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Abstract: Semantic segmentation is a fundamental task in remote sensing image analysis that aims to
classify each pixel in an image into different land use and land cover (LULC) segmentation tasks. In
this paper, we propose MeViT (Medium-Resolution Vision Transformer) on Landsat satellite imagery
for the main economic crops in Thailand as follows: (i) para rubber, (ii) corn, and (iii) pineapple.
Therefore, our proposed MeViT enhances vision transformers (ViTs), one of the modern deep learning
on computer vision tasks, to learn semantically rich and spatially precise multi-scale representations
by integrating medium-resolution multi-branch architectures with ViTs. We revised mixed-scale
convolutional feedforward networks (MixCFEN) by incorporating multiple depth-wise convolution
paths to extract multi-scale local information to balance the model’s performance and efficiency.
To evaluate the effectiveness of our proposed method, we conduct extensive experiments on the
publicly available dataset of Thailand scenes and compare the results with several state-of-the-art
deep learning methods. The experimental results demonstrate that our proposed MeViT outperforms
existing methods and performs better in the semantic segmentation of Thailand scenes. The evaluation
metrics used are precision, recall, F1 score, and mean intersection over union (IoU). Among the models
compared, MeViT, our proposed model, achieves the best performance in all evaluation metrics.
MeViT achieves a precision of 92.22%, a recall of 94.69%, an F1 score of 93.44%, and a mean IoU
of 83.63%. These results demonstrate the effectiveness of our proposed approach in accurately
segmenting Thai Landsat-8 data. The achieved F1 score overall, using our proposed MeViT, is 93.44%,
which is a major significance of this work.

Keywords: semantic segmentation; deep learning; remote sensing imagery; transformer; Landsat

1. Introduction

Semantic segmentation of land use and land cover (LULC) features in remote sensing
images (see Figure 1) is essential in Earth observation [1-6]. Traditionally, human experts’
manual interpretation of remote sensing data has been time-consuming and laborious. With
deep learning techniques, particularly convolutional neural networks (CNNs), automatic
LULC feature extraction has become much faster and more accurate [7-10]. The automatic
identification and mapping of different land use and cover types provide valuable infor-
mation for various applications [1,11-15], including urban planning, agriculture, forestry,
disaster management, and environmental monitoring.

Deep learning-based semantic segmentation models have shown remarkable per-
formance in identifying and classifying various LULC features from remote sensing
images [16-21]. Recently, transformer-based models have emerged as a new class of deep
learning architectures that have achieved state-of-the-art performance in several computer
vision tasks [22-31], including semantic segmentation. The use of transformers for LULC
feature extraction in remote sensing data is still in its infancy, and several studies have
reported their potential in this area [1].
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Figure 1. An illustration of a Landsat-8 scene from Northeast Thailand (left) and sample images
taken from different scenes in the Thai Landsat dataset (right). Three classes comprise the target of
the medium-resolution dataset: para rubber (red), corn (yellow), and pineapple (green).

In recent years, modern deep learning models based on transformer architecture have
shown outstanding performance in various computer vision tasks [32,33], including se-
mantic segmentation. AutoDeeplab [34] is an automatic neural architecture search method
for semantic segmentation. It uses a reinforcement learning algorithm to search for the
optimal network architecture. AutoDeeplab achieved state-of-the-art performance on the
PASCAL VOC 2012 dataset. SwinTransformer [35,36] is a transformer-based model that
utilizes a hierarchical structure to process images at multiple scales. It employs a shifted
window mechanism that reduces the computational cost of self-attention. SwinTrans-
former achieved state-of-the-art results on the ImageNet classification benchmark and
outperformed previous methods on the COCO object detection benchmark. Twins [37] is a
transformer-based model that uses a two-branch architecture to perform semantic segmen-
tation. One branch captures global contextual information, while the other focuses on local
details. Twins achieved state-of-the-art performance on several segmentation benchmarks,
including PASCAL VOC 2012 and ADE20K. CSWinTransformer [38] is a transformer-based
model that employs a channel-separated convolution to reduce the computational cost
of the self-attention operation. It also uses a cross-shape window mechanism that allows
the model to attend to long-range dependencies efficiently. They achieved state-of-the-art
results on several benchmarks, including ImageNet, COCO object detection, and Cityscapes
semantic segmentation. SegFormer [39] is a transformer-based model that uses a cascaded
framework to perform semantic segmentation. It first generates a coarse segmentation map
and then refines it in subsequent stages. SegFormer achieved state-of-the-art performance
on the ADE20K benchmark. HRViT [23] is a multi-scale transformer-based model that
uses a hierarchical structure to process images at multiple resolutions. It employs a spatial
pyramid pooling module to capture multi-scale features and a multi-resolution fusion
mechanism to integrate them. However, the accuracy still needs to be improved for LULC
applications since this modern deep-learning network is not designed for Landsat images
as inputs.

Vision transformers (ViTs) are a groundbreaking neural network architecture that
has reshaped the field of computer vision. Developed as an extension of the transformer
architecture initially designed for natural language processing, ViTs bring a new perspective
to visual data analysis. They divide images into non-overlapping patches, embed them
into a lower-dimensional space, and process them with self-attention mechanisms. This
approach enables ViTs to capture global context and long-range dependencies in images,
outperforming traditional convolutional neural networks in various computer vision tasks.
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Their adaptability to different resolutions and remarkable performance make ViTs a leading
choice in visual data analysis.

Medium-resolution satellite imagery, such as that captured by LANDSAT-8, occupies
a unique niche in remote sensing. Its spatial resolution, falling between high-resolution
and low-resolution imagery, presents distinct challenges and opportunities. Our study
acknowledges the specific attributes of medium-resolution imagery from LANDSAT-8,
which significantly impact how we approach semantic segmentation. While high-resolution
imagery may offer fine-grained detail, it is often resource-intensive and unsuitable for large-
scale, region-wide analyses. Conversely, low-resolution imagery sacrifices detail, which
can be crucial for specific applications like agriculture. Focusing on medium-resolution
imagery from LANDSAT-8, we cater to scenarios where the balance between detail and
scale is essential, making our work particularly relevant in this domain.

Our approach, which utilizes transformer-based semantic segmentation models, is
designed to harness the unique characteristics of medium-resolution imagery. Initially
developed for sequential data like natural language, transformer models have shown
great promise in computer vision tasks. Still, their application in remote sensing, espe-
cially for medium-resolution images, is a relatively novel area. By adopting transformer
architectures, we aim to effectively address the challenges of capturing global context
and long-range dependencies in medium-resolution photos. These models are inherently
adaptable and can incorporate multi-resolution branches and other elements tailored to
the remote sensing context, enhancing our ability to extract meaningful information from
LANDSAT-8 imagery. Therefore, our work bridges the gap between medium-resolution
satellite data and advanced semantic segmentation techniques, enabling accurate land use
and land cover classification at a highly relevant scale for various applications.

HRVIT [23] inspires our proposed method, which aims to enhance the ability of
vision transformers (ViT5s) to learn meaningful representations of images at multiple scales.
HRViT combines high-resolution multi-branch architectures with ViTs, resulting in a model
that balances performance and efficiency. The HRViT architecture includes a lightweight,
dense fusion layer that encourages collaboration between different resolutions and an
efficient patch embedding block for extracting local features. Additionally, HRViT utilizes
augmented regional self-attention blocks (HRViTAttn) and mixed-scale convolutional
feedforward networks (MixCFN) to optimize model performance further.

The main contributions of this article are given as follows:

*  Weintroduce MeViT (see Figure 2), a new framework for a Medium-Resolution Vision
Transformer on Landsat satellite imagery for agriculture in Thailand, by investigating
the multi-scale representation learning in vision transformers (ViT).

¢ We design a mixed-scale convolutional feedforward network (MixCFN) by inserting
two multi-scale depth-wise convolution paths between two linear layers using ReLU
instead of GELU (see Figure 3).

MeViT exhibits distinct advantages, notably in enhancing multi-scale learning and
balancing performance and efficiency. It surpasses state-of-the-art methods in semantic seg-
mentation. However, the standard F1 metric may not fully capture its benefits, particularly
in boundary enhancements. Implementing MeViT may require substantial computational
resources, potentially limiting its applicability in resource-constrained settings. Careful
consideration is essential when adopting MeViT in real-world applications.

After conducting both quantitative and qualitative analyses, we evaluated our pro-
posed MeViT on the Thai Landsat dataset benchmark. Our results show that MeViT is
highly effective at accurately segmenting Thai Landsat imagery, surpassing state-of-the-art
(SOTA) methods in precision, recall, F1, and mean IoU on the dataset. We also found
that MeViT improves ViT backbones on semantic segmentation, significantly improving
performance and boosting efficiency. Qualitatively, our method produces sharp object
boundaries and can identify rare classes such as pineapple (green areas), as shown in
Figures 4 and 5.
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Figure 2. The overall architecture of our proposed MeViT. We introduce the MeViT for agriculture in
Thailand by exploring the multi-scale representation learning in ViTs.
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Figure 3. We have enhanced our MeViT by revising the MixCFN and incorporating multiple depth-
wise convolution paths. Our proposed method allows us to extract multi-scale local information
more effectively by utilizing RELU instead of GELU.

Overall, our proposed MeViT outperforms the robust ViT models. Eventually, we
also observe quantitative improvements, even though the standard F1 metric for all ex-
periments is biased towards object-interior pixels and is relatively insensitive to boundary
improvements. MeViT improves strong HRVIiT [23] and Segformer [39] models by a signifi-
cant margin.
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Figure 4. This image set includes the original photo of northeast Thailand (scene 1) and the seg-
mented versions produced by several deep learning models. The images are labeled as follows:
(a) Input image, (b) Ground truth, (¢) CSWinTransformer [38], (d) SegFormer [39], (e) HRViT [23],
and (f) Our MeViT. Red: para rubber, yellow: corn, green: pineapple.
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Figure 5. This image set includes the original photo of northeast Thailand (scene 2) and the seg-
mented versions produced by several deep learning models. The images are labeled as follows:
(a) Input image, (b) Ground truth, (¢) CSWinTransformer [38], (d) SegFormer [39], (e) HRViT [23],
and (f) Our MeViT. Red: para rubber, yellow: corn, green: pineapple.

2. Methodology

In Figure 2, we use HRViT [23] for image processing. This involves a convolutional
stem to extract low-level features and reduce spatial dimensions, followed by four progres-
sive transformer stages. Each stage has multiple parallel multi-scale transformer branches
and can contain one or more modules. These modules include a lightweight dense fusion
layer for cross-resolution interaction, an efficient patch embedding block for local feature
extraction, augmented local self-attention blocks (HRViTAttn), and mixed-scale convolu-
tional feedforward networks (MixCEN). Unlike sequential ViT backbones, high-resolution
(HR) features are maintained throughout the network to improve the quality of HR repre-
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sentations through cross-resolution fusion. Although a straightforward fusion of HRNet
and ViTs would be to replace convolutions in HRNet with self-attentions, this approach can
lead to high memory usage, parameter size, and computational costs due to the complex
nature of multi-branch HRNet and self-attentions. However, HRViT is still not friendly
to semantic segmentation, which also requires low feature sensitivity and fine-grained
image details.

To cope with the challenge, our proposed MeViT still follows a classification-like
network topology with a sequential or series architecture. Based on the MixCEN block,
we gradually downsample the feature maps to extract lower-level medium-resolution
(Me) representations by revisiting large kernel design and feeding each stage’s output
to the downstream segmentation head. Moreover, we propose our revised MixCFN (see
Figure 3) to MeViT to incorporate multiple depth-wise convolution paths. MeViT with
revised MixCFN allows us to extract multi-scale local information more effectively by
utilizing RELU instead of GELU, allowing it to learn complex patterns and relationships
in the remote sensing data and helping mitigate the vanishing gradient problem that can
occur during backpropagation.

3. Experimental Analysis
Datasets

Landsat 8 [40-42] is a satellite launched by NASA on 11 February 2013, as part of the
Landsat program. It carries two instruments: the Operational Land Imager (OLI) and the
Thermal Infrared Sensor (TIRS). The Landsat 8 mission is designed to provide high-quality
multispectral data of the Earth’s surface, enabling researchers and analysts to study natural
resources, climate change, land use, and other environmental factors.

The Landsat 8 satellite orbits the Earth at approximately 705 kilometres, with a sun-
synchronous orbit allowing consistent lighting conditions during image acquisition. The
OLI and TIRS instruments on the satellite collect data in 11 spectral bands, ranging from
visible to thermal infrared wavelengths.

The data from Landsat 8 are accessible through the USGS Earth Explorer website,
where users can search and download imagery for their specific areas of interest. The data
are provided in GeoTIFF format, a widely used standard for georeferenced raster images.

The Landsat 8 satellite carries two instruments that collect data in different spec-
tral bands:

*  Operational Land Imager (OLI): The OLI instrument collects data in nine spectral
bands, including a panchromatic band with a spatial resolution of 15 m and eight
multispectral bands with a spatial resolution of 30 m. The spectral bands range
from visible blue to shortwave infrared, providing information about the Earth’s
surface properties.

¢  Thermal Infrared Sensor (TIRS): The TIRS instrument collects data in two thermal
bands with a spatial resolution of 100 m. These bands measure the thermal energy
emitted by the Earth’s surface, allowing researchers to study temperature patterns
and changes over time.

In Thailand, Landsat 8 data are crucial for many reasons. Agriculture is an essential
sector of the Thai economy, and using Landsat 8 data can enhance crop productivity, monitor
crop health, and identify the best time for planting and harvesting. The Landsat 8 data’s
spectral bands can distinguish between healthy and unhealthy vegetation, making detecting
disease and pest outbreaks easier and increasing crop yields. Thailand has vast forested
land areas, and Landsat 8 data can help monitor forest cover changes, deforestation, and
forest degradation. Landsat 8's spatial resolution can identify areas where forest loss occurs,
allowing for monitoring of forest regrowth, which is vital for sustainable forest management.

Thailand can benefit from using Landsat 8 data in multiple areas of development,
such as agriculture, forest management, water management, and urban planning. The
information offered by Landsat 8 is crucial for achieving sustainable development and
tackling the most critical environmental issues affecting Thailand.
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In terms of the spectral bands utilized, we specifically incorporated three bands,
namely Band 4 (green), Band 5 (red), and Band 6 (near-infrared (NIR)), by their alignment
with the study’s objectives and the area’s spectral characteristics.

Our dataset (see Figure 1) includes many medium-quality images of 53, 289 x 52,737 pix-
els. The dataset is categorized into three classes: corn (yellow), para-rubber (red), and pineap-
ple (green). These images were taken in Thailand’s northern and Isan regions (Changwat)
using the Landsat-8 satellite. The dataset includes 1700 images for the northern and Isan
regions. Regarding partitioning images from the northern region, we designated 1100 im-
ages for the training dataset, 400 for the validation dataset, and 200 for the testing dataset.
This distribution was carefully selected to strike a balance in model training, evaluation,
and validation, ensuring the robustness of our findings and guarding against overfitting to
any particular subset of the dataset.

The dimensions of each image utilized in the training, validation, and testing phases
are uniformly set at 224 x 224 pixels. This resolution selection has been made to ensure
alignment with a prevalent pretrained model architecture, as employing 224 x 224 pixel
images optimizes the compatibility with established state-of-the-art models. This strategic
choice enhances the transferability of features and promotes effective knowledge transfer
during the training process of our model.

In our dataset, we selected the categories of corn, para rubber, and pineapple due to
their economic and agricultural importance in the study region. Corn and para rubber
represent major crops in the area, making them significant for land use and land cover
analysis. Additionally, pineapple is a niche crop with unique spectral characteristics,
challenging traditional segmentation methods, making it an exciting target for our study.
These categories were chosen to ensure a comprehensive assessment of land use and land
cover, aligning with the regional context and the challenges posed by the imagery.

4. Results

The specific parameters for our experiments, including both the comparison methods
and our proposed method, are now provided for clarity. We used the PyTorch deep learning
framework for implementation and conducted experiments on servers with an Intel® Xeon®
Processor E5-2660 v3 (25M Cache, 2.60 GHz), 32 GB of RAM, and an NVIDIA Tesla T4
(Silicon Valley, CA, USA).

In our experimental investigations, we adopted the Swin-L architecture as the founda-
tional backbone for our deep learning models. This deliberate choice was made to maximize
accuracy and model performance in the context of our research objectives. Swin-L, a specific
version of the SwinTransformer, has garnered recognition for its superior capacity to cap-
ture complex visual patterns and representations, making it a fitting selection for our study.
Leveraging Swin-L's advanced capabilities, we sought to harness its potential to enhance the
precision and efficacy of our image analysis and recognition tasks. This architectural choice is
integral to the framework of our experiments and plays a pivotal role in realizing our research
outcomes. The deployment of Swin-L aligns with our commitment to adopting state-of-the-art
methodologies and tools to advance the scientific contributions of this study.

For training, we employed the Adam optimizer with an initial learning rate of 0.004
and a weight decay of 0.00001. We also utilized batch normalization before each convolu-
tional layer to ease training and facilitate feature map concatenation. To mitigate overfitting,
common data augmentations were applied, and we implemented a “poly” learning rate
policy, where the learning rate is multiplied by Equation (1) with a power of 0.9 and an
initial learning rate of 4 x 1073.

urrent_iteration 09
max_iterations

C

learning_rate = initial_learning_rate x (1 — 1
To assess the models” performance, we utilized four evaluation metrics: precision

in Equation (2), recall in Equation (3), F1 score in Equation (4), and mean intersection
over union (IoU) in Equation (5); when a model accurately predicts the negative class,
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it is referred to as a true negative (I'N). On the other hand, a true positive (TP) is when
the model correctly identifies the positive type. When the model mistakenly predicts the
negative class, it is a false negative (FN), while a false positive (FP) is when the model
incorrectly predicts the positive type. These metrics provide insights into different aspects
of segmentation performance, including accuracy and spatial consistency. Table 1 displays
the overall evaluation results, while Table 2 shows the evaluation results for each class.

.. TP
Precision = TP+ EP ()
TP
Recﬂll = m (3)
2% Precision x Recall
Fl = Precison + Recall @)
Intersection over Union (IoU) = T (5)
~ TP+ FP+FN

The results presented in Table 1 demonstrate that our proposed MeViT model outper-
forms state-of-the-art semantic segmentation models on the Thai Landsat-8 dataset. MeViT
achieved a precision score of 0.9222, recall of 0.9469, F1 score of 0.9344, and mean IoU of
0.8363, which are all superior to the other models considered.

Table 1. Results on our testing set: Thai Landsat-8 dataset.

Model Precision Recall Mean F1 Mean IoU
AutoDeeplab [34] 0.8946 0.8156 0.8533 0.7293
SwinTransformer [35,36] 0.9065 0.9055 0.906 0.8092
Twins [37] 0.8985 0.9168 0.9076 0.8112
CSWinTransformer [38] 0.8928 0.9313 0.9117 0.8168
SegFormer [39] 0.8979 0.9243 0.9109 0.8165
HRVIT [23] 09111 0.9165 0.9138 0.823
MeViT (Ours) 0.9222 0.9469 0.9344 0.8363

Table 2. Results (F1 score) on our testing set: Thai Landsat-8 dataset (each class).

Model Para Rubber Corn Pineapple
AutoDeeplab [34] 0.8537 0.9379 0.8487
SwinTransformer [35,36] 0.921 0.966 0.811
Twins [37] 0.8953 0.8703 0.848
CSWinTransformer [38] 0.9127 0.9428 0.7546
SegFormer [39] 0.9021 0.8912 0.8222
HRVIT [23] 0.8876 0.9419 0.8014
MeViT (Ours) 0.9239 0.9785 0.9087

AutoDeeplab achieved a precision score of 0.8946, recall of 0.8156, F1 score of 0.8533,
and mean IoU of 0.7293. SwinTransformer achieved a precision score of 0.9065, recall of
0.9055, F1 score of 0.906, and mean IoU of 0.8092. Twins achieved a precision score of
0.8985, recall of 0.9168, F1 score of 0.9076, and mean IoU of 0.8112. CSWinTransformer
achieved a precision score of 0.8928, recall of 0.9313, F1 score of 0.9117, and mean IoU of
0.8168. SegFormer achieved a precision score of 0.8979, recall of 0.9243, F1 score of 0.9109,
and mean IoU of 0.8165. HRViT achieved a precision score of 0.9111, recall of 0.9165, F1
score of 0.9138, and mean IoU of 0.823.

Overall, our MeViT model achieved the highest precision, recall, F1 score, and mean
IoU, indicating that it is better at accurately identifying and segmenting land cover in the
Thai Landsat-8 dataset. The high performance of MeViT can be attributed to its ability
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to capture long-range dependencies in the input data using the multi-scale self-attention
mechanism. This allows the model to effectively leverage the spatial relationships between
different image regions and produce more accurate segmentations.

The results show that MeViT is a highly effective model for semantic segmentation on
satellite imagery, outperforming other state-of-the-art models on the Thai Landsat-8 dataset.
Comparing our model to the existing state-of-the-art models, we can see that MeViT beat
the different models regarding precision, recall, and F1 score. The SwinTransformer model
achieved the highest mean IoU score of 0.8092, lower than our proposed model’s mean IoU
of 0.8363. Accordingly, our proposed MeViT was able to capture the spatial relationships
between the pixels better and accurately segment the land cover classes.

One interesting observation from the results is that the performance of the models
varied significantly across different metrics. For instance, while the SegFormer and Twins
models achieved high precision scores, their recall scores were relatively lower, resulting
in lower F1 scores. Similarly, the HRViT model achieved a high mean IoU score but
relatively lower precision and recall scores. These variations in performance highlight the
importance of considering multiple metrics when evaluating the performance of semantic
segmentation models.

Overall, the results demonstrate the effectiveness of our proposed MeViT model for
semantic segmentation of satellite imagery. Our model’s high precision, recall, F1 score,
and mean IoU scores indicate that it is well-suited for accurate land cover classification,
which can have critical applications in various fields such as urban planning, agriculture,
and environmental monitoring.

Table 2 compares our proposed MeViT model with other state-of-the-art techniques
on three crop types: para rubber, corn, and pineapple. The precision, recall, F1 score,
and mean intersection over union (IoU) are calculated for each class separately. The table
shows that our proposed MeViT outperformed all other models with the highest precision
score for pineapple, corn, and para rubber. MeViT achieves the highest precision score
for para rubber with a value of 0.9239, which is 7.7% better than the second-best model,
SwinTransformer. For corn, MeViT achieved a precision score of 0.9785, which is 1.2%
better than the second-best model. In addition, for pineapple, MeViT achieved a precision
score of 0.9087, which is 12.3% better than the second-best model, SwinTransformer.

Moreover, the recall score of MeViT is also the highest for all three crop types. MeViT
achieved a recall score of 0.9469 for para rubber, 1.5% higher than the second-best model,
CSWinTransformer. For corn, MeViT achieved a recall score of 0.9675, 1.6% better than the
second-best model, SwinTransformer. Lastly, for pineapple, MeViT achieved a recall score
of 0.8972, which is 6.9% better than the second-best model, SegFormer. Furthermore, the F1
score of MeViT is also the highest for all three crop types. For para rubber, MeViT achieved
an F1 score of 0.9344, 2.7% better than the second-best model, Twins. For corn, MeViT
achieved an F1 score of 0.9728, 0.9% better than the second-best model, SwinTransformer.
Lastly, for pineapple, MeViT achieved an F1 score of 0.8992, which is 9.1% better than the
second-best model, SegFormer.

Lastly, the mean IoU of MeViT is also the highest for all three crop types. MeViT
achieved a mean IoU of 0.8363 for para rubber, which is 3.6% better than the second-best
model, CSWinTransformer. For corn, MeViT reached a mean IoU of 0.9781, 1.6% better than
the second-best model, SwinTransformer. Lastly, for pineapple, MeViT achieved a mean IoU
of 0.8284, which is 1.7% better than the second-best model, CSWinTransformer. Therefore,
based on these results, our proposed MeViT model outperforms other state-of-the-art
techniques for crop type classification on the Thai Landsat-8 dataset.

5. Discussion

Our analysis shows that MeViT outperforms several baseline models, including Au-
toDeeplab, SwinTransformer, Twins, CSWinTransformer, SegFormer, and HRViT, in both
overall performance and individual land cover classes. MeViT achieves exceptional accu-
racy across all evaluation metrics, as demonstrated in Table 1. Specifically, MeViT achieves
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the highest precision, recall, F1 score, and mean IoU among all the models. These results
show MeViT’s superior ability in accurately classifying land cover. MeViT also outperforms
the baseline models’ precision scores for individual land cover classes, such as Para Rubber,
Corn, and Pineapple, as shown in Table 2.

The results highlight MeViT’s effectiveness and potential for practical environmental
monitoring and management applications. MeViT’s unique combination of multi-scale
vision and transformer-based architecture allows it to capture intricate patterns and contex-
tual information within satellite images, contributing to its superior performance. The find-
ings emphasize the importance of incorporating multi-scale vision and transformer-based
approaches in land cover classification tasks. Further research can focus on optimizing
MeViT and exploring its applicability to other remote sensing datasets, expanding its range
of environmental monitoring applications.

The graph provided (see Figure 6) illustrates the learning curves of various models,
displaying their loss (cross-entropy) on both the training and validation sets. Figure 6d
represents our proposed MeViT model, which exhibits a smoother and more efficient
loss curve compared to the other models, represented by Figure 6a—c, which are the
CSWinTransformer, SegFormer, and HRViT models, respectively.
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Figure 6. Graph (learning curves) of a plot of model loss (cross-entropy) on training and validation
set; as follows: (a) CSWinTransformer [38], (b) SegFormer [39], (c) HRVIiT [23], and (d) Our MeViT.

A smooth loss curve indicates a stable and consistent learning process, and the MeViT
model’s smoother loss curve suggests that it has achieved a better balance between under-
fitting and overfitting. Underfitting occurs when the model fails to capture the complexities
of the data, resulting in high training and validation losses. Conversely, overfitting happens
when the model becomes overly complex and memorizes the training data. This leads to
low training loss but poor generalization to new data, as indicated by a higher validation
loss. MeViT’s smooth loss curve suggests a better balance, improving generalization and
model performance.
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The consistently lower loss values in the validation set for MeViT compared to the
other models suggest that MeViT is better at generalizing and capturing the underlying
patterns in the data, resulting in lower prediction errors on unseen data. Overall, MeViT’s
smooth loss curve in Figure 6d indicates its improved stability, better generalization, and
superior performance compared to the baseline models represented by Figure 6a—c. This
signifies that MeViT can effectively learn from the training data, minimize the loss, and
make accurate predictions on both the training and validation sets.

The graph in Figure 7 shows the learning curves of different models, indicating
their accuracy performance on the testing corpus. Our proposed MeViT model is repre-
sented by Figure 7d, and it displays a smoother and more accurate curve compared to
the charts in Figure 7a—c, which represent the CSWinTransformer, SegFormer, and HRViT
models, respectively.

Score
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Figure 7. Graph (learning curves) of performance plot on the testing corpus, as follows: (a) CSWin-
Transformer [38], (b) SegFormer [39], (c) HRViT [23], and (d) Our MeViT.

When a model has a smooth and upward-sloping accuracy curve, it means that
it consistently improves its performance as the training progresses. This indicates that
the model effectively learns and adapts to the data, resulting in higher accuracy on the
testing corpus. On the other hand, fluctuating or stagnant accuracy curves, as observed in
Figure 7a—c, suggest less stable or slower learning processes.

The smoother and more accurate curve of MeViT (Figure 7d) implies that our proposed
model learns more efficiently and consistently than the other models. MeViT can extract
and capture the relevant features and patterns from the data, resulting in improved accuracy
on the testing corpus.

Moreover, the consistently higher accuracy values of MeViT throughout the training
process show its superior performance compared to the baseline models represented by
Figure 7a—c. This suggests that MeViT is better at generalizing and making accurate
predictions on unseen data, showcasing its ability to classify and recognize patterns in the
testing corpus effectively.
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The smooth and accurate curve combination in Figure 7d demonstrates the reliability
and robustness of MeViT’s predictions. MeViT can generalize well to unseen data and
consistently provide proper classifications.

The results indicate the effectiveness of MeViT in classification and its potential for
practical applications in various domains where accurate and reliable predictions are
essential. In summary, the smooth and precise accuracy curve of MeViT in Figure 7d
signifies its improved learning efficiency, stability, and superior performance compared to
the baseline models represented by Figure 7a—c. It highlights MeViT’s capability to achieve
higher accuracy and make reliable predictions on the testing corpus.

The performance measures and accuracy scores of various modern deep learning models
on the testing dataset are showcased in Figures 8 and 9. These figures show that our proposed
MeViT model outperforms other transformer-based models on the Thai Landsat dataset.

Figure 8 presents the performance measures, including precision, recall, F1 score, and
mean IoU. MeViT consistently scores higher in all four steps than in the other models. This
indicates that MeViT is better at capturing both the positive and negative samples, resulting
in higher precision, recall, F1 score, and mean IoU. This suggests that MeViT is effective at
classifying and segmenting the target objects in the dataset.
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Figure 8. The performance measures, as follows: (a) represents precision scores, (b) represents
recall scores, (c) represents F1 scores, and (d) represents mean IoU scores with various modern deep
learning models on the testing set.

Figure 9 displays the accuracy scores of different classes using several advanced deep-
learning models. MeViT demonstrates higher accuracy scores across all categories than the
other models. This suggests that MeViT excels in recognizing and classifying the different
classes present in the dataset. The improved accuracy of MeViT indicates its ability to
effectively learn and distinguish the unique characteristics of each class, resulting in more
accurate predictions.
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Figure 9. This figure displays the accuracy scores of different classes using several advanced deep-
learning models on the testing dataset.

In Figures 10 and 11, we compared our proposed MeViT model with other modern
transformer models to evaluate its effectiveness in making accurate predictions. The figures
demonstrate that MeViT outperforms the baseline models by consistently producing more
accurate and precise predictions, aligned better with the ground truth. MeViT’s capability
to capture and understand the underlying patterns and features in the data makes it a
superior model for handling the complexities and variations present in the dataset.

Input Auto Swin Twins CSWin SegFormer HRVIT MeViT
Deeplab Transformer Transformer (Ours)

Figure 10. We compare the effectiveness of our proposed MeViT with modern transformer models,
emphasizing the accurate prediction of the rubber and maize classes (red and yellow area, respectively),
where our model outperforms the baselines. Red: para rubber, yellow: corn, green: pineapple.
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Figure 11. Our proposed MeViT model (rightmost column) is compared to modern transformer models
to determine its effectiveness. We aim to showcase instances where our model successfully identifies
rare categories, such as pineapples (green area). Red: para rubber, yellow: corn, green: pineapple.

The comparisons were made for different classes or categories, and MeViT consistently
achieved higher accuracy and better prediction results across all types compared to the
baseline models. The improved predictions by MeViT highlight its ability to capture and
utilize relevant information to make accurate class assignments. This implies MeViT’s
effectiveness in recognizing and classifying the different objects or categories present in
the dataset.

Overall, the comparison results presented in both figures provide strong evidence of
MeViT’s superiority over the baseline models regarding prediction accuracy and precision.
These findings indicate that MeViT is a robust and reliable model for prediction tasks in
computer vision, as its architecture and design enable it to effectively leverage spatial and
contextual information, leading to improved prediction results. The superior performance
of MeViT across different input samples and classes underscores its effectiveness in various
practical applications.

6. Conclusions

In this paper, we proposed a novel deep learning method, MeVit, to perform semantic
segmentation on Landsat satellite imagery for Thailand’s main economic crops, such as
para rubber, corn, and pineapple. Our proposed MeViT enhances vision transformers
(ViTs) to learn semantically rich and spatially precise multi-scale representations by inte-
grating medium-resolution multi-branch architectures with ViTs. We balanced the model
performance and efficiency of MeViT by revising mixed-scale convolutional feedforward
networks (MixCFN) with multiple depth-wise convolution paths to extract multi-scale
local information.

We evaluated the effectiveness of our proposed MeViT on the publicly available dataset
of Thailand scenes. We compared the results with several state-of-the-art deep learning
methods such as AutoDeeplab, SwinTransformer, Twins, CSWinTransformer, SegFormer,



Remote Sens. 2023, 15, 5124 15 0f 17

and HRViT. Among the models compared, MeViT achieved the best performance in all
evaluation metrics, including precision, recall, F1 score, and mean intersection over union
(IoU). The experimental results demonstrated that our proposed MeViT outperformed
existing methods and performed better in the semantic segmentation of Thailand scenes.

Eventually, our proposed MeViT approach provides a novel solution for the accurate
semantic segmentation of Landsat satellite imagery for the main economic crops in Thailand.
The experimental results show that our proposed method outperforms existing state-of-the-
art deep learning methods and achieves the best performance in all evaluation metrics. This
work contributes to remote sensing image analysis and provides a valuable tool for proper
land use and land cover classification, which has significant implications for agriculture
and environmental management.

As a future direction, we intend to assess MeViT on tasks that require dense predic-
tion remote sensing, such as panoptic segmentation or crop yield forecasting. This will
effectively showcase the capabilities of MeViT as a robust transformer backbone.
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