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Abstract: Due to the limitation of the number of sensor pixels, optical splicing is commonly used
to improve the imaging width of remote sensing satellites, and this optical stitching can cause
vignetting in the image data of adjacent sensors. The weak energy, low signal-to-noise ratio, and
poor response stability of vignetting are key factors that restrict the relative radiometric correction
of optical splicing remote satellites. This paper proposes a stability analysis method and a relative
radiometric correction method for vignetting. First, we analyzed the stability of the response and
the noise impact of vignetting. Massive data from the Jilin-1 GF03D satellites was used to analyze
the stability of the response using the vignetting stability analysis method. Secondly, the data on the
deep sea during nighttime (DDSN) of Jilin-1 GF03D satellites was used to obtain the characteristics
of the sensors’ noise. Thirdly, by building a noise drift model, we calculated the coefficient of the
noise drift according to its characteristics. Using the coefficient to eliminate the noise drift of each
pixel in vignetting can improve the response stability of vignetting. The average response stability
increased by 37.64% by this method. Finally, the automatic relative radiometric correction method was
completed through histogram matching. Furthermore, we proposed color aberration metrics (CAMs)
to evaluate the multi-spectral images after relative radiometric correction, and massive data from the
16 satellites of Jilin-1 GF03D was used to verify the effectiveness and generality. The experimental
results show that the average CAM of the images increased by 15.97% using the proposed method
compared to the traditional method.

Keywords: stability analysis method; data on the deep sea during nighttime; noise drift model for
vignetting; relative radiometric correction method; Jilin-1

1. Introduction

Optical remote sensing satellites have the advantages of being easy to monitor and
interpret by the human eye and are widely used in fields such as land survey, agriculture,
forestry, and environmental protection. With the development of remote sensing satellite
application technology, optical remote sensing satellites with large widths and high resolu-
tions have become a trend [1]. However, the manufacturing of large-sized image sensors is
complex and costly [2,3]. Therefore, scholars suggested concatenating multiple sensors to
meet the current requirements for resolution and width [4,5]. There are generally two types
of sensor splicing technology: mechanical splicing and optical splicing.

Mechanical splicing is arranging multiple image sensors closely on a single satellite,
which is currently adopted by many large-width remote sensing satellites. The advantage
is that the camera optical system using mechanical splicing is relatively simple, but the
drawback is the high satellite manufacturing costs, launch costs, and the possible existence
of a splicing gap [6–8]. In this case, in order to obtain a large field of view, optical splicing
is gradually adopted by more and more optical remote sensing satellites. Optical splicing
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is the process of dividing the field of view into different spatial positions through optical
methods, receiving them with multiple image sensors, and then splicing the images received
by the image sensors to obtain a large and wide image. Compared to mechanical splicing,
optical splicing camera systems have a compact structure and significant advantages in
volume, weight, and technology [9–11]. They have become the main developing direction
of sensor splicing technology, and the advantages of remote-sensing satellite cameras are
becoming increasingly apparent.

Due to the presence of a splitter in the optical path of an optical splicing remote sensing
satellite, a portion of the light cannot be projected onto the sensor through the reflector,
resulting in energy loss and low response in the partial image. This phenomenon is called
vignetting [12]. Because of this, the signal-to-noise ratio is also low [13,14]. Therefore, it is
challenging to develop relative radiometric correction methods of optical splicing remote
sensing satellites for vignetting images. Traditional relative radiometric correction methods
are mainly divided into two methods: calibration and statistical methods.

The laboratory calibration method employs an integrating sphere as a uniform light
source to image at different radiance levels [15–17]. This method calibrates the response dis-
parities, utilizing multiple samples, between pixels in both vignetting and non-vignetting,
thereby generating the laboratory relative radiometric calibration coefficient.
LI Jing et al. [18] conducted a radiometric calibration of a photographic camera with
a composite plane array CCD in a laboratory setting. The advantage of this method is that
the accuracy of the radiometric calibration coefficient is high, which can better smooth out
the responding differences between pixels of vignetting and non-vignetting. However, the
disadvantage is that the coefficient effectiveness is reduced as the sensor decays [19]. Mov-
ing on to another method, the uniform field calibration method capitalizes on data from
low-, medium-, and high-response typical uniform object features (e.g., oceans, deserts,
glaciers) to ascertain the coefficient. Dennis L. Helder [20] has strengthened the long-term
radiometric stability monitoring of visible and near-infrared Earth observation sensors by
employing uniform fields, such as the Sonoran Desert, Sahara, and Middle Eastern Desert
regions. The advantage of this method is that it lowers the prerequisite for specific sensors
and satellites, thus eliminating the need for massive data. The drawback is that with the
increase in the width of remote sensing satellites and the expansion of the image coverage
area, the number of large-area uniform fields that meet the requirements decreases [21].
Also, the yaw calibration method has morphed into a laudable on-orbit relative radiometric
calibration technique [22]. This method ensures the focal plane detector array’s alignment
parallel to the imaging direction, enabling each detector to traverse the same ground stretch,
thus receiving an identical amount of light. Chaochao and Chen [23] applied the yaw cali-
bration method, introducing a side-slither data-based vignetting correction technique for a
high-resolution spaceborne camera with an optical focal plane assembly. The yaw calibra-
tion method facilitates relative radiometric calibration for focal plane pixels, and its high
timeliness and ability to capture more gray-level responses in a single imaging enhance
the universality of the relative radiometric calibration coefficient. However, this method
requires a high level of satellite attitude adjustment capability and stability, a challenge
often faced by traditional satellites to achieve stable yaw imaging capabilities [24].

Statistical methods mainly include histogram matching and moment matching meth-
ods [25,26]. Histogram matching is used to improve the signal-to-noise ratio by adding
the response of corresponding points of vignetting [27]. Shapira D. [28] proposed a new
method that finds such a mapping in an optimal manner under various histogram distance
measures. The method can find a single monotonic mapping between multiple pairs of his-
tograms, such that the mapping will satisfy all pairs simultaneously. The moment matching
method assumes that the radiometric distribution of each sensor for ground object detection
is balanced, and the gain between sensors is linearly correlated with the drift value [29]. Jia
Li [30] proposed a novel destriping method based on adaptive material matching (MAM).
The pixels are matched by thresholding their vertical gradients and leveraging both the
inner-stripe gradient feature (ISGF) and neighbor-stripe geometry feature (NSGF). The
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positive of statistical methods is that good correction coefficients can be obtained based on
historical satellite data, and they have no requirement on the capability of satellites. The
shortcoming is that the pixel response characteristics have changed, and their correction
effect is extremely poor.

To solve the problem of correcting the vignetting of optical remote sensing satellites,
Yongkun Liu [31] proposed a general relative radiometric correction method to correct
vignetting (correction of vignetting of multiple CCDs). The entropy and IDM threshold
are used to select the uniform image block. The improved least-squares method, ridge
regression, is used to fit vignetting correction parameters, and the global optimization
parameters model is established according to the difference of overlap pixels between
each CCD. Newton’s method is used to calculate the global optimal correction parameters.
However, this method relies on the response stability of vignetting or a high signal-to-
noise ratio. Once the image data do not meet the above two requirements, the relative
radiometric correction effect will be greatly reduced. With the continuous attenuation of
satellite sensors, changes in the response of vignetting are inevitable.

In summary, the above relative radiometric correction methods do not provide special
image processing for vignetting and cannot solve the problem of vignetting effectively. To
overcome these difficulties, we proposed a general relative radiometric method by building
a model to improve the stability of the response of vignetting, thereby improving the
quality of relative radiometric correction.

Our key contributions in this paper are:

1. A general relative radiometric correction method for vignetting is proposed, including
a vignetting stability analysis method, data on the deep sea during nighttime (DDSN),
a noise drift model for vignetting, and histogram matching, which can effectively
improve the relative radiometric correction effect;

2. A vignetting stability analysis method is proposed by calculating the variation in
response differences of corresponding points to explore the stability and effect of
vignetting noise;

3. The noise drift model for vignetting is built using the DDSN of Jilin-1 GF03D satellites.
The imaging time and the mean of each pixel of vignetting are used to calculate the
coefficient of the model. The coefficient is used to eliminate the noise and noise drift,
and the experiments show that the average response stability increased by 37.64%
using the method;

4. Histogram matching is used to correct the image after the noise drift model for vignetting;
5. The results of the comparison of 56,843 images from the Jilin-1 GF03D satellites show

that the average improvement rate of color aberration metrics (CAMs) of images
after correction in this paper is 15.97%, which is significantly better than the existing
method and verifies the generality of the proposed method.

2. Methods

This paper aims to solve the problem of relative radiometric correction of the vignetting
of an optical splicing remote sensing satellite. First, a vignetting stability analysis method
is proposed to explore the stability of the characteristics of response and the noise of
vignetting. Then, we build a noise drift model in vignetting using the DDSN and complete
a relative radiometric correction method. The workflow of this method is as follows:

1. Analyze the stability of the energy and the noise effect of vignetting using the vi-
gnetting stability analysis method;

2. Obtain the noise of vignetting by the DDSN of Jilin-1 GF03D satellites;
3. Build a noise drift model for vignetting based on the DDSN;
4. Histogram matching is used to complete a relative radiometric correction method

after the noise drift model correction.

The workflow of this method is shown in Figure 1. First, vignetting is divided into
stable and changing areas based on the DDSN, this is to analyze the stability of the response.
Then, build a noise drift model for vignetting based on the DDSN and generate the noise
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drift coefficient of the vignetting using linear least squares to fit the imaging time and the
response of each pixel. We find that it is not necessary to distinguish between changing
area and stable area, so all the coefficients are used to calculate the noise drift uniformly.
Finally, histogram matching is used to correct the image, which is pre-corrected by the
noise drift model for vignetting.

Figure 1. Workflow of the noise drift model for vignetting.

2.1. The Vignetting Stability Analysis Method

The pixels of the vignetting of adjacent sensors will show the same object features
during the imaging of optical splicing remote sensing satellites, as shown in Figure 2.
The width of the images is 4000, and the width of each sensor is 2000. This is to better
demonstrate the difference in the object features between vignetting and non-vignetting
in each sensor, as well as the response differences. This can be used to calculate the
energy distribution of vignetting. The energy and noise characteristics of adjacent sensors
are different, and the energy of the corresponding points is also completely inconsistent.
In general, the response of the corresponding points of vignetting is relatively stable at
different imaging times and tasks when the noise is stabilized. Conversely, the response
points are unstable with violently changing noises. The energy distribution of the vignetting
is calculated by the response ratio of the corresponding points. The response ratio can be
calculated according to Formula (1):

Ei =
∑H

j=1 DN(L,i,j)

∑H
j=1 DN(R,i,j)

, (1)

where Ei is the energy ratio of the ith corresponding point of vignetting. H is the image
height. DN(L,i,j) and DN(R,i,j) are the corresponding points. DN(L,i,j) is the ith pixel of the
vignetting of the left sensor. DN(R,i,j) is the ith pixel of the vignetting of the right sensor.
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Figure 2. Vignetting image: (a) raw image; (b) corrected image.

The energy stability of vignetting can be calculated using the response ratio standard
deviation of the corresponding points in different scenes. The formula for the calculation is
as follows:

ESTDi =

√√√√∑N
n=1

(
E(i,n) − Ei

)2

N
, (2)

where ESTDi is the energy stability and E(i,n) is the energy ratio of the ith corresponding
point in the nth image. Ei is the mean of the ith corresponding point energy ratio. N is the
number of scenes.

The Jilin-1 GF03D28 satellite captured 56 images at (83.517◦E, 43.557◦N) for 130 s at
2:56:42 Beijing time, 1 April 2023. There are only 4 typical object features among them, such
as mountain, city, farmland, and cloud, which is a sample that is shown in Figure 3. The
number of sensors in the Jilin-1 GF03D satellite is 3, and the width of the vignetting in
each sensor is about 400 pixels. The energy ratio and the energy stability of each pixel of
vignetting are calculated using the data. The number of curves is 56, and they all come
from the above data. The energy stability of each corresponding point is not consistent, as
shown in Figure 4. In addition, due to the extremely low response at the edge of vignetting,
the energy ratio is extremely high. To make the energy ratio and energy standard deviation
of the corresponding points in the figure clearer, this paper only selects 200 pixels in the
middle of vignetting as samples for plotting.

Figure 3. Object features: (a) mountain; (b) city; (c) farmland; (d) cloud.

The energy stability of the corresponding points at the center of vignetting is better than
others, and the edge corresponding point is poor. The energy stability of each corresponding
point is also inconsistent. This indicates that the energy stability is affected by the noise
of the sensors, and each pixel of vignetting has independent noise; the noise also changes
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with the imaging time. This change has affected the stability of the pixel and made relative
radiometric correction difficult.

Figure 4. Energy ratio and energy standard deviation of the corresponding points of 56 images
in 130 s. (a) Energy ratio of the corresponding points of vignetting; (b) energy stability of each
corresponding point of vignetting.

Due to the design of the optical system for the optical splicing of remote sensing
satellites, the pixels near the edge of the sensor obtain low response and a poor signal-
to-noise ratio [32]. The corresponding points closest to the center of the vignetting of the
two sensors have the highest signal-to-noise ratio, and the effect of noise is minimal. The
energy ratio can be calculated by every pixel in every scene. The position of the pixel with
the closest energy ratio of 1 is the corresponding point with the closest 50% energy in each
scene. So, the position of the corresponding points with the closest 50% energy also can
prove the fluctuation of the noise of vignetting, which is shown in Figure 5. It can be seen
that the position changes with the imaging time. The maximum deviation of the positions
is 3 pixels.

Figure 5. Position of the corresponding points with the closest 50% energy.

In summary, the method proves that the fluctuation of the noise of the sensors affects
energy stability. The imaging method of the Jilin-1 GF03D satellites is Push–Broom, and
the columnar response of the image is generated from the same pixel, so it has the same
characteristics of response and is not related to the object features. According to the position
of the corresponding points with the closest 50% energy, the position changes with the
scene number, and the change in scene number represents the change in imaging time. In
addition, the energy ratio and energy standard deviation of each corresponding point are
not consistent. So, the noise of each pixel is independent and changes with the imaging
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time. It limits the validity of the relative radiometric correction of vignetting. For this
reason, this paper will analyze the response of the noise of vignetting using the DDSN of
the Jilin-1 GF03D satellite.

2.2. Data on the Deep Sea during Nighttime (DDSN)

To obtain the noise of vignetting, we used the Jilin-1 GF03D12 satellite to image the
DDSN of the Earth at 6:10:55 Beijing time on 15 February 2023, with the imaging center
point at (3.6914◦E, 3.988◦N). The parameters of the satellite are shown in Table 1. PAN
is the panchromatic band, MSS1 is the blue band, MSS2 is the green band, MSS3 is the
red band, and MSS4 is the near-infrared band. The integration level and gain are the
imaging parameters of the sensor. The sensor increases the energy obtained and amplifies
the response by adjusting them. We use different imaging parameters based on different
imaging conditions to obtain a better response image.

Table 1. Parameters of the sensor imaging DDSN.

Band Integral Level Gain Scenes

PAN 64 2

12
MSS1 16 2
MSS2 12 2
MSS3 8 3
MSS4 8 4

To avoid the impact of clouds and sea waves on the validity of the data, we used the
column means of each pixel to test the effectiveness. Formula (3) is as follows:

DN(i,m) =
∑n

j=0 DN(i,j,m)

n
, (3)

where DN(i,m) is the column mean of the ith pixel in the mth scene, and n is the scene
height, DN(i,j,m) is the response of jth row in the ith column of the mth scene.

Both valid and invalid data, the latter caused by sea waves, are presented in Figure 6.
Ideally, as shown in Figure 6a, while each pixel’s response may vary, the differences
between adjacent pixels should be stable and exhibit minimal fluctuations. Contrary to
this expectation, Figure 6b demonstrates that adjacent pixels have significantly different
responses and show considerable fluctuations.

Figure 6. The column mean of the DDSN: (a) valid image, the response difference of each pixel
between scenes is stable and fluctuates less; (b) invalid image, the response difference of each pixel
between scenes is significant and fluctuates more.
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2.3. The Noise Drift Model for Vignetting

We segregate vignetting into “Stable Area” and “Changing Area” based on the DDSN
response difference of pixels between each scene. Pixels with a difference of less than 1 DN
are allocated to the “Stable Area”, while others are designated to the “Changing Area”. As
shown in Figure 7, the response changes of each pixel in the changing area are significant,
exhibiting inconsistent noise characteristics, whereas the response changes in the stable
area are minimal, exhibiting consistent noise characteristics.

Figure 7. Vignetting division: (a) vignetting division method; (b) changing Area; (c) stable Area.

Six pixels from both stable and changing areas are randomly selected to explore the
characteristics of noise. The fluctuation of noise is shown in Figure 8. Each curve in the
changing and stable area represents the column mean of each pixel. The change in noise
in the changing area is significant, and each curve shows a basic linear trend, as shown in
Figure 8a. The change in noise in the stable area is small and irregular, as shown in Figure 8b.
Due to the response in the DDSN representing the noise of each pixel, we correlate the
response with the imaging time, and then we sort the images using the imaging time. The
first scene is the earliest imaged image, and the last scene is the latest imaged image, and
we find that each pixel basically has a linear characteristic based on Figure 8. The valid
images are selected by relying on the rules shown in Figure 6 and Formula (3). So, the
noise characteristics of each pixel of vignetting is not consistent. It leads to a decrease in
the stability of the effective response, which also proves the conclusion of the vignetting
stability analysis method.

Figure 8. Response of each pixel. (a) Changing Area. (b) Stable Area.
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We build a noise drift model for vignetting using the DDSN of the Jilin-1 GF03D
satellite. The noise of each pixel is calculated by the mean of each pixel of vignetting.
Formula (4) as follows:

BNi =
∑H

j=0 DN(i,j)

H
, (4)

where DN(i,j) is the response of the jth row and ith pixel of vignetting. H is the total rows
of each scene of the DDSN.

The noise drift changes with the imaging time, so it can be calculated by the difference
between the mean of the noise and real-time noise. Formula (5) is as follows:

ND(i,m) = DN(i,m) − BNi, (5)

where ND(i,m) is the noise drift of the ith pixel and DN(i,m) is the column mean of the ith
pixel in the mth scene.

The coefficient of the noise drift model for vignetting can be calculated by the imaging
time and noise drift. The imaging time is calculated by Formula (6):

∆T = Ti+1 − Ti, (6)

where ∆T is the imaging time between the ith scene and (i + 1)th scene. Ti is the imaging
time of the middle row of the ith scene data. We linearly fit the noise drift and the imaging
time in Formula (7):

f (ki, bi) = pro f it(NDi, ∆Ti, M), (7)

where f (ki, bi) is the coefficient of the noise drift of the ith pixel. M is the total amount of
scenes. pro f it is the linear least-squares method. We can use the auxiliary data recorded in
real-time imaging by the satellite to obtain the imaging time corresponding to the image of
each pixel. The coefficient consists of gain and offset, which is ki and bi. We use ki (gain) to
describe the noise drift by the imaging time and use bi (offset) to describe the bottom noise
of each pixel. The gain and offset of the coefficient of the noise drift are shown in Figure 9.

Figure 9. Coefficients of each pixel: (a) gain; (b) offset.

We use the goodness of fit to evaluate the effectiveness of the coefficients in Formula (8):

R2 =
∑n

i=1 (ŷi − y)2

∑n
i=1(yi − y)2 (8)

where R2 is the goodness of fit. n is the total number of fitting data. ŷi is the ith calculation
result after fitting. y is the mean of the fitting data. The goodness of fit of the stable and
changing area is shown in Figure 10. The average of the goodness of fit in the changing area
is higher than the stable area. The validity of the model is proved by the high goodness
of fit.
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Although the goodness of fit is lower in the stable area, the gain is a minimum. The
differences in the offset of each pixel are also relatively consistent, and the imaging time is
gradual. We considered that the goodness of fit would not have a significant impact on
the noise of the stable area. So, we did not distinguish between stable and changing areas
and used the coefficient to correct the data uniformly. The coefficients are used to eliminate
the noise of the vignetting, which can improve the stability of vignetting and effectively
improve the relative radiometric correction effect of images.

Figure 10. Goodness of fit: (a) changing area; (b) stable area.

2.4. The Relative Radiometric Correction Method

We first obtain the noise drift using the DDSN of the Jilin-1 GF03D satellite. Secondly,
we build the noise drift model for vignetting and calculate the coefficient to eliminate
vignetting noise and the impact of noise changes on images. Thirdly, we add the response
of the corresponding points of vignetting. Finally, we use histogram matching to complete
a relative radiometric correction method. The method is as follows.

Step One: Calculate the noise drift of each pixel of vignetting using Formula (9):

N(i,j) = ki ∗ Tj + bi, (9)

where N(i,j) is the noise of the jth row and ith pixel. Tj is the imaging time between the
jth and 1st row images. The valid response of each pixel of vignetting is calculated using
Formula (10):

DN′(i,j) = DN(i,j) − N(i,j), (10)

where DN′(i,j) is the response of the jth row and ith pixel after the noise drift model for
vignetting. DN(i,j) is the original response of the jth row and ith pixel.

Step Two: Add the response of the corresponding points of vignetting, which is
corrected by the noise drift model for vignetting in Formula (11):

DN′′
(i,j) = DN′(L,i,j) + DN′(R,i,j), (11)

where DN′′
(i,j) is the response of the jth row and ith pixel after adding the response of the

corresponding point. DN′(L,i,j) and DN′(R,i,j) are the corresponding points.
Step Three: The histogram matching method is used for the relative radiometric

calibration to generate a histogram lookup table, as shown in Figure 11. The horizontal
coordinates are the pixel numbers, and the horizontal coordinates are the gray scales.

Step Four: The relative radiometric correction method is completed using the his-
togram lookup table.

2.5. Accuracy Assessment Index

The root-mean-square deviation of the mean line (RA) [31] and streaking metrics
(SMs) [32] are used to evaluate the results of relative radiometric correction, and the root-
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mean-square of vignetting and non-vignetting (RSVN) is used to evaluate the consistency
between vignetting and non-vignetting. The CAM is used to evaluate the results of the
relative radiometric correction of multi-spectral data.

Figure 11. Histogram lookup table. The DN of the 4th pixel is 6, and the corrected DN is f (4, 6) = 23.

2.5.1. Root-Mean-Square Deviation of the Mean Line (RA)

The imaging method of the Jilin-1 GF03D satellites is Push–Broom, and the columnar
response of the image is generated from the same pixel, so it has the same characteristics
of response. The accuracy of the relative radiometric correction is influenced by the noise
present in each pixel. In the same uniform scene, a lower RA value, indicating higher
image uniformity, also implies higher relative radiometric correction accuracy, signifying
effective noise elimination. This relationship underpins the utilization of RA as an indicator
of relative radiometric correction accuracy in our analysis. RA can evaluate the relative
radiometric accuracy, which is shown in Formula (12):

RA =

√
∑n(meani−mean)2

n
mean

∗ 100%, (12)

where mean is the mean for the image, meani is the column mean of ith pixel, and n is the
width of the image.

2.5.2. Streaking Metrics (SMs)

The verified images are evenly divided into small image blocks. The size of every block
is 400 × 400, and the selected area is in vignetting. SMs are used to detect the uniformity of
blocks, which is shown in Formula (13):

SMi =
∑n

j=1
|meani−mean|
meani+mean

n
∗ 100%, (13)

where meani is the mean of the jth column mean of the image block, mean is the mean of
the image block, and n is the width of the image block. The lower the streaking metrics are,
the more uniform the image is.

2.5.3. Root-Mean-Square of Vignetting and Non-Vignetting (RSVN)

The object features of adjacent pixels should be similar. This paper uses RSVN to
evaluate the consistency of response between vignetting and non-vignetting in uniform
images. It is shown in Formula (14):

RSVN =

√
∑H

i=0 ∑W
j=0 (DNV (i,j) − DNnV (i,j))

2

W ∗ H
, (14)
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where W is the image width, H is the image height, and DNV (i,j) is the response of the jth
row and ith pixel of vignetting. DNnV (i,j) is the response of the jth row and ith pixel in
non-vignetting. RSVN should be calculated by the corrected image. The smaller RSVN, the
higher the accuracy of the response between vignetting and the non-vignetting.

2.5.4. Color Aberration Metrics (CAMs)

We propose CAMs to evaluate the multi-spectral images after relative radiometric
correction. The CAM is used to measure the uniformity of the column response of multi-
spectral data. First, histogram equalization is used by multi-spectral data. Then, convert the
image to LAB color space. Finally, the CAM is calculated by the difference of the column
mean in the LAB color space. It is shown in Formulas (15) and (16):

Labi =
meani+1 −meani

meanmax
, (15)

CAM =
∑W

i=0
|Labi−Lab|

Labmax

W
∗ 10, 000, (16)

where Labi is the relative column mean of the ith pixel in LAB color space. meani is the
column mean of the ith pixel in the LAB color space. meanmax is the maximal value of the
image. Lab is the average of the relative column mean. Labmax is the maximal value of the
relative column mean in the image. W is the image width. The experiments show that there
is no chromatic aberration in multi-spectral images when CAMs are greater than 600; the
results are shown in Figure 12.

Figure 12. CAM results. The CAM of the first row of images is all greater than 600, which is good
without color aberration. The CAM of the second row of images is all below 600, which shows
significant color aberration.
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3. Results
Experiment Setup

First, we use the sample from Section 2.1 to analyze the effectiveness of the vignetting
stability analysis method. Second, 1031 imaging tasks and 15,927 images from the Jilin-1
GF03D28 satellite are used to validate the generality of the method. Third, the coefficient
of the noise drift model for vignetting is calculated by the DDSN of 16 satellites of Jilin-1
GF03D. Fourth, five types of object features (water, deserts, cities, vegetation, and snow)
are used as the visible sample set to compare the results of the methods, and three types
of object features (water, vegetation, and desert) are used as a quantitative sample set to
compare with relative radiometric correction methods. Finally, 56,843 images from the
16 satellites of Jilin-1 GF03D were used to prove the generality of the proposed method.

4. Discussion
4.1. Evaluation of the Stability of Vignetting

The evaluation of vignetting stability constitutes a critical aspect of this research. In
this section, experiments are designed to validate the effectiveness and generality of the
proposed noise drift model for vignetting.

Initially, an experiment is designed to validate the effectiveness, employing the sample
set elucidated in Section 2.1. As depicted in Figure 13, upon the application of the noise
drift model for vignetting, a significant enhancement in the response stability of each pixel
is observed, with an average of 51.50%. Moreover, the maximum deviation is optimized
from three pixels to one pixel.

Figure 13. Evaluation of the vignetting stability analysis method using 56 images from Section 2.1.
(a) Energy ratio before correction. (b) Energy ratio after correction using the noise drift model.
(c) Response stability improvement for each corresponding point in the vignetting area, which shows
an average of 51.50%. (d) Position before correction, with a maximum deviation of three pixels.
(e) Position after correction, with a maximum deviation reduced to one pixel.
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Furthermore, an experiment is designed to validate the generality of the method.
Figure 14 presents a comparative experiment of vignetting stability analysis using a dataset
comprising 15,927 images captured during 1031 imaging tasks by the Jilin-1 GF03D28
satellite from 1 February 2023 to 8 April 2023. It is imperative to emphasize that the images
analyzed represent standard Push–Broom data, not the DDSN images. The results indicate
that on one hand, the range of improvement in the energy standard deviation is an average
of 37.64%. On the other hand, the maximum deviation is optimized from eight pixels to
four pixels. These findings validate the generality of the noise drift model for vignetting
correction across various imaging conditions and further verify its effectiveness.

Figure 14. Evaluation of the vignetting stability analysis method using 15,927 images from
1031 imaging tasks by the Jilin-1 GF03D28 satellite (1 February 2023–8 April 2023)—non-DDSN
data. (a) Energy ratio before correction. (b) Energy ratio after correction using the noise drift model.
(c) Response stability improvement for each corresponding point in the vignetting, which shows
an average of 37.64%. (d) Position before correction, with a maximum deviation of eight pixels.
(e) Position after correction, with a maximum deviation reduced to four pixels.

4.2. Evaluation of Relative Radiometric Correction

We used the DDSN of 16 satellites of Jilin-1 GF03D as the calibration set to calculate
the coefficient of the noise drift model for vignetting. The information is shown in Table 2.
The minimum goodness of fit is shown in column 6, which is all higher than 0.95. The
above results prove the effectiveness and generality of the noise drift model for vignetting.

In this paper, histogram matching and correction of vignetting and chromatic aberra-
tion of multiple CCDs [31] are compared with the proposed method. Five types of object
features (water, vegetation, cities, deserts, and snow) from Jilin-1 GF03D12, which are
panchromatic bands with sizes of 800 × 600, are used to evaluate the results of the relative
radiometric methods. The original and corrected images are shown in Figures 15–19.
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Table 2. Information of the DDSN set of the Jilin-1 GF03D satellites.

Satellite Imaging Time Longitude Latitude Scene Minimum
Goodness of Fit

JL1GF03D01 2023-01-17 −17.9957 10.3161 13 0.9984
JL1GF03D03 2023-01-17 49.1638 29.1192 12 0.9962
JL1GF03D05 2023-01-13 96.9982 15.8312 12 0.9975
JL1GF03D07 2023-01-17 50.2294 28.0700 13 0.9972
JL1GF03D11 2022-11-28 40.122 17.9956 13 0.9971
JL1GF03D12 2022-11-17 5.9106 42.3907 13 0.9976
JL1GF03D13 2022-12-30 34.8815 26.7517 12 0.9915
JL1GF03D14 2023-01-13 35.6616 43.8903 12 0.9870
JL1GF03D15 2023-01-13 40.1879 42.0227 12 0.9972
JL1GF03D16 2023-01-13 11.6455 −27.7515 12 0.9887
JL1GF03D17 2023-01-13 34.8815 26.7517 12 0.9953
JL1GF03D18 2023-01-14 7.1630 42.6434 13 0.9968
JL1GF03D27 2022-12-30 50.2294 28.0700 13 0.9922
JL1GF03D28 2022-12-30 36.8701 43.9123 13 0.9978
JL1GF03D29 2023-01-17 35.8593 25.3234 13 0.9971
JL1GF03D30 2023-01-17 36.8701 43.9123 13 0.9510

Figure 15. Raw and corrected images of the water. (a) Raw image; (b) corrected using histogram
matching; (c) corrected using correction of the vignetting of multiple CCDs; (d) corrected using the
proposed method.

Figure 16. Raw and corrected images of the vegetation. (a) Raw image; (b) corrected using histogram
matching; (c) corrected using correction of the vignetting of multiple CCDs; (d) corrected using the
proposed method.

Figure 17. Raw and corrected images of the city. (a) Raw image; (b) corrected using histogram
matching; (c) corrected using correction of the vignetting of multiple CCDs; (d) corrected using the
proposed method.
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Figure 18. Raw and corrected images of the desert. (a) Raw image; (b) corrected using histogram
matching; (c) corrected using correction of the vignetting of multiple CCDs; (d) corrected using the
proposed method.

Figure 19. Raw and corrected images of the snow. (a) Raw image; (b) corrected using histogram
matching; (c) corrected using correction of the vignetting of multiple CCDs; (d) corrected using the
proposed method.

The original images of the water and vegetation are shown in Figures 15a and 16a,
and the images corrected by histogram matching are shown in Figures 15b and 16b. It can
be seen that the effect of histogram matching is poor. This is because the method does
not consider the noise of vignetting, and it would bring in the noise of another sensor
when adding the response of the corresponding points. Because of the low response of
the two object features, the difference between vignetting and non-vignetting is significant.
The results of vignetting and the chromatic aberration of multiple CCDs are shown in
Figures 15c and 16c. The right sensor has a good correction effect, and the other sensor
is bad. The stripe in the transition area is between vignetting and non-vignetting. This is
because the method does not consider the noise drift of each pixel of vignetting, and the
response at the edge of the vignetting of the left sensor is extremely low. The method cannot
effectively restore the response at the edge of vignetting. So, the correction effect of this
method is limited. The results of the proposed method are shown in Figures 15d and 16d
and are better than the other two methods. The response of vignetting is consistent, and
there is no difference between vignetting and non-vignetting. This is because we eliminate
the noise drift of vignetting, which improves the stability of the pixels so that histogram
matching has a better effect.

The original image corrected by histogram matching, the correction of vignetting,
the chromatic aberration of multiple CCDs, and the proposed method are shown in
Figure 17a–d. All three methods achieved good visual effects, and RA, SM, and RSVN are
close. This is because the response of the city is high, the proportion of noise is relatively
low, and the surface feature of the city is complex. The original images of the desert and
snow are shown in Figures 18a and 19a. The images corrected by histogram matching are
shown in Figures 18b and 19b. Histogram matching does not solve the problem of pixel
response stability, and the effect of two object features is better than water, but there are
still significant response differences and stripes between vignetting and non-vignetting.
The results of vignetting and the chromatic aberration of multiple CCDs are shown in
Figures 18c and 19c. The response difference in the right sensor is low, and the left sensor
is high. This is because the distribution of vignetting in the two sensors of the Jilin-1 GF03D
satellite is not the same. The left sensor is larger, and the right is smaller. So, the energy
loss of the left sensor is larger than the right one. So, the method is unable to effectively
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restore the response of the left sensor. The results of the proposed method are shown in
Figures 18d and 19d. The proposed method eliminates the noise drift of vignetting without
losing image details. So, we achieved good correction results with a high response and
effectively restored the response of object features of vignetting.

We select 10 image blocks, each measuring 400 × 400 pixels, from 15,927 images
captured during 1,031 imaging tasks by the Jilin-1 GF03D28 satellite. These blocks are
utilized to evaluate the effectiveness of the methods, and the results are shown in Table 3
and Figure 20. The mean values of RA, SM, and RSVN presented in Table 3 represent the
average metrics across these 10 image blocks. The RA values of water, vegetation, and
desert are 0.2652%, 1.3231%, and 0.9044%, respectively, the streaking metric values are all
less than 3%, and the RSVN values obtained using the proposed method are 1.3147, 5.0059,
and 5.5105, which are significantly lower than the other methods. Lower RA and SM prove
better texture uniformity, while lower RSVN proves better response consistency between
vignetting and non-vignetting.

Table 3. Comparison of the accuracy assessment index for the relative radiometric correction images
by a quantitative sample set.

Object Features Block Methods RA (%) SM (%) RSVN

Water 10
Histogram matching 2.2636 1.2905 2.6082

Correction of the vignetting of multiple CCDs 0.8645 1.2643 2.5420
Proposed method 0.2652 1.1254 1.3147

Vegetation 10
Histogram matching 2.3512 3.0824 5.3877

Correction of the vignetting of multiple CCDs 1.4788 2.7696 5.3306
Proposed method 1.3231 2.6626 5.0059

Desert 10
Histogram matching 2.2443 1.2386 7.1620

Correction of the vignetting of multiple CCDs 0.9444 1.1832 5.7892
Proposed method 0.9044 1.1671 5.5105

In summary, the proposed method can eliminate noise drift and improve the stability
of the response of vignetting. Good correction results were achieved in low, medium, and
high responses, and the difference between vignetting and non-vignetting was eliminated,
which was better than the other methods.

4.3. Evaluation of Generality

This paper uses the CAM, which is based on multi-spectral data, to evaluate the
generality of the proposed method. We selected 30 global targets of the Jilin-1 GF03D
satellite randomly, which included mountains, water, deserts, etc. The results are shown in
Table 4. Because of vignetting, the CAM of the raw image is extremely low. The CAM of
histogram matching is relatively high, but it is basically still less than 600, which represents
that there is still a stripe in the images. The CAM of the proposed method is higher than
raw and histogram matching, which indicates that it eliminates the noise and noise drift in
multi-spectral data. Also, this proves that it has good generality in full dynamic response
intervals and multiple object features.

The CAM results are all greater than 600 in 9 types of object features. The results
indicate that the proposed method achieved a good effect in both panchromatic and multi-
spectral data and also prove that good relative radiometric correction effects have been
achieved within the multiple object features and full dynamic response range.
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Figure 20. RA, SM, and RSVN: (a) water; (b) vegetation; (c) desert.

Table 4. Results of the CAM of global targets.

Object Feature Target Number Mean of Raw (CAM) Mean of Histogram
Matching (CAM)

Mean of Proposed
Method (CAM)

Mountain 3 118 504 1038
Water 7 77 353 901
Desert 2 55 486 820
Cloud 2 55 208 789

Farmland 5 64 451 917
Bare Soil 4 60 291 968

City 2 69 365 912
Vegetation 4 66 399 996

Snow 1 51 513 883

We use 56,843 images from 16 satellites in the Jilin-1 GF03D series satellites for statistics
and evaluation. Compared with histogram matching, the proposed method has improved
the quality of the corrected radiometric products of each satellite, as shown in Table 5. The
lowest is the Jilin-1 GF03D16 satellite, with an increased rate of 11.96%, and the highest
is the Jilin-1 GF03D29 satellite, with an increased rate of 19.67%. The average increasing
rate is 15.97% for the 16 satellites. The generality of the proposed method for the multiple
object features and full dynamic response range is verified by massive data.
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Table 5. Comparison of accuracy assessment index for the relative radiometric correction images by
massive data.

Satellite Scene Number
Histogram

Matching (%)
(CAM ≥ 600)

Proposed
Method (%)

(CAM ≥ 600)

Improvement
Ratio (%)

JL1GF03D01 3331 75.36 91.10 15.74
JL1GF03D03 5686 74.30 93.42 19.12
JL1GF03D05 3058 78.67 92.42 13.75
JL1GF03D07 4529 78.12 90.78 12.66
JL1GF03D11 732 73.58 90.75 17.18
JL1GF03D12 5729 75.31 88.62 13.31
JL1GF03D13 826 81.59 96.80 15.21
JL1GF03D14 3516 76.43 93.25 16.82
JL1GF03D15 3536 81.83 98.03 16.20
JL1GF03D16 2477 81.14 93.09 11.96
JL1GF03D17 3459 73.42 91.62 18.20
JL1GF03D18 3109 81.39 97.55 16.16
JL1GF03D27 2959 74.16 88.52 14.36
JL1GF03D28 3536 77.18 92.78 15.61
JL1GF03D29 6607 78.20 97.87 19.67
JL1GF03D30 3753 74.62 94.13 19.51

5. Conclusions

This paper proposes a relative radiometric correction method for vignetting optical
splicing satellites. First, a vignetting stability analysis method based on the energy dis-
tribution of corresponding points was proposed, which proved that the instability of the
vignetting response came from vignetting noise. Second, we used 16 Jilin-1 GF03D satellites
to obtain vignetting noise data. Third, eliminate noise through the DDSN and establish
a noise drift model for vignetting. Finally, automatic relative radiometric correction was
completed using histogram matching. The experimental results are as follows:

(1) A total of 1031 imaging tasks and 15,927 images of the JL1GF03D28 satellite were used
to verify the effectiveness of the noise drift model for vignetting. The response stability
was improved by 37.64% in the experiments. Moreover, the maximum deviation of
the positions of the corresponding points closest to 50% energy was optimized from
eight pixels to four pixels.

(2) Three types of object features were used to verify the effect of the proposed method.
The RA values of water, vegetation, and desert were 0.27%, 1.32%, and 0.90%, respec-
tively, the streaking metric values were all less than 3%, and the RSVN values obtained
using the proposed method were 1.31, 5.01, and 5.51, which were significantly lower
than the existing methods.

(3) A total of 56,843 images from 16 Jilin-1 GF03D satellites were used to verify the
generality of the proposed method. The CAM results of the experiments show that
the average rate is about 93.17%, and the average increasing rate is 15.97%.

To sum up, the proposed method can effectively solve the problem of relative radio-
metric correction of the vignetting of optical splicing remote sensing satellites. It eliminates
the noise and noise drift and improves the stability of the pixels of vignetting. Good relative
radiometric correction results were achieved in massive data, full dynamic intervals, and
complex object features.
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