer, while
the result of the traditional RF is the worst, with the F1 score of about 35% lower than that
of the highest SegFormer. This result indicates that the SegFormer performs well among
all models.

Considering accuracy, precision, mIoU, recall and F1 comprehensively, the SegFormer
model ranked first among all the models. Consequently, our conclusion is that the Seg-
Former performed best in the winter wheat identification task in our study. This may be
due to the use of multi-scale feature fusion in the SegFormer model. This capability allows
the model to capture high-resolution fine features and low-resolution coarse features si-
multaneously, thereby optimizing segmentation results. Secondly, in terms of performance
indicators, the gap between DL networks is small, with the exception of Swin Transformer.
In addition, the Swin Transformer performs substantially lower than that of SegFormer,
even though both are based on the transformer structure. Specifically, the mIoU of Swin
Transformer is about 16% lower than that of SegFormer, and the difference between the F1
score of the two is about 18%. The Swin Transformer performs worse than CNNs under
the Deeplabv3+ semantic segmentation framework, which may be because its feature
extraction capability as a backbone network is not as good as other CNNs in our winter
wheat extraction task. We found that the difference in performance between the traditional
RF and these DL networks is very significant, the main reason being that RF is a shallow
learning algorithm that is limited by network structure. For the complex task of winter
wheat identification in remote sensing imagery, especially in the NCP where there are many
types of crops and the planting structure is complex, the advantages are not obvious. As a
result, RF cannot produce good classification results.

With the exception of using quantitative evaluation indicators, we compared and
analyzed the prediction results of various typical winter wheat types, thereby providing
a more comprehensive evaluation of each model. The identification results of various
distribution types of winter wheat obtained by several methods are shown in Figure 8.
Among them, the first column is the original Landsat imagery, the second column is the
winter wheat label, and the third to the ninth columns are the identification results of
ResNet, HRNet, MobileNet, Xception, Swin Transformer, SegFormer and RF methods. The
first and second rows are of the continuous distribution type, the third and fourth rows
are winter wheat interleaved with the building, and the last two rows are winter wheat
distributed near water bodies. In Figure 8, the red regions indicate the identified winter
wheat fields and the black regions indicate the background.

As can be seen in Figure 8, the SegFormer can identify winter wheat well, whether
it is a large area of farmland or a small area of farmland, buildings and roads can also
be clearly distinguished from the winter wheat field. Especially regarding edge details,
the identification results of SegFormer surpass those of other models and are closely
aligned with the ground truth. The ResNet, HRNet and MobileNet were slightly inferior
to SegFormer in terms of detail performance. The Xception and Swin Transformer have a
poor ability to identify details, for some small plots of farmland, these two models have the
problem of missed identification. The boundary of farmland in the identification results of
these two models are fuzzy, especially the results of Swin Transformer have no obvious
outline, resulting in a large number of high-resolution spatial information being lost. The
RF method always ignores the road between the winter wheat fields and shows more
misidentifications. When winter wheat fields are distributed near water bodies such as
rivers and ponds, etc., the RF method misidentifies large water bodies as winter wheat,
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which can be seen from the fifth and sixth rows in Figure 8. In addition, it is evident from
the identification results presented in the fifth row of Figure 8, that when the spectral
characteristics of water are highly similar to those of winter wheat, the ResNet, MobileNet,
Xception and Swin Transformer are prone to misclassification in remote sensing imagery.
In contrast, the HRNet and SegFormer models are effective in mitigating the influence of
water. In conclusion, DL methods can identify winter wheat with different distribution
types more accurately compared to machine learning methods. Although both methods
have some disadvantages, the SegFormer model has the best effect in the winter wheat
identification task.
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3.3. Temporal and Spatial Variation Characteristics of Winter Wheat in the North China Plain

We intended to use six DL methods to plot the curve illustrating the alteration of the
winter wheat planting area from 2013 to 2022. Due to the fact that the RF method easily
identified water bodies as winter wheat, we do not consider this machine learning method
here. Due to the large extent of the NCP, it is difficult to obtain images simultaneously, so
we obtained Landsat data of the entire NCP by mosaicing satellite images from various
acquisition dates and positions using GEE. We cut Landsat imagery of the NCP from 2013
to 2022 into 256 × 256 image blocks and fed these images into the trained DL models for
prediction. Subsequently, these predictions were mosaicked together to generate distribu-
tion maps of winter wheat planting areas for each year. Eventually, the planting area was
obtained by calculating the number of winter wheat pixels.

Figure 9 shows the temporal trend of the winter wheat planting area in the NCP
from 2013 to 2022, obtained via ResNet, HRNet, MobileNet, Xception, Swin Transformer
and SegFormer. From 2013 to 2022, the winter wheat planting area shows a downward
trend globally, but there are fluctuations locally. As a consequence of the discrepancies
in the performance of various DL models for identifying winter wheat tasks, there are
also slight diversities in the trend of area changes. For the SegFormer, the planting area
decreased by approximately 2.9 × 104 km2 from 2013 to 2022. For the ResNet, HRNet,
MobileNet, Xception and Swin Transformer, the reduced winter wheat areas are 3.9 × 104,
2.8 × 104, 4.0 × 104, 2.0 × 104 and 7.1 × 104 km2, respectively. In particular, the Swin
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Transformer consistently identifies a greater amount of winter wheat planting area than
the other models. This may be attributed to the model erroneously identifying other land
types as winter wheat, such as water bodies, resulting in a higher identified area value.
Nevertheless, the overall trend of each model is relatively consistent, which is beneficial for
us in order to understand the changing trend of winter wheat planting areas in the NCP
during the previous decade.
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Based on the aforementioned analysis, we can conclude that the SegFormer model
displays the most effective identification capabilities for winter wheat fields. Therefore, we
select this model to explore the temporal and spatial distribution characteristics of winter
wheat in the NCP during 2013–2022, as shown in Figure 10, where the red regions indicate
the winter wheat. From the perspective of spatial distribution, winter wheat is primarily
sown across the central, western and southern parts of the NCP. From the perspective
of administrative division units, winter wheat is predominantly distributed throughout
Kaifeng, Shangqiu and Zhoukou in the eastern part of Henan Province; Anyang, Xinxiang,
Hebi and Puyang in the north of Henan Province; Shijiazhuang, Xingtai and Hengshui in
central Hebei Province; and Suzhou, Huaibei, Haozhou, Fuyang, Huainan and Bengbu
in the north of Anhui Province. On the time scale, the planting area of winter wheat
demonstrated a consistent decline in the NCP during 2013–2017, especially in the south
of the NCP. In both 2018 and 2019, a pronounced reduction in the area of winter wheat
cultivation was observed. Among these reductions in 2018 and 2019, the decrease in the
winter wheat planting area in central Hebei Province and northern Henan Province was
also attributed to cloud interference in the Landsat images used for these areas, which
resulted in the model’s inability to effectively identify winter wheat targets in remote
sensing imagery. From 2020 to 2022, the planting area in the southern NCP gradually
shrank. In general, there was a decreasing trend observed in the planting area of winter
wheat in the NCP from 2013 to 2022.
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4. Discussion

The NCP is one of the most important grain-producing areas in China, and timely
monitoring of the area planted with winter wheat in the region plays a crucial role in ensur-
ing food security [83]. However, too much statistical work is undoubtedly inefficient and
uneconomical [84]; there are even cases of omission. In this study, the combination of deep
learning and remote sensing provides an optimal way for obtaining spatial distribution
maps of crops. We obtained a spatial distribution map of winter wheat in the NCP with a
resolution of 15 m, while previous studies have not obtained a winter wheat map with a
higher resolution. Our results have the advantage of high spatial resolution and are less
affected by mixed pixels and more accurate. Moreover, our study enables the determination
of planting areas one or two months before the maturity of winter wheat, and provides
valuable information for early yield predictions.

With the continuous development of smart agriculture, DL technology is gradually
being applied to various fields of agriculture, and crop identification is the basis of refined
agricultural management. The DL methods we used outperformed the RF method when
identifying winter wheat, and the SegFormer model has the most outstanding performance
among all DL methods. A possible reason is that the transformer structure can capture
a variety of long-term dependencies within the input sequence. In contrast, CNNs can
only capture local information but may struggle with long-range dependencies [85]. In
addition, the SegFormer model stands out because of its abandonment of position coding.
This means that the resolution discrepancy between training and test images has minimal
impact on the model performance. Consequently, the winter wheat identification model can
quickly adapt to different resolutions, allowing the input of higher-resolution imagery for
prediction in future research. However, we found a significant performance gap between
SegFormer and Swin Transformer, with the former requiring only half the training time of
the latter, while mIoU outperformed the latter by about 16 percentage points. This may be
due to the Swin Transformer being a common backbone network under the Deeplabv3+
framework not being able to achieve maximum performance. Thus, in order to improve
its performance, it is necessary to construct a suitable semantic segmentation architecture
according to its structural properties in future work [86]. In brief, our results confirm that
DL methods are highly effective at accurately identifying winter wheat fields, providing
a more precise representation of winter wheat distribution, and compensating for the
shortcomings of manual statistics. Therefore, the use of SegFormer for crop identification is
a reliable choice.

Additionally, the SegFormer model we used has certain transferability because the
phenological characteristics and growth patterns of the same crop in different regions are
the same or very similar [87]. At the same time, in order to make the transferred model
have a better effect, we can use transfer learning technology to transfer the SegFormer
model to the target region, with the help of a small number of winter wheat samples
from this region [27], we can add more iterative training to the model to achieve a better
identification effect.

From the temporal trend of the winter wheat planting area in the NCP, it is evident
that the winter wheat planting area in the region exhibited fluctuating changes during the
period from 2013 to 2022, showing a general decreasing trend. The reduction in winter
wheat planting area in the NCP is mainly influenced by human activities, with three main
possible factors:

(1) With the rapid development of the social economy, China is experiencing rapid
urbanization, and a significant amount of farmland on the outskirts of cities has been
occupied, which may also be a reason for the gradual reduction in winter wheat
area [88].

(2) In addition, the limited rainfall and the high demand for irrigation in agriculture result
in the over-exploitation of groundwater. This creates a conflict between agriculture
and water resources, limiting winter wheat production to some extent [89,90].



Remote Sens. 2023, 15, 5121 16 of 20

(3) The decline of winter wheat cultivation around settlements is also associated with the
adjustment of the cropping structure, where many arable lands have been repurposed
to cultivate economically efficient cash crops such as vegetables, flowers and medicinal
herbs, particularly in the vicinity of towns [91].

Despite our identification result achieving high accuracy, some limitations and uncer-
tainty still exist, as shown below.

Firstly, due to the extensive coverage of the study region, ensuring the availability of
images for every region during the winter wheat jointing and heading period is challenging.
In cases where images are not available, we must resort to selecting images with the closest
dates. However, this may result in deviations ranging from half a month to one month or
even longer, which might cause the winter wheat area identified by our model to slightly
deviate from the actual area. In addition, the presence of cloud cover or image noise in
images can complicate the identification of ground objects, further adding to the challenges.
From the above two points, it is evident that the quality of remote sensing imagery plays a
significant role in the accuracy of our results. Therefore, in future work, we can improve
data quality by integrating multi-source remote sensing data, making imagery available
at all stages of crop growth. This will enable us to achieve widespread and precise crop
extraction.

Another potential impact is that, while the seasonal variation of winter wheat is
relatively consistent across most provinces, there are subtle differences in the phenological
characteristics of winter wheat among different provinces [92,93]. These differences might
be due to factors such as winter wheat varieties, planting dates and irrigation conditions.
To reduce the effect of this aspect and further improve our identification accuracy, we can
incorporate time series information on crops in future research.

Thirdly, both the quantity and quality of labeled data determine the accuracy and
reliability of the final identification result. However, it is evident that collecting and
generating a large number of ground samples of winter wheat is time-consuming. Therefore,
in future research, we can explore the utilization of DL self-supervised methods. These
methods have the potential to perform image segmentation tasks in large and complex
scenes with a limited number of manually labeled data samples, achieving comparable
accuracy to fully supervised methods.

5. Conclusions

In this study, we employed advanced DL technology and high-quality remote sensing
imagery to extract the spatial distribution of winter wheat in the NCP from 2013 to 2022.
Among various remote sensing datasets, we used Landsat due to its advantages of high
resolution, low cost and long time scale. Furthermore, we evaluated several semantic
segmentation models qualitatively and quantitatively, including four CNN models, two
transformer models and an RF model. The main conclusions drawn are as follows:

(1) In the winter wheat identification task, DL methods and the RF method save time
and labor costs compared to statistical methods. Additionally, benefiting from their
deep network levels and strong feature learning capabilities, all DL methods in our
study outperform the traditional RF method significantly. However, there are also
performance differences among different DL methods.

(2) The SegFormer outperforms other methods, achieving a mIoU value of 0.8194 and an
F1 value of 0.8459, it can effectively differentiate winter wheat fields from buildings
and water bodies, with a particular advantage in processing edge details. Therefore,
using the SegFormer method to obtain the spatial distribution of winter wheat in the
NCP from 2013 to 2022 is a recommended choice.

(3) There are differences in the trends in the NCP winter wheat area from 2013 to 2022
as reflected by several DL methods, but each method generally shows a downward
trend. A timely grasp of changes in the area of winter wheat is of great practical
significance to the relevant government departments involved in guiding agricultural
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production, measuring yields and adjusting agricultural structures, and is conducive
to guaranteeing food security.
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