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Abstract: Object detection algorithms based on convolutional neural networks (CNNs) have achieved
remarkable success in remote sensing images (RSIs), such as aircraft and ship detection, which play a
vital role in military and civilian fields. However, CNNs are fragile and can be easily fooled. There
have been a series of studies on adversarial attacks for image classification in RSIs. However, the
existing gradient attack algorithms designed for classification cannot achieve excellent performance
when directly applied to object detection, which is an essential task in RSI understanding. Although
we can find some works on adversarial attacks for object detection, they are weak in concealment
and easily detected by the naked eye. To handle these problems, we propose a target camouflage
network for object detection in RSIs, called CamoNet, to deceive CNN-based detectors by adding
imperceptible perturbation to the image. In addition, we propose a detection space initialization
strategy to maximize the diversity in the detector’s outputs among the generated samples. It can
enhance the performance of the gradient attack algorithms in the object detection task. Moreover,
a key pixel distillation module is employed, which can further reduce the modified pixels without
weakening the concealment effect. Compared with several of the most advanced adversarial attacks,
the proposed attack has advantages in terms of both peak signal-to-noise ratio (PSNR) and attack
success rate. The transferability of the proposed target camouflage network is evaluated on three
dominant detection algorithms (RetinaNet, Faster R-CNN, and RTMDet) with two commonly used
remote sensing datasets (i.e., DOTA and DIOR).

Keywords: remote sensing; deep learning; object detection; adversarial attacks; CNN; target camouflage

1. Introduction

With the substantial progress of remote sensing technology, the automatic interpreta-
tion of remote sensing images (RSIs) has significantly improved [1,2]. Higher resolution
and large-scale data give impetus to the development of RSI interpretation systems in scene
classification [3,4], object detection [5,6], and semantic segmentation [7–11]. Automated RSI
interpretation with robustness and high accuracy can lead to significant economic benefits.
Object detection performance, which is the cornerstone of the RSI interpretation system, is
especially crucial. With the development of deep learning theory and computer hardware
technology, especially the success of convolutional neural networks (CNNs), significant
breakthroughs have been made in object detection [12,13]. Intuitively, many excellent
detection algorithms [14,15] have been introduced to the RSI interpretation system. These
RSI detection models outperform traditional detectors in terms of accuracy and efficiency,
which is inseparable from CNN’s excellent feature extraction capabilities.

However, many CNN-based models exhibit a lack of stability with regard to specially
designed “small” perturbations to the signal input space [16]. These “small” disturbances
keep the signal content perceived by humans unchanged while causing fundamental
changes in the output of the CNN-based model. The CNN-based model has poor resistance
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to these specially designed disturbances and is fragile. Images containing such disturbances
are usually referred to as adversarial examples. The concept of adversarial examples was
introduced in the field of image classification by Szegedy et al. [17]. In recent years,
adversarial samples for classification tasks have been widely used in RSIs [18,19].

The object detection task is another critical problem in RSI understanding. It com-
bines multitarget localization and multitarget classification problems simultaneously. The
candidate regions generated in the object detection task are more challenging than image
classification alone. Most existing research on adversarial attacks focuses on image classi-
fication problems, while little attention is given to object detectors. The first adversarial
attack model for object detection was proposed by Lu et al. [20], who suggested adding
perturbations to traffic signs and human faces in images to mislead detectors. Then, a series
of studies were conducted on adversarial attacks for object detection.

Nevertheless, most of these adversarial attacks for object detection directly adopt
gradient attacks designed for classification tasks and use random adoption for gradient ini-
tialization [21–23]. This unreasonable approach leads to compromised attack performance.
In fact, the diversity of the input space cannot be directly converted into the diversity of the
output space. If only the input is initialized randomly, the initialization of the output space
cannot be guaranteed to be completely random. Although this has little impact on classifica-
tion tasks, it is crucial for object detection tasks. For object detection, the complexity of the
output space is far greater than image classification. Specifically, the classification output is
a vector representing the probability of each category. In contrast, the detection output is a
high-dimensional tensor containing the target’s location, category, and confidence score.
If the diversity of the detector’s outputs is not maximized, the gradient attack may fall
into the suboptimal solution. This limits the performance of adversarial attack methods in
object detection tasks.

According to the range of modification to the detected target pixels, adversarial attacks
for object detection can generally be classified into global attacks [20,24–27] and patch-
based attacks [28–30]. A global attack modifies the entire image’s pixels when adversarial
examples are generated. Unlike the global attack, the patch-based attack only adds a
perturbation in a specific area of the original image so that the perturbation in this area
can affect the whole image and deceive the detector. Note that the targets in RSIs usually
have different sizes and uneven distributions. Hence, it is difficult for a local perturbation
attack to exert the same effect on all targets. However, the gradient attack algorithms
adopted by these models are all designed for classified tasks and are unsuitable for object
detection tasks.

However, both global attacks and patch-based attacks are easily detected by the naked
eye [31,32]. Global attacks are unsuitable for the RSI’s object detection because the target
only occupies a small area in the RSI [33]. This means the perturbation generated in the
background area usually does not improve the attack effect but may add the perturbed
pixels and weaken the invisibility. For patch-based attacks, humans can easily perceive
attacks due to the large contrast between patch pixels and image pixels, which is not
conducive to the camouflage of targets [34]. These patches usually have a large average
gradient, so some defense measures can even detect the location of the target by detecting
patch-based attacks [35].

To overcome these problems, we propose a target camouflage network based on the
adversarial attack for RSIs, named CamoNet. In the natural world, camouflage is one of the
essential anti-predator defenses that prevent prey from being recognized by predators [36].
Inspired by this, we limit the perturbation to the target itself with a mask and propose a
detection space initialization (DSI) strategy. Moreover, we integrate a key pixel distillation
(KPD) module into CamoNet. It can further reduce the pixels of disturbance while ensuring
the attack effect, making the attack more concealed and imperceptible to the naked eye.

Next we summarize the main contributions of this work as follows:
(i) This paper proposes a target camouflage network based on the adversarial attack

for RSIs, named CamoNet, which provides a new view instead of traditional target cam-
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ouflage. We propose a new initialization strategy, to maximize diversity in the detector’s
outputs among the generated samples. It can boost the performance of the gradient attack
algorithms designed for classification in the object detection task.

(ii) Inspired by the anti-predator defense mechanism in the natural world, the KPD
module is employed for the target camouflage network. It can make the attack more
concealed and imperceptible to the naked eye without weakening the attack effect.

(iii) The experimental results of the DOTA and DIOR datasets validate the effectiveness
of CamoNet. The ablation experiment demonstrates each component’s effectiveness. At
the same time, we further explore the network’s generality and transferability.

The rest of the paper is organized as follows. Related work is introduced in Section 2.
In Section 3, CamoNet is proposed, the validation experiment results of which are shown
in Section 4. Finally, the conclusions are presented in Section 5.

Throughout the paper, matrices, vectors, and scalars are represented by bold uppercase
letters X, bold lowercase letters x, and regular letters x, respectively. Superscripts (·)T

and (·)−1 represent the transpose and inverse, respectively. We use ‖·‖1, ‖·‖2, and ‖·‖p to
denote the `1, `2, and `p norms, respectively.

2. Related Work

In recent years, a batch of excellent work has emerged in the field of remote sensing
object detection. Lu et al. [37] proposed adaptively placing counter patches of different
sizes according to the size of the aircraft, which can effectively improve the success rate of
patch-based attacks on RSIs. Zhang et al. [38] raised a scale factor to generate adversarial
patches that adapt to multiscale objects. Zhang et al. [32] designed an IoU-based objective
function specific for patch attacks, which can push the detected boxes far from the initial
ones. Tang et al. [39] proposed a novel natural weather-style patch attack, which is more
natural and stealthy. Due to the threat posed by adversarial attacks to remote sensing
detectors, Li et al. [40] began researching remote sensing target detectors that are robust to
adversarial attacks.

In summary, their modifications to the algorithm mainly focus on the design of
gradient attack vectors and objective functions. In the following parts of this section, we
first introduce several classical gradient attack methods in the field of adversarial attacks.
Then, we introduce two adversarial attack objective functions designed for object detection
tasks. Finally, we introduce two remote sensing image object detection datasets used in the
experimental part of this article.

2.1. Gradient Attacks

Gradient attacks are input samples formed by intentionally adding subtle pixels to the
data. The disturbed input makes the model give an incorrect output with high confidence.
In this subsection, several representative gradient-based attacks used in the experiments of
this article are briefly shown.

The fast Gradient Notation Method (FGSM) [21] is a gradient-based attack. At the
same time, it is also a non-iterative attack because it computes the gradient only once for
each image. However, FGSM does not match the reality by assuming that DCNN is linear.
The activation functions in DCNN make them not strictly linear.

Given an image I and its true label y, the adversarial example Iadv can be calculated as

Iadv = clip(I + ε sign(∇I J(θ, I, y))) (1)

where∇I J(θ, I, y) calculates the gradients of the loss function J(·) with respect to the input
sample I, sign(·) denotes the sign function, and clip(·) clips the pixel values in the image.
In addition, with different values of ε, we can obtain adversarial examples with different
attack strengths.

For the gradient-based attack, project gradient descent (PGD) [22] can be considered
an iterative version of FGSM. At each iteration, the adversarial example can be updated
as follows:
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Iadv
t+1 = clip

(
Iadv

t + α sign
(
∇Iadv J

(
θ, Iadv

t, y
)))

(2)

where α is the step size. We can obtain adversarial examples with different attack strengths
by setting the parameters α and the iterations of PGD.

MI-FGSM [23] is also an iterative version of FGSM, which applies the idea of momen-
tum to generate adversarial examples. At each iteration, the adversarial example can be
updated as follows:

Gt+1 =µ ·Gt +
∇Iadv

t J
(
θ, Iadv

t, y
)

‖∇Iadv
t J
(
θ, Iadv

t, y
)
‖1

(3)

Iadv
t+1 = clip

(
Iadv

t + α sign(Gt+1)
)

(4)

where G is the accumulated gradient, which is updated by accumulating the velocity vector
in the gradient direction.

2.2. Objective Functions

Object detection’s objective function is more complex than the classification task’s
objective function. Given an RSI I, the object detector first detects a large number of S
proposals B̂(I) = {ô1, ô2, . . . , ôS}, where ôi = (b̂x

i , b̂y
i , b̂W

i , b̂H
i , Ĉi, p̂i) is a proposal centered

at (b̂x
i , b̂y

i ) having a dimension (b̂W
i , b̂H

i ) with a confidence score of Ĉi ∈ [0, 1], and K-
class probabilities p̂i = ( p̂1

i , p̂2
i , . . . , p̂K

i ). Because in actual application scenarios it is often
difficult to obtain the annotations of the attacked image, this paper only studies two
objective functions that do not need the true label y.

DAG (dense adversary generation) [24] was the first model to propose the object-
mislabeling loss in object detection. Its objective function is as follows

Jmislabeling(θ, I) =
S

∑
i=1

(`CE(p̂i, l̂i)− `CE(p̂i, l̂′i)) (5)

where l̂i = arg max(p̂i), which is the predicted label of the ith bounding box. S is the total
number of bounding boxes predicted by the model. `CE(·) is the cross-entropy (CE), and l̂′i
is the wrong label randomly generated for the ith bounding box. The objective function is
designed to narrow the score gap between the correct and wrong labels predicted by the
model. However, this objective function does not consider the attack on regression loss,
resulting in many candidate boxes with incorrect category prediction in the final result.

The object-vanishing loss without labels was first proposed in RPAttack [41]. The
confidence score of each bounding box should be reduced to hide the objects from the
detector. Based on this, the objective function is defined as

Jvanishing(v) = −
1
S

S

∑
i=1

`MSE(Ĉi, 0) (6)

where `MSE(·) is the mean square error (MSE) and Ĉi is the confidence score of the ith
bounding box. Notably, this objective function can achieve the effect of target camouflage.
Since object-vanishing loss is closest to our target camouflage requirements, we use this
loss as the default objective function in the following.

3. Methodology

The proposed CamoNet for RSI target camouflage is introduced in this section, which
mainly consists of two parts. First, we performed the gradient attack on the detector
to obtain a perturbation of the same size as the input image. Then, we eliminated the
meaningless perturbation in the RSI’s background region through postprocessing. The
pipeline of CamoNet is shown in Figure 1. We introduce these two phases in detail in the
following subsections.
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Figure 1. The pipeline of CamoNet.

3.1. Gradient Attack Phase

In the gradient attack stage, the attack, which works well in image classification, is
migrated to the object detection task. The gradient attack can be simply summarized
as calculating the gradient of the objective function for each pixel of the input image of
the model and then adding the gradient to the input image as a disturbance to obtain
an adversarial sample, which can invalidate the model. The attack goal for the object
detection task is to make the detector unable to detect any targets. It should minimize
the confidence of each bounding box because the confidence of a bounding box indicates
whether it contains objects and the degree of accuracy. To achieve the effect of target
camouflage, we choose Jvanishing as our objective function, which is calculated according to
the confidence score of the bounding boxes output by the detector. Attacks in most image
classification tasks can be directly used in CamoNet. The performance of these attacks in
target camouflage is quantitatively analyzed in the experiment section.

As intuitively presented in Figure 2, random initialization in the image space does
not necessarily produce initialization with high diversity as measured in the detection
space. To address this problem, we propose a DSI strategy to maximize diversity in the
detector’s outputs among the generated samples (green points in Figure 2). It can boost
the performance of the gradient attack algorithms designed for classification in the object
detection task. DSI can be incorporated into most adversarial attack methods. One strong
and popular example is the PGD attack, called DSI-PGD.

Image Space Detection Space

Detector

Figure 2. Illustration of the differences between random initialization (yellow points) and DSI (green
points). The black point corresponds to an original image. Perturbations by DSI in the image space
are crafted by maximizing the distance in the detection space of the detector.

Given the direction of diversification wd ∈ RC, the normalized perturbation vector of
DSI can be defined as follows:

vDSI(I, J, wd) =
∇I(wd

ᵀ(θ, I, y))
‖∇I(wd

ᵀ J(θ, I, y))‖2
, (7)

where wd is sampled from the uniform distribution over [−1, 1]C.
In CamoNet, we utilize DSI to generate output-diversified starting points. Given an

original input Iorg and the direction for DSI wd, we try to find a restart point I that is as far
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away from Iorg as possible by maximizing wd
ᵀ(J(θ, I, y))− J(θ, Iorg, y))) via the following

iterative update:

Ik+1 = ProjB(Iorg)
(Ik + ηDSI · sign(vDSI(Ik, J, wd))) (8)

where ProjB(Iorg)
(Iadv) , arg minI′∈B(Iorg)

‖Iadv − I′‖p, B(Iorg) is the set of allowed pertur-
bations and ηDSI is a step size. After some steps of DSI, the PGD attack can restart from
Ik+1 obtained by DSI. One step of ODI costs roughly the same time as one iteration of the
PGD attack.

3.2. Postprocessing Phase

To further reduce the perturbation rate, the network performs a postprocessing op-
eration. First, the network generates a mask according to the bounding box output by
the detection model, which is a matrix with the same shape as the original image. At
the position within the bounding box, the value of the mask matrix is 1, and the value
at the remaining positions is 0. Then, the product of the mask and the gradient map is
used as the initial perturbation applied to the original image. The mask can control the
perturbation around the targets and does not involve the background area. The network
repeats the above gradient attack and postprocessing until it reaches the maximum number
of attack rounds.

The purpose of target camouflage is to deceive the detector and make the intelligent
interpretation system fail. However, if there are many modified pixels in the image, the
attack may be detected by humans. Only when the perturbation rate is as low as possible
can the naked eye be deceived. To further reduce the perturbation rate, we introduced KPD
to extract the most critical pixels. It adaptively filters the unimportant pixels in each patch
according to their mean value and mean square error. The details of KPD are shown in
Figure 3. It can further reduce the pixels of disturbance while ensuring the attack effect,
making the attack more concealed and imperceptible to the naked eye.

Figure 3. The detail of key pixel distillation (KPD) module.

KPD mainly screens and retains disturbances at positions with large gradients by
setting a threshold. The positions that have a large impact on the gradient are the key
positions for generating effective adversarial samples. Retaining the perturbation at key
positions and clearing perturbation at positions that have little influence on the gradient
can achieve the purpose of reducing the perturbation rate while ensuring the attack effect.
Choosing the appropriate threshold is the core of module design. We tried a variety of
threshold selection methods. Compared with using fixed hyperparameters to set the
threshold, adaptively selecting the threshold according to the gradient obtained in each
attack round can make the model more robust and not affect the attack effect due to the
selection of different hyperparameters. We use the mean plus standard deviation as the
threshold. The locations where the gradient is higher than the threshold are selected to
retain the perturbation, and the locations where it is below the threshold are not added
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to the perturbation. The mean value indicates the overall contribution of the gradients of
all locations in the current area to the detection results. Positions with a gradient greater
than the mean are more important, and positions with a gradient less than the mean are
less important. Therefore, the preliminary screening retains the positions with a gradient
greater than the mean. Then the standard deviation is used to further screen the positions
that retain disturbances. The standard deviation indicates the difference in the degree of
influence of the gradient of each position in the current area on the detection results. A high
standard deviation indicates that the gradient distribution of these positions is uneven,
and the importance varies greatly. Most of the contributions to the detection results are
concentrated in a small number of positions with high gradients, so a higher threshold
screening is needed. A low standard deviation indicates that the gradient distribution of
these important positions is relatively average, and the importance of each position is not
very different. That is, the contribution of these positions to the detection results is not very
different. At this time, a lower threshold is used to retain the disturbance of more positions.

To ensure that the gradient attack achieves the best effect, KPD is triggered when the
adversarial example obtained by the gradient attack makes the detection model unable to
detect any target. The detail of the whole algorithm is shown in Algorithm 1.

Algorithm 1 CamoNet and key pixel distillation

Input: Objective function J; an input image I; a perturbation of image ∆; bounding
boxes bboxes; maximum iterations T; warm up iterations W; score threshold t; step α;
direction of diversification wd; normalized perturbation vector vDSI(·); warm up step ηODI;
postprocessing function P(·); iterations to recover the last mask Z.

Output: the adversarial example I
′

1: generate mask M by taking bboxes as the masks.
2: ∆← 0, i← 0, n← 1, izero ← 0, MLast ← None
3: while i < T and n > 0 do
4: I ← I

′

5: if i < W then
6: ∆← ∆− ηODI · sign(∇IvDSI(I, J, wd))
7: else
8: ∆← ∆− α · sign(∇I J)
9: end if

10: ∆← max(0, min(∆, 255))
11: n← number of bounding boxes
12: i← i + 1
13: izero ← izero + 1
14: if n = 0 then
15: MLast ← M
16: M ← P(M)
17: izero ← 0
18: end if
19: if izero = Z and MLast 6= None then
20: M ← MLast
21: izero ← 0
22: end if
23: I′ ← I ⊗ (1−M) + ∆⊗M
24: end while
25: return I

′

3.3. Dataset

DOTA [42] is a large-scale remote sensing dataset for oriented object detection in RSIs,
comprising 15 different object categories. Figure 4 shows the visualization results of the
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DOTA dataset. This dataset contains 2806 multiresolution RSIs obtained from different
optical satellites. In the experiments, the original images in the DOTA dataset are cropped
into 1024× 1024 patches with an overlap of 256 pixels because the original images are of
different and large sizes, which are unsuitable for training the object detector. DIOR [43]
is another large-scale open-source dataset in RSI, which consists of 20 different object
categories. Figure 5 shows the visualization results of the DIOR dataset. This dataset
contains 23,463 aerial images obtained from different sensors and platforms with multiple
resolutions. All the shapes of the images are 800 × 800 pixels. Table 1 shows the specific
details of the two datasets. It is worth mentioning that this paper only uses horizontal
box annotation.

Figure 4. The visualization results of the DOTA dataset.

Figure 5. The visualization results of DIOR dataset.

Table 1. Details of the dataset used in this article.

Dataset Categories Images Instances Image Width Year

DOTA 15 2806 188,282 800∼13,000 2018
DIOR-R 20 23,463 192,512 800 2021

3.4. Evaluation Metrics

We use average precision (AP) to quantitatively evaluate the detection performance.
The detection result is true if the IoU overlap ratio between the ground truth and the
prediction box is greater than 0.5. Otherwise, the prediction box is considered a false
positive. In addition, if multiple prediction boxes overlap with the same ground truth,
only one box with the highest score is considered a true positive, while the other boxes are
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false positives. Precision measures the proportion of true positive detections, and recall
measures the detection coverage of the detector for all the targets to be detected.

P =
Ntp

Npred
, (9)

R =
Ntp

Ntargets
, (10)

where Npred represents the total number of predicted boxes, Ntp is the number of targets
correctly detected, and Ntarget denotes the actual number of targets.

As soon as the threshold of IoU is determined, we can draw the model’s precision–
recall curve (PRC). The AP metric quantitatively evaluates the combined detection perfor-
mance of the detector by calculating the area under the PRC as follows:

AP =
∫ 1

0
P(R)dR. (11)

the higher the AP value is, the better the performance, and vice versa.
For a fair quantitative comparison, PSNR [44] is used for object-vanishing attack

assessment. The evaluation indicator is calculated as follows:

MSE =
1

MN

M

∑
i−1

N

∑
j−1

(x(i, j)− y(i, j))2 (12)

PSNR(dB) = 10 · log10(
MAX2

MSE
), (13)

where x and y are images of size M × N and the corresponding adversarial example,
respectively, and MAX2 is the maximum pixel value of the image. The higher the value of
PSNR, the lower the image noise. In the field of image compression and reconstruction,
it is believed that when PSNR is close to 50, the image error is very small. When PSNR is
between 30 and 50, it is difficult for human eyes to detect the image difference.

4. Experimental Results

In the experiments, ImageNet pretrained weights are used to initialize the backbone.
Most models are trained in 12 periods with a batch size of 2. RTMDet [45] is trained in
36 epochs. This paper uses stochastic gradient descent (SGD) as the default optimizer.
The weight decay and momentum of SGD are 1.0× 10−4 and 0.9, respectively. The initial
learning rate is set to 2.5 × 10−3. The learning rate decays by a factor of 0.1 at 8 and
11 epochs. Our experiments are carried out on an Ubuntu system with one Tesla V100 GPU.

4.1. Objective Function Studies

In this part of the experiment, we use different objective functions to attack the
Faster R-CNN object detectors trained on the DOTA training set and then compare and
evaluate their attack performance on 100 images selected from the DOTA verification
set. Figure 6 provides an illustration to intuitively show the difference between the two
objective functions. The first row show the raw images, the second row is the visualization
of the detection results, and the third row is the heatmaps obtained by AblationCAM. The
vanishing loss eliminates the ability to recognize the target the victim model should have.
The mislabeling loss fools the detector into mislabeling detected objects. It can be seen from
the heatmaps that the model’s attention after the vanishing loss completely disappears so
that the model cannot detect any target. After the mislabeling loss, the model’s attention is
distracted, resulting in many false alarms.
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Figure 6. Attacks with two different objective functions. In the heatmap, red represents a higher
response, while blue represents a lower response. Green indicates a corresponding degree between
red and blue.

The quantitative results are shown in Table 2. It turns out that mislabeling and
vanishing losses drastically reduce the AP of the victim detector. The AP of mislabeling loss
reaches a score of 21.2 (decreased by 69.4%). It is worth noting that the vanishing loss breaks
down the detection capability of the victim detector by reducing AP from 69.3% to 0.6%
(decreased by 99.1%). It also shows that when mislabeling and vanishing loss are applied
simultaneously, the result can be worse than using vanishing loss alone. This is because
the two objective functions are mutually exclusive. Compared with the perfect detection
results under no attack, the vanishing loss removes the victim’s ability to recognize any
object. The mislabeling loss fools the detector into mislabeling detected objects (e.g., a
vehicle as an airplane). Since vanishing loss is more suitable for camouflage and hiding
targets, the following experiments use vanishing loss as the default object function.

Table 2. Comparison of different objective functions on the AP.

Object Functions AP ↓
No Attack 69.3

Mislabeling Loss 21.2
Vanishing Loss 0.6

Vanishing and Mislabeling Loss 20.9

4.2. Gradient Attack Studies

In this part of the experiment, we use different adversarial attack methods to attack
the Faster R-CNN object detectors trained on the DOTA training set and then compare and
evaluate their attack performance on 100 images selected from the DOTA verification set.
Since the object detection attack framework is based on the gradient, these gradient-based
adversarial attack methods widely used in classification tasks can be directly used. The
results are shown in Table 3. PGD and DIS-PGD obviously decrease the AP index. The AP
of PGD reaches a score of 0.6, and the AP of DIS-PGD reaches a score of 0.2. Compared
with PGD, DIS-PGD sacrifices PSNR but has a faster attack speed. However, the PSNR is
high enough to make it difficult for human eyes to detect differences in images. Although
FGSM has a much higher PSNR and attack speed than other methods, its attack success
rate is low. The attack speed of MI-FGSM is the slowest among the four methods. Given
the priority of the attack success rate, DIS-PGD is chosen as the default adversarial attack
method in the following experiments.
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Table 3. Comparison of the PSNR, time cost, and AP of different adversarial attack methods.

Attacks PSNR ↑ Time Cost (s/img) ↓ AP(%) ↓
No Attack - - 69.3

FGSM 57.79 1.5 56.0
MI-FGSM 35.62 23.8 2.4

PGD 46.73 17.9 0.6
DIS-PGD 38.84 16.5 0.2

4.3. Postprocessing Studies

To further improve the success rate of ground target camouflage, the KPD module is
introduced, which can reduce the disturbance rate and make camouflage more difficult
to detect. To explore different postprocessing strategies, the proposed target camouflage
network is applied to the DOTA dataset. The results are shown in Table 4. The entire
bounding box areas are taken as masks when no postprocessing strategy is specified. It has
the highest pixel perturbation rate of 9.2%. When postprocessing operations are performed,
the model selects these critical pixels, and the disturbance rate further decreases. A 3×
mean value (global) means that the model retains pixels larger than the 3×mean value of
all mask pixels. A 3×mean value (box) means the model retains pixels larger than the 3×
mean value of mask pixels of the current bounding box. Therefore, the latter has a higher
time complexity and slower speed than the former. Adaptive indicates that the model
adaptively retains pixels larger than the sum of the mean and mean square error of the
mask pixels of the current bounding box, which has a dynamic threshold. Surprisingly,
although the three strategies reduce the perturbation rate, they do not increase AP, which
means that the attack success rate is not affected.

Table 4. Comparison of different postprocessing strategies on DOTA dataset.

Postprocessing Perturbation (%) ↓ PSNR ↑ Time Cost (s/img) ↓ AP ↓
None 9.2 42.5 10.1 1.1

3×Mean value (global) 3.8 44.3 16.3 1.1
3×Mean value (box) 2.7 44.7 19.1 1.1

Adaptive 5.6 41.7 32.1 1.1

To show the differences between different postprocessing strategies more intuitively,
the enlarged visible results are shown in Figure 7. The PSNR of the 3× mean value (box) is
the highest among the three postprocessing methods, and is 44.7. It is difficult for the naked
eye to find the added disturbance of the 3×mean value (box). Although KPD reduces the
pixel perturbation rate, its disturbance seems more obvious than that without adding a
postprocessing module. It is worth mentioning that these disturbances are so subtle that it
is difficult to find them directly from large RSIs.

None 3x Mean Value (global)

3x Mean Value (box) Adaptive

Figure 7. Visualizing different postprocessing strategies on the DOTA dataset.
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To further verify the generality of the KPD module, the proposed target camouflage
network is also applied to the DIOR datasets. The results are shown in Table 5. We also
visualize the enlarged results on the DIOR dataset in Figure 8 and find that the rules are
consistent with those on the DOTA dataset. The PSNR of the 3× mean value (global) is the
highest among the three postprocessing methods, and is 38.6. It is worth mentioning that
the KPD strategy reduces the perturbation rate and AP, while the 3×mean value strategy
improves AP. This may be because the filter threshold of the 3× mean value strategy is
fixed, and parameters need to be adjusted based on different datasets. However, the filter
threshold of the adaptive strategy is automatically adjusted so it has stronger generality.

Table 5. Comparison of different postprocessing strategies on DIOR dataset.

Postprocessing Perturbation (%) ↓ PSNR ↑ Time Cost (s/img) ↓ AP ↓
None 20.7 34.6 8.1 2.1

3×Mean value (global level) 4.1 38.6 17.1 12.6
3×Mean value (box level) 5.3 38.2 19.6 10.8

Adaptive 11.1 33.2 33.7 1.3

None 3x Mean Value (global) 3x Mean Value (box) Adaptive

Figure 8. Visualizing different postprocessing strategies on the DIOR dataset.

4.4. Image Forensics Studies

As shown in Figure 9 We applied four traditional image forensic techniques [46] to
the attacked images to check if they can detect changes in the image. They include clone
detection, error level analysis, noise analysis, and principal component analysis. The
following is a brief introduction to these four methods:

Clone Detection—The clone detector highlights copied regions within an image.
These can be a good indicator that a picture has been manipulated.

Error Level Analysis—This tool compares the original image to a recompressed ver-
sion. This can make manipulated regions stand out in various ways. For example, they can
be darker or brighter than similar regions that have not been manipulated.

Noise Analysis—This tool is basically a reverse denoising algorithm. Rather than
removing the noise, it removes the rest of the image. It uses a super simple separable
median filter to isolate the noise. It can be useful for identifying manipulations of the image
such as airbrushing, deformations, warping, and perspective-corrected cloning.
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Principal Component Analysis—This tool performs principal component analysis on
the image. This provides a different angle to view the image data, which makes discovering
certain manipulations and details easier.

By comparing the results of the attacked images and the raw images, we found that
the images with the added “small” disturbance only differ from the original images in error
level analysis and noise analysis, but still cannot determine whether the image has been
modified. This indicates that these traditional forensic techniques cannot detect attacks
generated by CamoNet.
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Figure 9. Image forensics.

5. Discussion

In this section, we discuss the transferability of CamoNet. Specifically, we use a target
camouflage network to attack different object detectors trained on the DOTA training set
and then compare and evaluate their attack performance on the full DOTA verification
set. Specifically, the target camouflage network is applied to three dominant detection
algorithms (RetinaNet, Faster R-CNN, and RTMDet) and three backbones (ResNet-50,
swin-t, and CSPNext-t). The results are shown in Table 6. APGap equals APClean minus
APAttack, which can measure the effect of target camouflage. Compared to the clean APClean,
the target camouflage network drastically reduces the attack APAttack of all victim detectors.
For instance, vanishing attacks break down the detection capability of the four detectors:
RetinaNet (ResNet-50), Faster R-CNN (ResNet-50), Faster R-CNN (swin-t), and RTMDet
(CSPNext-t), by reducing their mAP from 60.5%, 66.0%, 68.9%, and 64.4% to 0.7%, 1.1%,
0.5%, and 0.0%, respectively. Faster R-CNN has a faster attack speed and higher PSNR
than RetinaNet. Swin-t has a faster attack speed and lower APAttack than ResNet-50. It is
worth mentioning that the APAttack of RTMDet can reach 0, which means the attack success
rate is 100%. The experimental results show that our method can work on various types of
detectors and verify the generality of the target camouflage network.
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Table 6. Applying the proposed target camouflage network to different detectors on the DOTA dataset.

Detectors Backbone PSNR ↑ Time (s/img) ↓ APClean ↑ APAttack ↓ APGap ↑
RetinaNet [12] r50 36.8 18.7 60.5 0.7 59.8

Faster R-CNN [13] r50 42.5 10.1 66.0 1.1 64.9
Faster R-CNN swin-t [47] 42.3 5.6 68.9 0.5 68.4
RTMDet [45] cspnext-t 38.2 6.7 64.4 0.0 64.4

To study the transferability, we use the adversarial examples generated by the attack
detector to attack different victim detectors. Both victim detectors and attack detectors are
trained on the DOTA training set and evaluated on the DOTA verification set. The results
are shown in Table 7. When the victim detector is the attack detector, which is usually
called a white-box attack in the field of adversarial attack, the effect of target camouflage is
the best. When the victim detector and the attack detector are different, which is usually
called a black-box attack, the ability of target camouflage declines. After the attack of four
different detectors, the minimum value of APGap of the victim detector is 26.4%, 21.7%,
18.5%, and 21.1%, respectively, which means that the target camouflage network does not
completely fail even under the black-box attack.

Table 7. Study of the transferability of the target camouflage network between different detectors.

Attack Detector Victim Detector APClean ↑ APAttack ↓ APGap ↑

RetinaNet

RetinaNet 60.5 0.7 59.8
Faster R-CNN (r50) 66.0 8.7 57.3

Faster R-CNN (swin-t) 68.9 36.8 32.1
RTMDet 64.4 38.0 26.4

Faster R-CNN (r50)

RetinaNet 60.5 19.2 41.3
Faster R-CNN (r50) 66.0 1.1 64.9

Faster R-CNN (swin-t) 68.9 47.2 21.7
RTMDet 64.4 42.5 21.9

Faster R-CNN (swin-t)

RetinaNet 60.5 39.4 21.1
Faster R-CNN (r50) 66.0 43.8 22.2

Faster R-CNN (swin-t) 68.9 0.5 68.4
RTMDet 64.4 45.9 18.5

RTMDet

RetinaNet 60.5 39.4 21.1
Faster R-CNN (r50) 66.0 42.8 23.2

Faster R-CNN (swin-t) 68.9 44.1 24.8
RTMDet 64.4 0.0 64.4

In addition, we study the transferability of different postprocessing strategies on
the DOTA dataset. The results are shown in Table 8. We use the adversarial examples
generated by the Faster R-CNN detector to attack different victim detectors and apply
postprocessing strategies to them. APPost indicates the AP of the victim detector after
the postprocessing strategy is adopted. APGap equals APAttack minus APPost, which can
measure the effectiveness of the postprocessing strategy. Total APGap equals the sum of four
victim detectors’ APGap values, which can measure the transferability of the postprocessing
strategy. The 3× mean value strategies have negative APGap. This means that although
they reduce the perturbation rate, they also weaken the effect of target camouflage. In
contrast, adaptive strategy has a positive APGap. The APGap of RetinaNet, Faster R-CNN
(r50), Faster R-CNN (swin-t), and RTMDet are 1.9%, 0.0%, 1.7%, and 0.9%, respectively. This
means that the KPD strategy reduces the perturbation rate and enhances the transferability
of the target camouflage network.
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Table 8. Study of the transferability of different postprocessing strategies on the DOTA dataset.

Postprocessing Victim Detector APAttack APPost APGap ↓ Total APGap ↑

Mean value

RetinaNet 19.2 24.3 -5.1

-17.0Faster R-CNN (r50) 1.1 1.1 0.0
Faster R-CNN (swin-t) 47.2 52.3 -5.1

(global level) RTMDet 42.5 49.3 -6.8

Mean value

RetinaNet 19.2 22.7 -3.5

-13.0Faster R-CNN (r50) 1.1 1.1 0.0
Faster R-CNN (swin-t) 47.2 51.2 -4.0

(box level) RTMDet 42.5 48.0 -5.5

Adaptive

RetinaNet 19.2 17.3 1.9

4.5Faster R-CNN (r50) 1.1 1.1 0.0
Faster R-CNN (swin-t) 47.2 45.5 1.7

RTMDet 42.5 41.6 0.9

However, CamoNet inevitably has some disadvantages that need to be addressed.
In the gradient attack phase, when using adversarial samples generated by a certain
model to attack other models, the success rate of the attack decreases significantly. In the
postprocessing phase, although adaptive strategies have better mobility, their disturbance
rate is higher than strategies with fixed thresholds. This means that this postprocessing
strategy is more easily visible to the naked eye.

6. Conclusions

In this paper, we provide a new view of target camouflage for objection detection in
RSI. Unlike traditional methods, the new target camouflage occurs after optical imaging.
A novel target camouflage network is proposed, which can successfully hide targets with
only subtle perturbations. We propose a detection space initialization strategy to maximize
diversity in the detector’s outputs among the generated samples, which enhances the
performance of gradient attacks for object detection. We also design a key pixel distillation
module that adaptively filters out unimportant perturbation pixels. It can further reduce the
range of disturbance while ensuring the attack effect, making the attack more concealed and
imperceptible to the naked eye. Our network can be implemented on local storage servers
or edge computing devices with practical application scenarios. The experimental results
on DOTA and DIOR verify the superiority of the proposed target camouflage network.

In future work, we will consider how to design better gradient attack and postprocess-
ing strategies to enable CamoNet to have more extensive application scenarios.
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