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Abstract: With the ongoing changes in global climate, ocean data play a crucial role in understanding
the complex variations in the earth system. These variations pose significant challenges to human
efforts in addressing the changes. As a data hub for the satellite geodetic technique, unmanned aerial
vehicles (UAVs) instill new vitality into ocean data collection due to their flexibility and mobility. At
the same time, the dual-functional radar-communication (DFRC) system is considered a promising
technology to empower ubiquitous communication and high-accuracy localization. In this paper, we
explore a new fusion of UAV and DFRC to assist data acquisition in the ocean surveillance scenario.
The floating buoys transmit uplink data transmission to the UAV with non-orthogonal multiple
access (NOMA) and attempt to localize the target cooperatively. With the mobility of the UAV and
power control at the buoys, the system throughput and the target localization performance can be
improved simultaneously. To balance the communication and sensing performance, a two-objective
optimization problem is formulated by jointly optimizing the UAV’s location and buoy’s transmit
power to maximize the system throughput and minimize the attainable localization mean-square
error. We propose a joint communication and radar-sensing many-objective optimization (CRMOP)
algorithm to meliorate the communication and radar-sensing performance simultaneously. Simula-
tion results demonstrate that compared with the baseline, the proposed algorithm achieves superior
performance in balancing the system throughput and target localization.

Keywords: ocean monitoring; UAV; DFRC; many-objective optimization

1. Introduction

With the development of marine activity and scientific expeditions, precise and re-
liable data link communication plays a pivotal role in ocean monitoring [1–3]. As an
important supplement to the satellite geodesy, unmanned aerial vehicles (UAVs) assisted
satellite geodetic techniques to achieve both data acquisition endpoints for receiving sensor-
generated data and cooperating with satellites to transmit more refined information [4,5].
There have been a few works researching using UAVs in marine activities as aerial data
collectors [6], aerial relays [7], and node complements [8] in integrated air-space networks.
Considering the improvement of communication performance, UAV-assisted commu-
nication has been regarded as the core technology in the next generation of maritime
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communication due to its flexibility and mobility, which resolves the long transmission and
wide coverage problem in the maritime communication system.

In order to sufficiently exploit the characteristics of the UAV, researchers have con-
ducted extensive investigations on resource management [9,10], channel modeling [11],
safety control [12], and performance analysis [13]. The application scenarios of UAV-assisted
communication can be summarized into three types, i.e., the UAV serves as a data collector,
the cooperative relay and the aerial base station, respectively [14]. Due to maneuverabil-
ity, UAVs can improve transmission quality by creating line-of-sight (LoS) channels in
communication-unfriendly environments. Since most IoT or marine acquisition devices
usually have limited transmit power and communication coverage, the flexibility of UAVs
can effectively reduce the communication distance and select the optimal location to com-
plete communication tasks. For instance, how to effectively transmit data collected from
the sea surface sensor nodes in the ocean monitoring network to the ground base station
through UAV cooperative communication is introduced in [15]. In this case, deploying
the UAV as a data collection device was devoted to being a profitable and capable scheme.
Furthermore, combining the non-orthogonal multiple access (NOMA) and UAV into the
wireless network has been regarded as a promising way to promote data collection and
spectral efficiency simultaneously. The authors of [16] proposed a new cooperative NOMA
scheme for which a UAV transmitted the signals to several base stations (BS) and all of
the base stations decoded the message cooperatively. However, a cooperated BS is hard
to deploy in an ocean scenario, which makes it not manageable. A UAV-assisted NOMA
network where the UAV cooperatively served the ground user to communicate with the
base station is investigated in [17]. The NOMA precoding and UAV’s trajectory are jointly
optimized to maximize the sum rate. However, such a scheme is not appropriately used in
maritime tasks where the base station’s location is usually far from the equipment. In [18],
the study of a UAV equipped with a phased-array antenna to receive the signal from the
satellite and then transmit the information to the land-based user was investigated, where
the trajectory of the UAV and NOMA power was jointly allocated and optimized to achieve
a higher energy-efficiency purpose. Unfortunately, considering the complexity of satellite
communication systems, using a UAV as a relay to transmit data to ground users will
challenge energy efficiency regardless. Furthermore, all of the above research only focuses
on UAV-assisted downlink transmission, which means that UAVs are employed to serve
ground users or base stations instead of data collection.

Applying the radar sensing function to the sixth-generation communication system
opens up possibilities for broadening oceanographic missions [19,20]. Employing the radar
function in the UAV-assisted communication system can help the UAV to detect the environ-
ment which can avoid potential threats and find the optimal location of the UAV to construct
a more stable communication link. Before the dual-functional radar-communication (DFRC)
was well studied, most of the works related to UAV-assisted networks were discussed from
the perspective of communication and radar separately [21–24]. However, with the recent
development of modern communication technology, combining communication and radar
sensing, which is known as DFRC, has attracted extensive attention in the research commu-
nity [25–27]. Based on technology, the communication and radar module could efficiently
share the same hardware and obtain the integration gain. In [28], the authors analyzed the
advantages of DFRC in self-driving cars to achieve substantial gains in cost, performance,
and robustness. The authors of [29] employed the reconfigurable intelligent surface in
the DFRC system to improve both the performance of sensing and communication. The
sparse antenna array configurations by antenna selection and waveform attend pairing to
achieve a higher data rate are investigated in [30]. In addition, the authors of [31] present a
hardware prototype of the DFRC system, which utilizes generalized spatial modulation
to improve communication performance and reduce the sidelobe level of the transmit
beam pattern.

Although the development of DFRC has brought new vitality to the applications
of UAVs, the increased complexity induced by the integrated system may lead to more
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challenges to the optimization design. The traditional method usually optimized the com-
munication performance metrics under the radar constraints or vice versa [32]. Never-
theless, the lack of constraints in one of the specific problems will inevitably affect the
final optimization result and the performance trade-off between the two functionalities.
Evolutionary multi-objective optimization is beneficial in dealing with such issues. Since
the 1990s, the algorithms used to solve the problem with two or three objectives have
been proposed [33–35] and wildly used in various wild areas such as smelting production
measurement systems [36], game map generation [37], and water distribution systems [38].
Some of the typical methods such as the ε dominance and grid-dominance are driven
primarily by concerns about the development of new dominance relations. In contrast,
another class of methods such as the non-dominated sorting genetic algorithm II (NSGA-II)
focuses on improving diversity to rescue the loss of selection pressure [39,40]. Moreover,
there are some methods which find a preferred subset of solutions to shrink the search
space and employ dimension reduction to classify the embedded efficient front in the
objective neighborhood space.

Among the existing methods, the many-objective optimization algorithm based on
dominance and decomposition (MOEA/DD), which integrates the dominance and de-
composition approaches, effectively solves the conflicts between convergence, diversity,
and computational efficiency [41]. This method proposes a systematic framework to de-
velop a widely spread weight vector in which each vector specifies a unique sub-region in
the objective space. Then, it releases the pressure of non-domination and computational
efficiency when the number of objectives grows. The constraint consideration is also in-
cluded in the process of the algorithm, especially when the problem involves a massive
number of objectives. Therefore, the MOEA/DD method gives a bright path to solving
the multi-objective problem in the DFRC system to optimize the performance of radar and
communication simultaneously.

Moreover, under the limited resources of the marine scenario, balancing the advan-
tages of UAVs and DFRC can effectively improve the system’s performance and promote
spectral efficiency. However, building a UAV-assisted DFRC data acquisition system to
achieve both higher data transmission throughput and radar localization accuracy needs
to consider some critical issues, such as the buoy transmit power and the UAV’s location.
On the one hand, obtaining the optimal location of the UAV can effectively improve the
throughput of the system. On the other hand, according to the construction of different
channels, the transmit power of each buoy can be optimized according to the dynamic
environment, which ensures the localization accuracy requirement for radar sensing.

1.1. Our Contribution

Against the aforementioned background, we provide a UAV-assisted uplink data
collection and target localization network in the ocean surveillance scenario, where the
buoys transmit the data to the UAV and localize the target cooperatively. Specifically, data
collection between the UAV and buoys is carried out with NOMA and the UAV can be
deployed at different locations with its mobility, which achieves higher system throughput
under limited communication essentials. The transmit power at the buoys not only affects
the data collection but also impacts the target location performance. In order to improve the
communication and radar-sensing performance, we formulate a two-objective optimization
problem of UAV location and transmit power at the buoys to maximize the system through-
put and minimize the Cramer–Rao bound (CRB) of localization simultaneously. We list a
CRB-constrained (CRBC) problem to only maximize the system throughput and remark its
solution as the baseline to analyze the performance achieved by our design. Simulation
results demonstrate the efficiency of our design in balancing the system throughput and
target localization performance. The main contributions of this paper are summarized
as follows:

• To the best of the authors’ knowledge, this is the first time a UAV-assisted radar-
communication network has been investigated where several buoys conduct uplink



Remote Sens. 2023, 15, 5126 4 of 21

NOMA data transmission with the UAV while cooperatively sensing the radar target.
In order to improve the data collection performance, we exploit the flexible mobility
of the UAV and the efficiency of NOMA. Meanwhile, the buoy transmit power is
optimized to meliorate the data collection performance and radar target localization
simultaneously.

• In order to maximize the system throughput and minimize the CRB of localization,
we formulate a two-objective optimization problem of the UAV location and the
transmit power of the buoys. To tackle the NP-hard problem, we proposed a joint
communication and radar-sensing many-objective optimization (CRMOP) algorithm
that achieves a superior balance of data collection and radar target sense.

• In order to facilitate a better comparison with the CRMOP algorithm proposed in this
paper, we consider a baseline and propose a CRBC algorithm based on the traditional
optimization method where the CRB is regarded as a constraint to maximize the
system throughput. Through comprehensive simulations, we demonstrate that our
proposed algorithm not only achieves significantly higher throughput but also ensures
reliable target localization accuracy.

1.2. Paper Organization

The rest of this paper is organized as follows. The system model and the problem
formulation for the UAV-assisted DFRC data collection in the ocean monitoring system
are described in Section 2. Section 3 provides the proposed method (CRMOP) to jointly
optimize the UAV location and the transmit power of the buoy, followed by the CRBC
as a baseline. The simulation results and discussion are shown in Section 4. Finally, we
conclude this paper in Section 5. All abbreviations have been presented in Table 1.

Table 1. List of abbreviations.

Acronym Definitions

UAV Unmanned Aerial Vehicle

LoS Line-of-sight

NOMA Non-orthogonal Multiple Access

BS Base Station

DFRC Dual-functional Radar-communication

NSGA-II Non-dominated Sorting Genetic Algorithm II

MOEA/DD
Many-objective Optimization Algorithm
Based on Dominance and Decomposition

CRB Cramer–Rao Bound

CRBC CRB Constrained

CRMOP Communication and Radar-Sensing Many-objective Optimization

AP Access Point

3D Three-dimensional

CSI Channel State Information

AWGN Additive White Gaussian Noise

RCS Radar Cross-section

MSE Mean Square Error

PBI Penalty-based Boundary Intersection

SBX Simulated Binary Crossover

PF Pareto Front

OMA Orthogonal Multiple Access
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2. System Model and Problem Formulation
2.1. System Model

As illustrated in Figure 1, we propose a maritime monitoring data collection system,
where a rotary-wing UAV is deployed as a movable access point (AP) to collect data from K
single-antenna buoys based on the NOMA principle. Meanwhile, the buoys cooperatively
perform radar sensing to localize and track a target through the DFRC signals. The scenario
we considered in this paper involves a single data collection process by the UAV and can
easily be extended to cover multiple collection processes. All of the buoys are randomly
distributed on the sea, and the set of the buoy is denoted as K = {1, 2, . . . , K}. Without loss
of generality, a three-dimensional (3D) Cartesian coordinate system is considered in this
paper. To be detailed, the horizontal coordinates of the communication UAV and each buoy
are denoted as lU = [x, y]T ∈ R2×1 and lk = [lx(k), ly(k)]T ∈ R2×1, respectively. Although
sea clutter, sidelobe, and subspace interference are crucial in marine environments, to
present our proposed DFRC system more clearly and simplify the computational steps, we
assume that the buoy is relatively stationary at this point [42,43]. Following the assumption
in [32], we only consider the UAV’s hovering location and ignore the process of the UAV
takeoff and landing. And the UAV is assumed to fly at an unchangeable altitude HU . Note
that the locations of buoys and the UAV are assumed to be almost stable during a short
period; thus, the channels remain almost constant, which makes it possible to use the pilot
signals to obtain channel state information (CSI). Note that the buoys’ power source is
not considered in this system and the transmit power can be optimized when the channel
information is known according to the recent development of the energy deployment
strategy [44].

Figure 1. UAV-assisted DFRC data collection in ocean monitoring system.

In this paper, we assume that all of the UAV–buoy links are referred to the LoS
channel model. And the Doppler effect can be perfectly compensated because of the UAV’s
mobility [45]. In order to specify the characteristics of the UAV-assisted DFRC ocean
monitoring system, the coordinates of all buoys and the CSI of all data links are assumed
to be perfectly known by the UAV [46]. Let hUk denote the channel gain between the UAV
and the k-th buoy. Then, for k ∈ K, we have

hUk = g0d−2
Uk , ∀k ∈ K, (1)

where g0 denotes the channel gain at the reference distance dr = 1 m, dUk =
√
||lU − lk||2 + H2

U
denotes the distance between the UAV and the k-th buoy.

As mentioned above, each buoy transmits its signal non-orthogonally to the UAV on
the same radio spectrum with controlled transmit power. And the SIC is employed at the
UAV to guarantee the experience of distinct channel gains. Toward this end, by assuming
that the channel gain of each buoy decreases sequentially, i.e., hU1 > hU2 > . . . > hUk, k ∈ K,
we propose to dynamically adjust the transmit power in each buoy. Specifically, through
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SIC, the signals from stronger data links will be successively decoded while the others with
lower channel gains are treated as noise. Therefore, the throughput of each buoy depends
on the signal interference from the buoys with lower channel gains. Consequently, the
throughput for the k-th buoy can be written as

Rk = Blog2

(
1 +

pkhUk

∑K
i=k+1 pihUi + σ2

)
, ∀k ∈ K, (2)

where pk is the transmit power of the k-th buoy, σ2 is the additive white Gaussian noise
(AWGN) power and B is the transmission bandwidth. To guarantee the UAV performs SIC
more efficiently, the necessary power constraint for each buoy has to be followed as

pkhUk

∑K
i=k+1 pihUi

≥ PSIC, ∀k ∈ K, (3)

where PSIC denotes the minimum power difference for SIC. Furthermore, to ensure the
uplink transmission requirements of each buoy, the minimum throughput constraint is
given by

Blog2

(
1 +

pkhUk

∑K
i=k+1 pihUi + σ2

)
≥ Rth, ∀k ∈ K, (4)

where Rth is the uplink throughput threshold.
As for the radar sensing, the sensing target with a center of mass is located at

lR = [xR, yR]
T ∈ R2×1 [47]. It is assumed that the changes of the target center position

and the size observed by the buoys are small relative to the resolution capabilities of the
radar function (it is assumed that the position of each buoy is known in advance and the
radar sensing-based localization is insensitive to multi-path and weather impacts, which
is applicable to localizing the target [48]) which tracks the target’s position and estimates
unknown parameters from previous cycles, such as the target’s radar cross-section (RCS).
In this premise, by emitting the DFRC signals and then receiving the echoes, the buoys
can perform radar detection to sense the location of the target. Since the buoys work in a
cooperative method, they can be treated as a distributed MIMO radar. As described in [49],
the search cell can be defined as xR(yR)± Ic/B, where I is an integer, and c is the speed
of light (all buoys are simultaneous to transmit DFRC signals and receive echo signals by
employing a full-duplex transmission implementation. We assume the self-interference is
well mitigated according to the existing work [50]). The signal transmitted from buoy φ
and received at buoy ϕ can be expressed as

yφ,ϕ(t) =
√

pφαφ,ϕβφ,ϕsφ(t− τφ,ϕ) + n(t), ∀φ, ϕ ∈ K, (5)

where αφ,ϕ is the target RCS, βφ,ϕ is the signal variation due to the path loss effects, τφ,ϕ de-
notes the propagation time of the signal transmitted by buoy φ, reflected by the target, and
received by buoy ϕ. A group of waveforms is employed, with each waveform possessing
a low-pass equivalent of sφ(t). And n(t) ∼ (0, σ2

r ) is the zero-mean circularly symmetric
complex Gaussian noise. As demonstrated in [47], CRB can be used to provide a lower
bound on the mean square error (MSE) of asymptotic unbiased parameter estimators in
radar sensing, especially when the SNR is sufficiently large, the MSE of the maximum
likelihood estimator is close to the CRB. Then, in our considered distributed MIMO radar
system, the CRB for the target location estimation can be written as [32]

C(p) =
(ga + gb)

T p
pTGp

, (6)

where p = [p1, p2, . . . , pK]
T is a vector denoting the buoy transmit power, G = gagT

b − gcgT
c ,

ga = [ga1, ga2, . . . , gaK]
T , gb = [gb1, gb2, . . . , gbK]

T , gc = [gc1, gc2, . . . , gcK]
T , where the ele-

ments are defined as
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gaφ = η
K

∑
n=1

∣∣αφ,nβφ,n
∣∣2( xφ − xR

dφR
+

xn − xR
dnR

)2
, (7)

gbφ = η
K

∑
n=1

∣∣αφ,nβφ,n
∣∣2(yφ − yR

dφR
+

yn − yR
dnR

)2
, (8)

gcφ = η
K

∑
n=1

∣∣αφ,nβφ,n
∣∣2( xφ − xR

dφR
+

xn − xR
dnR

)
×
(

yφ − yR

dφR
+

yn − yR
dnR

)
,

(9)

where η = 8π2B2

σ2
r c2 and dnR is the distance between the buoy n to the location of the target

(xR, yR).
To achieve better localization accuracy, the CRB needs to be as small as possible. After

observing Equations (2) and (6), the UAV’s location and buoy transmit power affect the
performance of the communication and radar sensing, which should be jointly optimized
to obtain a better trade-off. However, conventional methods to deal with such problems
generally optimize one performance and treat the others as constraints which can not
provide an optimal performance trade-off between the dual functionalities.

2.2. Problem Formulation

In this section, we investigate the multi-objective optimization problem with different
design objectives for maximizing the communication throughput and minimizing the CRB
for the target location estimation simultaneously. Considering all of the buoys have to
be implemented to achieve two individual missions and each object should satisfy the
transmit power constraints, as a result, we first formulate the communication sub-problem
which maximizes the system throughput under the NOMA protocol given by

(P1) : max
lU ,p

F1 =
K

∑
k=1

Blog2

(
1 +

pkhUk

∑K
i=k+1 pihUi + σ2

)
(10a)

s.t. Pmin ≤ pk ≤ Pmax, ∀k ∈ K, (10b)
pkhUk

∑K
i=k+1 pihUi

≥ PSIC, ∀k ∈ K, (10c)

Rk ≥ Rth, ∀k ∈ K, (10d)

min(lx) ≤ x ≤ max(lx), (10e)

min(ly) ≤ y ≤ max(ly), (10f)

||lU − lR||2 ≥ D2
min. (10g)

where Pmin > 0 and Pmax is the minimum and maximum transmit power of each buoy,
constraint (10c) guarantees the effective SIC at the UAV, and constraint (10d) defines the
minimum uplink data rate requirements. In order to ensure each buoy sustains a relatively
stable working condition, the power of the buoy must be a positive number and have
a certain upper threshold. Furthermore, the position of the UAV is limited in such a
way that the UAV cannot fly beyond the location of the furthest buoy which is given in
(10e) and (10f). Equation (10g) constrains that the minimum distance Dmin between the
UAV location and the target location.

As for the radar-sensing performance, the optimization sub-problem can be formu-
lated as

(P2) : min
p

F2 =
(ga + gb)

T p
pTGp

(11a)

s.t. Pmin ≤ pk ≤ Pmax, ∀k ∈ K, (11b)
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where (P2) has the same power constraints as in problem (10).
By comparing the sub-problem (P1) and (P2), a non-trivial trade-off design for bal-

ancing the communication and radar sensing performance arises in our considered UAV-
assisted ocean monitoring system. Both the sub-problems have the same power constraints,
while their optimization objectives are not identical, which refer to maximizing the total
transmission rate and minimizing the CRB of target location estimation, respectively. More-
over, the variables are tackled in objectives as well as constraints, which makes the problems
non-convex and may yield prohibitive complexity. Toward this end, we propose an efficient
algorithm to deal with the two conflict objective problem which will be detailed in the
next section.

3. Method

In order to resolve the different design objectives, we propose the CRMOP algorithm
based on the penalty-based boundary intersection (PBI) approach to combine the original
object functions formulated as [41]

min
lU ,p

dpbi(lU , p|(w, z∗)) = g1 + θg2 (12a)

s.t. Pmin ≤ pk ≤ Pmax, ∀k ∈ K, (12b)
pkhUk

∑K
i=k+1 pihUi

≥ PSIC, ∀k ∈ K, (12c)

Rk ≥ Rth, ∀k ∈ K, (12d)

min(lx) ≤ x ≤ max(lx), (12e)

min(ly) ≤ y ≤ max(ly), (12f)

||lU − lR||2 ≥ D2
min, (12g)

where

g1 =
||((−F1, F2)

T − z∗)Tw||
||w|| , (13)

g2 =

∣∣∣∣∣∣∣∣((−F1, F2)
T − (z∗ + g1

w
||w|| )

∣∣∣∣∣∣∣∣, (14)

where w is the weighted vector, z∗ = (z∗1 , z∗2)
T is the ideal optimal vector with

z∗1 < min(−F1) and z∗2 < min(F2), θ ≥ 0 is a self-defined penalty indicator which controls
the bias of g1 and g2. Compared to the traditional approach [51], the method employed
in (12) balances the convergence and diversity in which g1 is used to assess the convergence
of each parameter toward the efficient front and g2 is the measurement of population
diversity. We aim to decrease the object value as small as possible so that it can reach the
optimal boundary. The proposed algorithm can effectively combine the two objectives and
ensure the diversity of the population results, and at the same time has a better performance
in dealing with constraints.

3.1. Overall Process of the Proposed Algorithm

The overall process of our proposed algorithm that jointly optimizes the UAV’s location
and the transmit power of each buoy to achieve the optimal transmission throughput and
the CRB for localization simultaneously is summarized in Algorithm 1. And the details for
each stage are given in the following subsections.
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Algorithm 1 Overall Process of the Proposed Algorithm

1: Initialize the UAV’s location and buoy transmit power as illustrated in (Algorithm 2).
2: while termination condition is not satisfied do
3: for Each weight vector is selected do
4: Implement offspring generation by (Algorithm 3).
5: for every offspring is selected do
6: Constraint operation based on (Algorithm 4)
7: Update the parent population following (Algorithm 5).
8: end for
9: end for

10: end while

Algorithm 2 Initial Parameter Determination
Output:
Intial UAV’s location l(0)U , buoy transmit power p(0), weight vectors W and neighborhood
set of weight vectors e.
Process:

1: Randomly generate the initial parent population l(0)U and p(0) following the uniform
distribution.

2: Use Das and Dennis’s method to generate N = (2+U−1
2 ) weight vectors

W = {w1, w2, . . . , wN}.
3: while i = 1 : N do
4: Generate M closest neighborhood weight vectors to wi.
5: end while
6: Divide lU and p to several non-domination levels by non-dominated sorting method.
7: Associate each value in lU and p with unique sub-region.

Algorithm 3 Offspring Parameter Generation
Output:
Offspring solutions lo f f

U and po f f .
1: if RAND < δ then
2: Choose k members of e(i) randomly.
3: if no candidates exist in the elected sub-regions then
4: Stochastically select k results from lU and p to form ˆlU and p̂, respectively.
5: else
6: Select k number of results from the elected sub-regions to form ˆlU and p̂.
7: end if
8: else
9: Stochastically select k results from lU and p to construct ˆlU and p̂, respectively.

10: end if
11: Apply polynomial mutation and simulated binary crossover (SBX) [52] to generate the

offspring solutions lo f f
U and po f f .

3.2. Parameter Initialization

The initial UAV’s location and buoy transmit power are obtained following the process
in Algorithm 2. The initial process consists of four parts, i.e., the initialization of parent
population lU and p, generation of the weight vectors, the non-domination level processing,
and the neighborhood generation, which initialize the parameters utilized for the upcoming
stage. To be detailed, the initial values of lU and p are randomly sampled within the
corresponding range uniformly. Then, Das and Dennis’s approach is employed to generate
the weight vectors W = {w1, . . . , wN} [53]. In this step, N points of weight vectors are
sampled with a uniform spacing δ = 1/U, where U is the number of considerations along
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each target objective function. It should be pointed out that the choice of U has to be greater
than the number of object functions that guarantee our population diversity.

The sub-region in the objective space Πi specified by each weight vector wi can be
defined as

Πi = {(−F1, F2)
T ∈ R2}| 〈(−F1, F2)

T , wi〉 ≤ 〈(−F1, F2)
T , wj〉}, (15)

where j ∈ {1, 2, . . . , N}, 〈(−F1, F2)
T , wj〉 is the acute angle between 〈(−F1, F2)〉T and wj.

The neighborhood of each weight vector wj consists of M closest weight vectors which are
calculated by Euclidean distances. Subsequently, the parameters are divided into several
non-domination levels by the non-dominated sorting method, and each value in lU and p
is randomly associated with a unique sub-region.

Algorithm 4 Constraint Operation

1: Obtain the sub-region associated with offspring solution lo f f
U and po f f based on

Equation (15).
2: lhp

U ← l(t)U ∪ {l
o f f
U }; php ← p(t) ∪ {po f f }.

3: {lis
U , pis} ← ∅.

4: for lU ∈ lhp
U ; p ∈ php do

5: if CV(lU , p) > 0 then
6: {lis

U , pis} ← {lis
U , pis} ∪ {lU , p}.

7: end if
8: end for

Case 1:
∣∣∣{lis

U , pis}
∣∣∣ = 0

9: Update parent population of parameters according to Algorithm 5.
Case 2:

∣∣∣{lis
U , pis}

∣∣∣ 6= 0

10: Sort {lis
U , pis} in descending order regard to (16).

11: sign = 0.
12: while i=1 to

∣∣∣{lis
U , pis}

∣∣∣ do

13: if {lis
U(i), pis(i)} sub-region is not isolated then

14: sign = 1, l
′
U ← lis

U(i), p
′ ← pis(i).

15: break.
16: end if
17: end while
18: if sign = 0 then l

′
U ← lis

U(1), p
′ ← pis(1).

19: end if
20: l(t+1)

U ← lhp
U \l

′
U , p(t+1) ← php\p

′
.

3.3. Offspring Parameter Generation

The offspring parameter generation aims to generate offspring solutions based on the
initial UAV’s location and buoy transmit power, which contains two main steps, i.e., mating
selection and variation operation, as shown in Algorithm 3. The mating selection should
choose the parents from the neighborhood as much as possible because each solution is
specified by a weight vector and associated with a sub-region. Therefore, the neighborhood
solutions can be easily chosen from their sub-regions with the current weight vector. The
mating parents are randomly chosen based on the initial UAV’s location l(0)U and buoy
transmit power p(0) to avoid any associated solutions in the selected sub-regions. Moreover,
according to [54], selecting the mating parents in a low probability 1− δ from all candidates
can enhance the exploration ability. Finally, the selected parent parameter is employed to
generate the offspring solutions lo f f

U and po f f based on the method of polynomial mutation
and simulated binary crossover.
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Algorithm 5 Update Parent Population of Parameters

Output: Parent populations of l(t+1)
U and p(t+1).

1: Obtain the sub-region associated with offspring solution lo f f
U and po f f based on

Equation (15).
2: lhp

U ← l(t)U ∪ {l
o f f
U }; php ← p(t) ∪ {po f f }.

3: {lis
U , pis} ← ∅.

4: for lU ∈ lhp
U ; p ∈ php do

5: if CV(lU , p) > 0 then
6: {lis

U , pis} ← {lis
U , pis} ∪ {lU , p}

7: end if
8: end for
9: Update the non-domination level structure of lhp

U and php.
Case 1:

10: if the last non-domination level contains only one solution, not all solutions in lhp
U and

php are non-dominated from each other and |ψl | > 1 then
l(t+1)
U ← lhp

U \l
a
U ; p(t+1) ← php\pa.

11: end if
Case 2:

12: if the last non-domination level contains more than one solution, not all solutions in
lhp
U and php are non-dominated from each other and |ψh| > 1 then

Obtain l
′
U and p

′
based on (18).

l(t+1)
U ← lhp

U \l
′
U ; p(t+1) ← php\p

′
.

13: end if
Case 3:

14: if Not the cases mentioned in case 1 and case 2. then
Obtain l

′
U and p

′
based on (19).

l(t+1)
U ← lhp

U \l
′
U ; p(t+1) ← php\p

′
.

15: end if
16: End Case
17: Use the non-domination level update the non-domination level structure of l(t+1)

U and p(t+1).

3.4. Update Parent Population Parameter

Note that before the parent populations are generated, the constraints of the objective
problem have to be considered. To deal with this issue, we define the constraint violation
value CV(lU , p) for each user k as

CV(lU , p) =

∣∣∣∣∣ pkhUk

∑K
i=k+1 pihUi

− PSIC

∣∣∣∣∣
†

+ |Rk − Rth|†, ∀k ∈ K, (16)

where two parts of the right-hand side are referred from (10c) and (10d), respectively. The
operator |x|† indicates the absolute value of x < 0, and returns 0 otherwise. It is noted that
the feasible solution of (16) has to be equal to 0, and the quality of the parameter depends
on how much smaller the CV(lU , p) is. If every value of lhp

U and php are conform to the
constraint requirement, the member will be served for the unconstraint update procedure.
Otherwise, the infeasible solution will be decided by the CV(lU , p) and niching scenarios.
Obviously, the population diversity depends on the solution associated with an isolated
sub-region significantly.

For those values of lhp
U and php which are not conformed to the constraint requirement,

there are two scenarios to identify the solutions l
′
U and p′.
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3.4.1. Case with Only One Non-domination Level

All solutions in lhp
U and php are non-dominated from each other. The density estimation

and scalarization functions are employed to obtain the solutions. The density of a sub-
region can be estimated since each result is associated with a sub-region. The most crowded
sub-region ψh has the largest niche count. However, more than one sub-region may have
the same largest niche count. To avoid this scenario, the largest sum of the PBI value is
defined as

h = max
i∈Si

∑
{lU ,p}∈ψi

dpbi(lU , p|(wi, z∗)), (17)

where Si is the set of sub-region indicator in which the same largest niche count is included.
Then, the worst solutions l

′
U and p

′
in ψh which have the largest PBI value will be eliminated

from lhp
U and php given by

{l′U , p′} = max
{lU ,p}∈ψh

dpbi(lU , p|(wh, z∗)). (18)

3.4.2. Case with More than One Nondomination Level

Since we have to eliminate only one solution from lhp
U and php, the last non-domination

level is chosen to process.
Specifically, if the last non-domination level contains only one solution of la

U and pa,
the density of the sub-region ψl has to be investigated first. In this case, if the associated
sub-region ψl has more than one solution, la

U and pa will be eliminated from lhp
U and php.

In terms of convergence, better solutions inside of ψl will be contained, and the solutions
can not provide further useful information. Otherwise, ψl might not be fully exploited
in the object space, which can be treated as the isolated sub-region. la

U and pa play an
important role in population diversity which will be saved to the next round. Then, the
worst solutions {l′U , p

′} ∈ E which are obtained in the most crowded sub-region ψh that

are included in the current worst non-domination level are eliminated from {lhp
U , php}

based on the following

{l′U , p′} = max
{lU ,p}∈E

dpbi(lU , p|(wh, z∗)). (19)

If the last non-domination level contains more than one solution. There are also
two cases that have to be considered. If more than one solution is related to the most
crowded sub-region ψh, the worst solution {l′U , p

′} ∈ ψh which has the largest PBI value

is eliminated from {lhp
U , php} according to (18). Otherwise, if every member is associated

with an isolated sub-region, the solutions will be saved for the next round and the worst
solution {l′U , p

′} is eliminated from {lhp
U , php}. Once the worst solution is eliminated from

lhp
U and php, the non-domination level structure is updated to form the parent population

l(t+1)
U and p(t+1). Furthermore, if every member in the last nomination level is associated

with an isolated sub-region, the worst solution {l′U , p
′} will be eliminated from {lhp

U , php}.
Considering the infeasible solutions associated with an isolated sub-region is given

a second chance to survive in the process. Specifically, the solutions in lhp
U and php which

has the largest CV is identified first. The solutions will be considered the current worst
solutions if they are not associated with an isolated sub-region. Otherwise, they will be
preserved for later consideration to guarantee population density. And the solution in l

′
U

and p
′

which has the second largest solution of (16) will be obtained instead. Whether the
solutions are treated as l

′
U and p

′
depends on whether the solutions are associated with an

isolated sub-region. Moreover, if every infeasible solution in lhp
U and php is associated with

an isolated sub-region, the solutions with the largest CV will be considered as l
′
U and p

′

and then be eliminated from lhp
U and php.
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The update procedure aims to update the (t)-th iteration of parent population of
UAV’s location l(t)U and buoy transmit power p(t) to obtain the optimal parameters by

generating offspring parameters lo f f
U and po f f . The overall update process is shown in

Algorithm 5. Firstly, the sub-region associated with the offspring solutions lo f f
U and po f f is

calculated by (15). The hybrid population lhp
U and php are formed by combining l(t)U with

lo f f
U and p(t) with po f f , respectively. Then, the non-domination level structure is updated

according to [55]. Finally, the (t + 1)-th iteration of parent populations l(t+1)
U and p(t+1) are

generated.

3.5. Convergency and Complexity Analysis

To solve the original problems, we handle two conflict object problems with the help
of the CRMOP algorithm based on MOEA/DD to update the solutions until coverage. The
convergence of the whole algorithm is influenced by the update process apparently. Since
the PBI method acts as the leading role of our proposed algorithms, the objective function is
constantly approaching the ideal object value as the iteration processes during the update
process which indicates that the algorithm is guaranteed to converge [52]. The complexity
of polynomial mutation and SBX in Algorithm 3 is O(2DN), where D is the number of
decision variables. Identifying the ideal point requires a total of O(2N) computations. As
for the update process in Algorithm 5, the non-dominated sorting of a population of size
2N with 2-dimensional objective vectors requires O(NlogN) computations [56]. Assuming
that the number of solutions in the last non-domination level is L. For each solution, the
checking process needs O(L) computations. Inspired by the algorithm proposed in [52],
the worst complexity of the complexity of one generation approximates O(N2logN). The
algorithm proposed in this manuscript provides a theoretical foundation and guidance for
localization in practical settings.

3.6. CRBC Optimization (Baseline)

In this subsection, we present a traditional approach to compare the communica-
tion and localization performance between our proposed algorithm and the traditional
method [32]. An optimization problem is formulated to maximize the system throughput
with the given CRBC, which can be expressed as follows

max
lU ,p

K

∑
k=1

Blog2

(
1 +

pkhUk

∑K
i=k+1 pihUi + σ2

)
(20a)

s.t. Pmin ≤ pk ≤ Pmax, ∀k ∈ K, (20b)
pkhUk

∑K
i=k+1 pihUi

≥ PSIC, ∀k ∈ K, (20c)

Rk ≥ Rth, ∀k ∈ K, (20d)

min(lx) ≤ x ≤ max(lx), (20e)

min(ly) ≤ y ≤ max(ly), (20f)

(ga + gb)
T p

pTGp
≤ ηmax, (20g)

||lU − lR||2 ≥ D2
min, (20h)

where ηmax denotes the given localization accuracy threshold. Noting that problem (20) is
a non-convex problem and is extremely difficult to solve directly, we decouple problem (20)
into two sub-problems, the UAV location and the power control problems. We first select a
proper UAV location by transforming the objective function into a minimization of the sum
distance from the UAV to the buoys with respect to the constraints of UAV location [57],
which can be written as
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min
lU

K

∑
k=1
||lU − lk||2 (21a)

s.t. min(lx) ≤ x ≤ max(lx), (21b)

min(ly) ≤ y ≤ max(ly), (21c)

||lU − lR||2 ≥ D2
min, (21d)

Noting that problem (21) is not convex due to the non-convex constraint (21d), we
adopt the successive convex optimization technique to obtain the UAV location. The
left-hand term in (21d) is convex with respect to lU and the lower-bound of the convex
term can be attained according to the first-order Taylor expansion [46]. Specifically, define
lU

r as the given point in the r-th iteration and the left hand term in (21d) can be lower
bounded as

||lU − lR||2 ≥ ||lU
r − lR||2 + 2(lU

r − lR)
T(lU − lU

r), (22)

Then, (21) is transformed into

min
lU

K

∑
k=1
||lU − lk||2 (23a)

s.t. min(lx) ≤ x ≤ max(lx), (23b)

min(ly) ≤ y ≤ max(ly), (23c)

||lU
r − lR||2 + 2(lU

r − lR)
T(lU − lU

r) ≥ D2
min, (23d)

which is a convex problem and can be easily solved by standard convex optimization
solvers such as CVX toolbox [58].

With the obtained UAV location in (23), the system throughput can be maximized by
power control at the buoys. We relax the constraint (20g) as in [47] and the power control
sub-problem can be given as

max
p

K

∑
k=1

B log2

(
1 +

pkhUk

∑K
i=k+1 pihUi + σ2

)
(24a)

s.t. Pmin ≤ pk ≤ Pmax, ∀k ∈ K, (24b)
pkhUk

∑K
i=k+1 pihUi

≥ PSIC, ∀k ∈ K, (24c)

Rk ≥ Rth, ∀k ∈ K, (24d)

(ga + gb)− ηmaxGp ≤ 0. (24e)

We remark that (24) is a convex problem, which can be easily solved.

4. Results and Discussion

In this section, the simulation results are presented to evaluate the performance of our
proposed UAV-assisted ocean monitoring radar-communication system. Thanks to [59]
for the proposed platform which provides some basic algorithm codes that simplify some
of our repetitive work. We investigate the optimal position of the UAV and its impact on
the performance of the system under different buoy distribution methods. Employing
a UAV as an independent data collector to gather data from the transmitting buoys is a
reasonable approach in practical applications and the configuration of four buoys and one
UAV is a common deployment setup in practical communication and radar systems [9,12].
To better showcase the superiority of our proposed system without sacrificing generality,
and to facilitate future extensions of the proposed system, four buoys are distributed
on the sea surface in a two-dimensional area of 1 km × 1 km. The scope of the entire
system we have devised aligns with the majority of application scenarios introduced in
Section 1 ([6,9,11,16]). Furthermore, it is well suited for deployment and can be easily
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extended to several working environments. Unless otherwise stated, the default minimum
power difference for SIC is set as 2 dB, the bandwidth is set as 50 MHz, the default target
location is presented in Location 1, the buoy distribution situation is random, and the
maximum buoy transmit power is 18 dBm. Moreover, the UAV is assumed to fly at a
constant height. The remaining parameters are summarized in Table 2. To ensure the
effectiveness and comparability of the experiments, relevant communication parameters
such as AWGN power and UAV altitudes are kept consistent with the [32]. This is carried
out to maintain the validity and continuity of the results obtained. In order to enhance
the experimental and facilitate accurate comparisons, careful attention is given to aligning
these specific parameters with those reported in the relevant paper.

Table 2. Simulation parameters.

Parameters Values

Height of the UAV HU 100 m

Target Location 1 [500, 300]T m

Target Location 2 [400, 700]T m

Minimum data rate requirement Rth 1 Mbps

Reference channel gain g0 −60 dB

AWGN power σ2 −110 dBm

Probability of mating parents selection δ 0.9

Localization accuracy threshold ηmax 3 ×10−3m2

Minimum distance between UAV and
target Dmin

300 m

4.1. Nondominated Front Generation

The non-dominated front, also called Pareto Front (PF), is composed of all Pareto-
optimal solutions as shown in Figure 2. Thirty points of randomly distributed buoys are
selected to generate the experiment result. Considering the problem is a two-objective
optimization, each point on the PF does not dominate the other points, which indicates
the solutions lie in the PF achieving high performance on communication and radar
simultaneously. From Figure 2, we can see that all points are smoothly distributed on the
curve with the horizontal axis from 6.1× 10−4 m2 to 7.4× 10−4 m2 and the vertical axis
from 4.68× 108 bps to 4.81× 108 bps. It is worth noting that these values are not unique,
which indicates that different buoy distributions and numbers or other parameters such as
the location of the UAV will result in different final PF values.
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Figure 2. The non-dominated front obtained by the CRMOP algorithm.
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4.2. UAV Optimal Location

As shown in Figures 3 and 4, we simulate three different buoy distribution situations
which are random distribution, square distribution, and zigzag distribution to illustrate
the optimal UAV’s location obtained by our proposed algorithm. Since the numerical
results obtained from the UAV’s positions on the PF do not dominate each other, we plot
all of the optimal positions of the UAV on a single figure. The location of each buoy is
marked as a blue square, and the red dot denotes the optimal location obtained by the
CRMOP algorithm. The UAV location obtained by the CRBC baseline is marked as a green
triangle. As can be seen, different buoy distributions influence the final UAV’s optimal
location since both performances of communication and radar are considered. Specifically,
according to Figure 3a, when the buoys are randomly distributed on the sea surface, the
UAV will choose the location near the second or the fourth buoy as the best reception
location. However, when the distribution of buoys has a dedicated pattern, such as square
and zigzag distribution, as shown in Figure 3b,c, the locations of the UAV will present
different distributions to achieve the optimal performance on radar and data collection at
the same time. Moreover, the target location also plays the important role in the UAV’s
location optimization process. For example, when the target is located in Location 2 as in
Figure 4a shows, the UAV chooses the location near the first or third buoy as the optimal
location instead of the second or the fourth in Figure 3a. Due to the optimization process
of the UAV’s location being affected by the constraint of the minimum distance between
the UAV and the target, the optimal location of the UAV is closely associated with the
target location to reach the optimal result. The corresponding object values associated
with the parameter are presented in Table 3. In each case, we have chosen two examples
for different location areas. From Table 3 and its associated Figures 3 and 4, we can see
that there is always a certain distance between the location obtained by the CRBC and the
CRMOP algorithm which causes different performances on the system throughput and
the achieved CRB for localization. Furthermore, although the power allocated by each
buoy has little relationship with the optimal location, the CRMOP algorithm can make our
system throughput fluctuate within a certain range without causing a large change in the
final result.

0 200 400 600 800 1000

x(m)

0

200

400

600

800

1000

y
(m

)

Buoy 1    

Buoy 2    

    Buoy 3    

    Buoy 4 

      radar target       

Optimal location

CRBC (baseline) location

(a) Random distribution

0 200 400 600 800 1000

x(m)

0

200

400

600

800

1000

y
(m

)

Buoy 1    

Buoy 2        Buoy 3    

    Buoy 4       radar target       

Optimal location

CRBC (baseline) location

(b) Square distribution

0 200 400 600 800 1000

x(m)

0

200

400

600

800

1000

y
(m

)

Buoy 1    

Buoy 2    

    Buoy 3    

    Buoy 4 

      radar target       

Optimal location

CRBC (baseline) location

(c) Zigzag distribution

Figure 3. Different buoy distributions with Target Location 1.
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Table 3. Parameter examples.

Distribution
Type

Target
Location Algorithm UAV

Location
Buoy 1

Power (W)
Buoy 2

Power (W)
Buoy 3

Power (W)
Buoy 4

Power (W)
Throughput
(×108 bps)

CRB for
Localization
(×10−4 m2)

Random

1
CRMOP

[414.4384;662.3422] 0.0630 0.0631 0.0631 0.0053 4.792 8.67

[274.2414;787.6419] 0.0626 0.0629 0.0607 0.0337 4.784 6.796

CRBC [412.0546;586.8216] 0.0424 0.0433 0.0352 0.0518 4.2967 1.26

2
CRMOP

[100.0000;109.5802] 0.0630 0.0569 0.0324 0.0122 4.6683 1.976

[894.3048;509.9927] 0.0614 0.0606 0.0428 0.0366 4.487 1.140

CRBC [455.3978;405.1585] 0.0315 0.0313 0.0356 0.0524 3.2945 0.59

Square

1
CRMOP

[305.7863;603.6381] 0.0631 0.0622 0.0367 0.0075 4.7591 1.1316

[610.1607;599.8689] 0.0612 0.0630 0.0322 0.0174 4.734 1.035

CRBC [405.1476;584.6103] 0.0364 0.0427 0.0463 0.0418 4.2008 0.946

2
CRMOP

[328.6521;300.8771] 0.0629 0.0631 0.0416 0.0078 4.729 1.05

[322.7507;288.2979] 0.0630 0.0631 0.0402 0.0078 4.732 0.903

CRBC [458.8498;405.8288] 0.0384 0.0479 0.0421 0.0377 4.141 0.79

Zigzag

1
CRMOP

[794.4881;693.4549] 0.0628 0.0602 0.0358 0.0155 4.624 3.24

[395.6543;590.6740] 0.0631 0.0606 0.0330 0.0029 4.751 1.74

CRBC [499.9866;600.0000] 0.0349 0.0487 0.0428 0.0384 4.0625 1.245

2
CRMOP

[196.9071;285.9520] 0.0602 0.0631 0.0300 0.0492 4.62 2.12

[210.7754;320.6452] 0.0631 0.0581 0.0264 0.0426 4.68 2.10

CRBC [521.8621;425.8656] 0.0358 0.0519 0.0353 0.0323 3.995 1.587

Figures 5 and 6 plot the system throughput under different maximum transmit power
of buoys from 18 dBm to 24 dBm. The system throughput and minimum rate of CRBC
baseline and orthogonal multiple access (OMA) are compared with our proposed CRMOP
algorithm. To better evaluate the impact of the optimized variables on the system, we ap-
plied the UAV locations optimized by the CRMOP algorithm and CRBC baseline separately
to the OMA protocol, which allows us to comprehensively assess the effectiveness of the
optimizations and their impact on the overall performance of the system [32].

It can be observed that the maximum transmit power increment improves the through-
put for all cases. No matter the minimum rate or system throughput, the performance
of our proposed algorithm and CRBC baseline is much higher than that of the OMA pro-
tocol, which illustrates the advantage of applying NOMA in the system. Moreover, our
proposed CRMOP algorithm has better performance than the CRBC baseline which reveals
the superiority of our proposed algorithm for solving the UAV-assisted ocean monitoring
problem. The system throughput of the OMA protocol at different UAV locations is shown
in Figure 5, which demonstrates that the proposed algorithm yields better results than the
traditional method when the UAV is located in the location optimized by our algorithm.

18 19 20 21 22 23 24

Maximum transmit power of buoys (dBm)

0

1

2

3

4

5

6

S
y
s
te

m
 t
h
ro

u
g
h
p
u
t 
(b

p
s
)

108

CRMOP algorithm

CRBC baseline

OMA with CRMOP location

OMA with CRBC baseline location

Figure 5. System throughput under different maximum buoy transmit power.
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Figure 6. Minimum rate under different maximum buoy transmit power.

4.3. Performance Comparisons between CRMOP Algorithm and the CRBS Baseline

Finally, we compare the proposed CRMOP algorithm and CRBC baseline in terms
of achieved CRB for localization and system throughput under the same SIC constraint.
Figures 7 and 8 show the system throughput with the two algorithms in the case of PSIC
4 dB and 8 dB. When PSIC is small, the power of the buoy has more flexibility for data
transmission so that the system will have a higher throughput. As for the CRBC baseline,
changing the PSIC does not impact the system’s performance significantly. Moreover, it
has been consistently observed that no matter what the PSIC is, the CRMOP algorithm has
better performance than the CRBC baseline.
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For the achieved CRB for localization, it is clear that all cases are below the green
dotted line which indicates that both algorithms are better than the preset threshold. The
flexibility of the buoy’s power for radar functions increases as the Pmax is incremented,
resulting in a lower achieved CRB for system localization. Another interesting phenomenon
is that the CRMOP algorithm exhibits superior throughput compared to the CRBC baseline
while the latter demonstrates better radar accuracy, despite both meeting the threshold
requirements for radar performance. Moreover, the change of PSIC has little effect on both
the system throughput and achieved CRB for localization of the CRBC baseline. This is
because when other parameters are fixed and PSIC meets the requirements of NOMA, the
distribution of the UAV’s position and power can converge to a certain range to reach the
optimal value of the objective function.

5. Conclusions

In this paper, we investigated a UAV-assisted DFRC system in the ocean monitoring
scenario to simultaneously realize data collection and target localization. To maximize the
communication throughput while minimizing the CRB of localization at the same time, we
formulate a two-objective optimization problem under constraints of buoy transmit power
threshold and the available UAV’s location. A joint communication and radar sensing
many-objective optimization algorithm is proposed to solve this problem. Numerical
results revealed the superiority of our proposed algorithm in the ocean monitoring data
collection system which significantly improves both the network throughput and the
localization accuracy. This proposed design can be used for complex marine activities that
require multiple tasks to be performed simultaneously and will improve the efficiency
and performance of different tasks. However, in real-world scenarios, controlling all
factors becomes more challenging due to external influences, unpredictable events, and
limitations in experimental setup. In the future, we will consider additionally exploring the
impact of other variables, such as UAV operation or wireless environments, as well as the
effects of energy consumption and multi-target detection capability on the DFRC system in
marine scenarios.
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