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Abstract: Ground deformation poses an imminent threat to urban development. This study uses
the multiscale geographically weighted regression (MGWR) model to investigate the spatial het-
erogeneity in factors influencing ground deformation, thereby elucidating the drivers behind
regional variations in ground deformation patterns. To gain insights into the characteristics of
ground deformation in Zhuhai, China, and its spatial relationship with natural and anthropogenic
features, we initially utilized the small baseline subset interferometric synthetic aperture radar
(SBAS-InSAR) method to collect data on ground deformation and its distribution across the entire
area. Concurrently, remote sensing imagery was used to identify the various mechanisms affect-
ing ground deformation during the same period, including geotectonic conditions, geographic
environment, and human activities. Subsequently, we used the MGWR model to quantitatively
estimate the effects of these driving force factors on ground deformation in Zhuhai. Our findings
reveal significant ground deformation in specific areas, including Baijiao Town (Doumen District),
Hongqi Town (Jinwan District), the Gaolan Port Economic Zone, and the northern part of Hengqin
Town, with peak deformation rates reaching 117 mm/y. Key drivers of ground deformation in
Zhuhai include NDVI, groundwater extraction intensity, and soft soil thickness. The application
of the MGWR model, with an R-sq value of 0.910, outperformed both the global regression model
ordinary least squares (OLS), with an R-sq value of 0.722, and the local regression model geograph-
ically weighted regression (GWR), with an R-sq value of 0.770, in identifying driving forces. This
study can provide valuable insights for government policies aimed at mitigating the disaster risks
associated with urban ground deformation.

Keywords: driving force analysis; urban ground deformation; SBAS-InSAR; MGWR

1. Introduction

In general, ground deformation is mainly a geological phenomenon in which the
ground elevation changes in a certain range under the combined influence of natural factors
and human activities [1–3]. Ground deformation is gradually becoming one of the major
geological hazards in cities and is a prevalent environmental geological problem in the
process of urbanization in various countries [4]. Due to the compaction and consolidation
of impact sediments [5], ground deformation occurs more frequently in densely populated
deltaic areas [6,7]. Uneven deformation of the ground surface has a considerable impact on a
city’s buildings, people’s safety, and the local economy [8]. Owing to its unique geographic
location, where most of the area is below mean sea level [9] and is susceptible to extreme
weather events like typhoons [10], the Pearl River Delta is vulnerable to disasters such
as ground subsidence, flooding, and coastline erosion. Meanwhile, Zhuhai, as a special
economic zone in China, has undergone rapid economic development in recent years,
with increased urban expansion and human engineering activities, such as groundwater
exploitation [11], further damaging the local ecological environment and exacerbating the
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occurrence of ground deformation. Therefore, it is of great practical significance to explore
the characteristics of ground deformation in Zhuhai as well as the rule of change.

Many scholars have been interested in the research of ground deformation
drivers [12,13]. Ground deformation occurs to a considerable extent due to the dynamic
and static perturbation of ground loads, where the protruding strata are dominated
by soft soils or loose clays [14]. The groundwater level is lowered by overexploitation
of groundwater for household, agricultural, and aquaculture purposes, which leads
to ground deformation [15]. At the same time, the production of ground deformation
by different land use types and water use cannot be ignored [16]. The generation of
ground deformation is the result of a variety of factors, including natural factors and
the geotectonic conditions of the region in which it is located. The impact of ground
deformation cannot be ignored, such as fracture tectonics, the thickness of the soft soil
layer, precipitation, stratigraphy, lithology [17–20], and other factors that have a long-
term effect on the occurrence of ground deformation. Most of the ground deformation
mechanisms in previous studies were obtained from field measurements, which can be
limited by cost, spatial coverage, and time.

Remote sensing technology makes it possible to monitor the development of
ground deformation in a timely manner and provides efficient access to data on the
mechanisms at the same time. Synthetic aperture radar interferometry (InSAR), a novel
type of ground observation technology, has been widely used in large-scale ground
deformation detection due to its high monitoring accuracy, wide range, rapidity, and
efficiency [21–24]. Antonio Pepe et al. [25] summarized synthetic aperture radar inter-
ferometry (InSAR) principles and recent developments in multitrack InSAR methods,
emphasizing their importance for monitoring earth surface deformation and geody-
namic phenomena. Alberico Sonnessa et al. [26] used MTInSAR with COSMO-SkyMed
and Sentinel-1 SAR data to investigate surface displacements in Chieuti, Italy, focusing
on evolution, sector characteristics, displacement trends, and deep-seated landslide
mechanisms. David A. Schmidt et al. [27] used SAR data to analyze time-varying
topographic changes in the Santa Clara Valley, California. They identified patterns of
uplift and subsidence and examined the impact of the Silver Creek fault on ground-
water flow. R. Tomás et al. [28] used multi-source SAR imagery to remotely monitor
ground subsidence brought on by overexploitation of aquifers, and Tang et al. [29]
used the Sentinel-1 dataset to analyze the spatial pattern and temporal evolution of
seasonal deformation in the Taiyuan Basin. The accuracy of the ground deformation
results obtained with their use of satellite data could reach a millimeter level. In addi-
tion to accessing ground deformation information, it is equally important to explore
the causes of ground deformation. In general, mechanisms are mostly acquired with
time-consuming and ineffective field surveys [30,31], so these methods might not be
suitable for large-scale driver identification and feature extraction. A useful platform
for gaining access to resources is provided by the development of remote-sensing
images. Umarhadi et al. [32] used decadal Landsat images to obtain land use change in
Indonesia and study its relationship with ground deformation. Rateb et al. [33] used
the Landsat-derived normalized difference vegetation index (NDVI) to estimate the
expansion of agricultural land in the Nile Delta’s perimeter and analyze the influence
factors of regional ground deformation during the same period. Yi et al. [34] used
long-term changes in soil moisture obtained from satellite data to continually monitor
ground subsidence.

There are fewer quantitative analyses of the multiple influences on ground deforma-
tion, where subtle and slow localized deformations are caused by a variety of drivers,
such as urban infrastructure development, regional groundwater exploitation, and soil
changes. Therefore, it is necessary to quantitatively compare the different influences and
analyze their contribution to ground deformation. Based on a quantitative analysis of
each influencing factor’s contribution to ground subsidence using the gradient-boosted
decision tree (GBDT) model, Zhou et al. [15] discovered that a third confined aquifer had a
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greater influence on ground subsidence. Li et al. [35] evaluated the contribution of influ-
encing factors to ground subsidence using Spearman rank correlation coefficient (SRCC)
and extremely random tree (ERT) machine learning methods, and it was found that the
largest contribution to the accumulation of ground subsidence was in the second layer
of the bearing aquifer. Tzampoglou et al. [36] used a three-dimensional finite element
model to determine the degree of influence of factors affecting regional ground deforma-
tion and found that groundwater pumping was the factor that had the greatest influence
on ground deformation. However, previous studies have given less consideration to the
spatial relationship between ground deformation and the influencing factors.

The causes of regional ground deformation are as spatially heterogeneous as the
ground deformation itself, and how to quantitatively analyze the driving factors of
regional ground deformation and consider the spatial relationship between their data
has become an urgent problem to be solved. Fotheringham and Brunsdon et al. [37,38]
proposed the geographically weighted regression (GWR) model, which, unlike global
regression models such as ordinary least squares (OLS), takes into account spatial varia-
tions in a relationship and achieves the prediction of a dependent variable by weighting
different geographical locations. The prediction of the dependent variable is more
accurate after considering the effect of geographic location. The GWR model estimates
a local linear regression for each geographic unit [39], which yields the model’s parame-
ters and the relationships between its many variables and provides an accurate estimate
of the dependent variable. Consequently, some researchers have used the GWR model
in their research on ground deformation mechanisms. Cahalan et al. [40] used the
GWR model to quantify the effect of control factors on sinkhole density. Yu et al. [41]
considered the spatial non-stationarity of influencing factors and introduced the GWR
model to obtain the degree of contribution of each influencing factor to regional ground
subsidence. Although many scholars have used the GWR model to study spatial het-
erogeneity [42–45], the model uses a single bandwidth, which, in the case of multifactor
prediction, is unable to explain the spatially varying scaling parameters of each factor.
By using the back-fitting algorithm (BFA) for model calibration and setting differ-
ent bandwidth structures for various parameter estimates, Fotheringham et al. [46]
proposed multi-scale geographically weighted regression (MGWR), which can bet-
ter predict response variables and solve the geographic multiscale problem to some
extent [47].

Previous studies have examined ground subsidence and its underlying causes in
various regions, but there has been limited quantitative research on ground subsidence and
its drivers in Zhuhai. Sun et al. [48] investigated ground settlement in Zhuhai City and
observed that tectonic cracks and factors like soft soil thickness, groundwater extraction
intensity, and seasonal atmospheric precipitation influenced the distribution and evolution
of ground settlement. Du et al. [11] demonstrated that localized ground subsidence in
Zhuhai is primarily attributed to artificial reclamation areas, agricultural activities, and
aquaculture. Liu et al. [49] identified soft soil consolidation as a major contributor to ground
subsidence in Zhuhai City, particularly within land-use categories such as aquaculture
zones, urban land, and agricultural land. However, prior research on the driving factors of
ground deformation in Zhuhai City has insufficiently considered the spatial heterogeneity
in these factors. This limitation has hindered a comprehensive understanding of ground
deformation patterns and the variations in its driving forces across different regions. Ad-
ditionally, there is a lack of quantitative analysis regarding the degree of influence these
factors have on specific ground deformation events.

In response to the escalating issue of urban ground deformation, comprehending the
present condition and trends in deformation, along with identifying the various causal
mechanisms, constitutes the primary task in preventing and controlling ground deforma-
tion. Using Zhuhai City as a case study, this research applies the multiscale geographically
weighted regression (MGWR) model to delve deeper into the impact of various driving
factors on ground deformation. This approach offers new methods and perspectives for
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addressing ground deformation-related issues. This study aims to establish a crucial
research foundation for managing ground deformation in Zhuhai, thereby supporting
decision-making processes for researchers and government departments involved.

2. Study Area and Data
2.1. Overview of the Study Area

Located south of the Tropic of Cancer (21◦48′–22◦27′N; 113◦03′–114◦19′E), Zhuhai
is an important city in the western portion of the Pearl River Delta and is close to the
Macao Special Administrative Region (Figure 1) [50]. As a result of its subtropical monsoon
climate, it is susceptible to typhoons and thunderstorms and experiences about 1770 mm of
precipitation annually, 76% of which falls between April and August, while the relative
humidity during the rainy season typically exceeds 80%. Due to its special geographic
location, Zhuhai City is susceptible to typhoons, which can easily cause urban flooding,
seawater inundation, and other catastrophes, posing a great threat to buildings and people’s
health and safety. Meanwhile, the majority of the rock in Zhuhai City District is granite
from the Yanshan Period, and the geotechnical properties of this stratum reflect the charac-
teristics of a large natural pore ratio, high water content, high compressibility, etc. Kaolin is
created through weathering and is easily softened when it comes into contact with water.
Ground deformation in Zhuhai has been made worse by urban development, the trans-
portation system, production, and living, which have strengthened the self-consolidation
and compaction processes of soft soil.
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2.2. Data
2.2.1. Sentinel-1 Data

The spatial resolution of the Sentinel-1 image is about 5 m × 20 m
(Range Direction × Azimuth Direction). During data processing, the topographic
phase was removed using a 12.5 m high-precision digital elevation model (DEM) ac-
quired by the ALOS satellite. The precision orbit data corresponding to the imaging
date of the used SAR images were provided by the European Space Agency (ESA),



Remote Sens. 2023, 15, 5155 5 of 24

which were used to make orbit corrections to the images to improve the alignment
and baseline estimation accuracy. The main parameters of the SAR data used for the
experiments are shown in Table 1.

Table 1. Sentinel-1 data information.

SAR Sensors Orbit Band Number of Images

Sentinel-1A IW SLC 11 C-band 48

Timespan Track Direction Polarization Mode Resolution

8 January 2020 to
28 December 2021 Ascending orbit VV-polarization 5 m × 20 m

2.2.2. Impact Factor Data

Ground deformation is the result of a variety of influencing factors [49,51–54]. Based
on the previous research, combined with the spatial and temporal characteristics of ground
deformation, the factors affecting the ground deformation in Zhuhai City were selected.
Impact factor data from the same period as the SAR images were acquired to better explore
the driving factors of ground deformation. To attempt to analyze the driving mechanism
of ground deformation in Zhuhai City from the aspects of geotectonic conditions, human
activities, and geographic environment, 13 indicators were chosen for this study. The time
of data acquisition and its sources for the influence factors of ground deformation in Zhuhai
City used in this study are shown in Table 2.

Table 2. Influencing factors of ground deformation in the study area.

Conditioning Factor Timespan Source Scale

Geotectonic conditions

Elevation 2020–2021 Drone orthophotography 2 m
Slope 2020–2021 Drone orthophotography 2 m

Aspect 2020–2021 Drone orthophotography 2 m

Lithology 2020–2021 Guangdong Zhuhai
Engineering Survey Institute -

Soft soil thickness 2019 Wang Shuang [52] -

Proximity to faults 2020–2021
Calculation based on the

Euclidean distance through
the Zhuhai fault

-

Human Activities

Land use types 2020–2021 Landsat8 30 m

Building density 2020–2021 Obtained by calculating
drone images 200 m

Road network density 2020–2021 Obtained by calculating
drone images 200 m

Groundwater
exploitation intensity 2019 Wang Shuang [52] -

Geographical Environment
NDVI 2020–2021 Sentinel-2 10 m

Soil moisture 2020–2021 Landsat8 30 m
Precipitation 2020–2021 CHIRPS Daily 5400 m

3. Research Method

Multiple data sets and methods were used in this study. At first, the SBAS-InSAR
technique was used to acquire the ground deformation data and spatial distribution of
Zhuhai City. Then, the effects of the influencing factors on ground deformation were
analyzed by building a regression model. Evaluation metrics such as R-sq, AICc, and
residual sum of squares (RSS) were used to validate the MGWR model, and its performance
was compared to that of the OLS and GWR methods. Finally, the model results were used
to conduct a quantitative analysis of the factors that contributed. Figure 2 shows the study
framework for this paper.
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3.1. SBAS-InSAR Technology and Data Processing

In this study, we explored the ground deformation in Zhuhai City using the
SBAS-InSAR technique [55]. The SBAS technique is an improved D-InSAR method that
chooses, from a large amount of SAR data, a suitable combination of simple multi-view
D-InSAR interferograms using a small baseline time and spatial baseline as selection
characteristics and then figures out the average deformation rate and displacement
sequence of the covered area during the imaging period.

For N + 1 SAR images acquired at the same time, according to the principle of small
baseline distance within a set and large baseline distance between sets, the generated M
interferograms satisfy:

N + 1
2
≤ M ≤ N(N + 1)

2
(1)

Assuming that the ith interferometric pair (t1 < t2) consists of the two scenes of SAR
images captured at times t1 and t2, the interferometric phase at a point in this interferometric
radar coordinate system can be expressed as:

δφi(x, y) = φt1(x, y)− φt2(x, y) ≈ δφi( disp ) + δφi( topo ) + δφi( atmo ) + δφi(noi) ≈
4π

λ
[dt1(x, y)− dt2(x, y)] (2)

where δ∅i(disp) is the deformation phase, δ∅i(topo) is the terrain phase, δ∅i(atmo) is the
atmospheric phase, δ∅i(noi) is the noise phase, λ is the radar wavelength, and dt1(x, y) and
dt2(x, y) represent the accumulated deformation variables in the line of sight direction
(LOS) relative to the reference time for t1 and t2.

Assuming that the time when the master image is acquired from the image is denoted
by IE = [IE1 IE2 . . . IEM] and IS = [IS1 IS2 . . . ISM], and the time order of the master image
when it meets the requirement of IEi > ISi for ∀i = 1, . . . , M. Then, for any interferogram,
the corresponding expression is as follows:

δ∅i(x, y) = ∅
(
TIEi

)
−∅

(
TISi

)
i = 1, . . . , M (3)

The set of M equations with N unknowns is expressed in matrix form as follows:

δ∅ = A∅ (4)
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where A is the M × N matrix. For the small baseline set interior, when M ≥ N, the above
equation can be solved using the least squares method; when M < N between the various
subsets, it will produce the rank-loss equation, which can be addressed using the singular
value decomposition (SVD) method to find the minimum number of parameters and,
consequently, obtain the regional deformation variables.

For this research, 48 views of Sentinel-1A images from January 2020 to December
2021 that covered the study area were used. Subsequently, we processed these images
using SARscape software in ENVI 5.3, combining all possible interfering pairs, selecting
the image acquired on 28 September 2020 as the super-master image, and setting the
maximum spatio-temporal baseline to 120 to generate the optimal spatio-temporal baseline
connectivity maps and interfering pair connectivity maps (as shown in Figure 3). At the
same time, the interfering pairs with low coherence were also removed. The development
of interference diagrams, flatness correction, filtering, coherent diagram synthesis, and
phase unwrapping were all parts of the interference process. This study selected the GCP
points using automatic selection during PS-InSAR processing to improve the accuracy of
the results and minimize undue human influence. A digital elevation model with 12.5 m
accuracy was used for terrain phase removal and alignment in the processing; a Goldstein
filter was used to improve the signal-to-noise ratio of the interferogram; the true phase of
the highly coherent pixels was obtained using the minimum cost flow (MCF) algorithm;
the deformation rate in the study area was estimated using a linear model; and the final
deformation rate was obtained by removing the atmospheric phase.
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(the yellow points in the figure represent the master images, while the green points represent the
slave images).

3.2. Spatial Autocorrelation

The first law of geography by Tobler [56] states that “Any element is correlated with
any other element; however, closer elements will have a stronger correlation than farther
ones”. Ground deformation data obtained from SAR images have spatial dependence and
spatial heterogeneity [57], and their correlations can be explored with the analysis of spatial
features such as location and attributes. Spatial autocorrelation refers to the importance or
difference in the variable values within a specified region [58]. There are many methods
for measuring spatial autocorrelation. In this work, the global autocorrelation of ground
deformation was evaluated using Moran’s I index. Its formula is:

I =
n

∑n
i=1 ∑n

j=1 Wij
×

∑n
i=1 ∑n

j=1 Wij(xi − x)
(
xj − x

)
∑n

i=1(xi − x)2 (5)

In the formula, n represents the number of spatial positions, xi and xj are the obser-
vation values of spatial positions i and j, and wij represents the adjacency relationship
between spatial positions i and j. The range of Moran’s I is [−1, 1]. When Moran’s I is
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positive, it indicates a high correlation between adjacent position variables, showing a clear
clustering feature. The data are randomly distributed, and there is no correlation between
the variables when Moran’s I approaches 0. When Moran’s I is negative, it indicates a low
degree of spatial autocorrelation in the data space, showing a discrete feature. In this study,
we conducted spatial autocorrelation analysis to test whether the residuals obtained using
the OLS model exhibit spatial randomness and to assess the suitability of the OLS model
for our study.

3.3. MGWR Model
3.3.1. Model

Ordinary least squares (OLS) is the most well-known method among multivariate
regression methods. It can identify and measure the relationships between one or more
explanatory variables and predict the values of continuous response variables while pro-
viding a global model for analyzing these explanatory variables [59]. However, there is
regional variation among explanatory variables, and relationships among variables may
alter as geographic location changes. As a result, the spatial correlation of the OLS model’s
residuals is discussed in this work.

yi = β0 + β1xi1 + β2xi2 + . . . + βkxik + εi (6)

where yi is the ith observation of the dependent variable, β0 is the intercept of the regres-
sion model, xik corresponds to the kth explanatory variable of sample i, βk is the partial
regression coefficient corresponding to the kth explanatory variable, and εi is the residual
corresponding to sample i.

When applied to analyze spatial data, the OLS model for global analysis produces a
suboptimal result because it is unable to reflect the spatial non-stationarity in the data. To
identify spatial non-stationarity, Brunsdon et al. [37,38] proposed a local regression method
based on traditional linear regression. Spatial relationship weights are introduced in the
model, and the spatial location of the model is added to the regression function, resulting
in regression parameters that vary with geographic spatial changes.

yi = β0(mi, ni) +
p

∑
k=1

βk(mi, vi)xik + εi (7)

Among them, yi represents the ith observed value of the dependent variable; (mi, ni)
denotes the latitude and longitude coordinates of the ith dependent variable; β0(mi, ni)
is the constant term of the regression model for the ith observed value; βk represents the
partial regression coefficient corresponding to the kth explanatory variable; xik corresponds
to the kth explanatory variable of sample i; and εi is the residual corresponding to sample
point i.

Ground deformation data have obvious spatial heterogeneity, and the factors affect-
ing ground deformation may exist in both spatial stationarity and spatial non-stationarity
types. For effective data analysis, neither a single global nor local regression model
is necessary. Fotheringham et al. [46] proposed the MGWR model based on the GWR
model, which can effectively distinguish between global and local variables in a ge-
ographic problem within the model. Additionally, the multi-bandwidth approach of
the MGWR model method considers the optimal neighboring features for each target
element to predict response variables.

yi = β0(mi, ni) +
p

∑
k=1

βbwk(mi, vi)xik + εi (8)

where βbwk is the bandwidth used at the kth position, and each regression coefficient
βbwk is obtained in the model based on local regression and has different bandwidths for
different factors.
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Allowing each explanatory variable to have a different bandwidth removes the lim-
itation that all relationships at each spatial location vary on the same spatial scale. This
also reduces overfitting and bias in parameter estimations during model fitting. It is worth
emphasizing that we utilized MGWR software developed by Oshan [60] for implementing
the MGWR method, while we utilized ArcGIS 10.7 software to obtain the results of the
global regression model (OLS). In addition, for the MGWR analysis, we utilized the golden
section method for bandwidth selection, opted for the Gaussian function as the model, and
utilized AICc as the model optimization criterion to ensure the high accuracy and reliability
of our model. Ultimately, we compared the global and local models to provide a more
accurate assessment of overfitting and bias in the parameter estimates.

3.3.2. Bandwidth Selection

The model used the corrected Akaike information criteria (AICc) for bandwidth
selection, which penalized smaller broadbands that lead to more complex models to avoid
model overfitting. The AICc [61] is defined as:

AICc = 2nln
(

RSS
n

)
+ nln 2π +

{
n + tr (S)

n− 2− tr (S)

}
(9)

where n denotes the number of observations, RSS is the residual sum of squares of the
model, and tr(S) denotes the trace of the hat matrix S as well as the number of effective
parameters of the model.

3.4. Model Evaluation Metrics

In this study, model fitting criteria such as the R-squared (R-sq), the corrected
Akaike information criteria (AICc), and the residual sum of squares (RSS) were selected,
which provide information about the performance of the model in representing the data
and can better explain the model complexity. R-sq indicates the degree of variability in
the dependent variable explained by the model; the higher the R-sq, the more variation
the model can explain and the better the model fit. The model fit is better when the
AICc and RSS values are lower since they help to explain model prediction inaccuracies.
Previous studies have shown [60] that for more complex models, AICc is more applicable
to the evaluation criteria of more complex models, so this study uses AICc pairs to assess
model fitting.

4. Results
4.1. Spatial Distribution Characteristics of Ground Deformation in Zhuhai

In this study, SBAS-InSAR technology was utilized to obtain monitoring data of surface
deformation in Zhuhai City during the period of 2020-2021 (Figure 4), where positive values
represent the direction close to the satellite (ascending) and negative values represent the
direction away from the satellite (subsidence). Ground deformation is relatively common
in Zhuhai, with an average deformation rate of −3.45 mm/y, indicating a general trend
of ground subsidence. The most significant uplift area is located in the northern part of
Hengqin New Area, with a maximum uplift rate of 20 mm/y, while the most significant
subsidence area is at the harbor of the Gaolan Port Economic Zone, with a maximum
subsidence rate of 117 mm/y. According to the classification standards of the China
Geological Survey [48], it has been observed that more than 97% of the monitoring points
exhibit deformation rates ranging from −30 mm/y to 30 mm/y (Table 3). This suggests
that the overall ground deformation in Zhuhai City is relatively stable and does not pose
a direct threat to buildings. The results of ground deformation monitoring highlight the
uneven spatial distribution of ground subsidence in Zhuhai, with noticeable variations
in uplift and subsidence patterns across different areas. These findings provide essential
foundational data and guidance for further research on the causes of ground subsidence
and the implementation of appropriate geological management and risk control measures.
Moreover, this study demonstrates the potential of the SBAS-InSAR technique in urban
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ground deformation monitoring and the effectiveness of the MGWR model in analyzing
the drivers of ground deformation.
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Table 3. Proportion of grading the severity of ground deformation.

Ground Deformation
(mm/y)

Low
−10~10

Relatively Low
−30~−10 and >10

Medium
−50~−30

Relatively High
−80~−50

High
<−80 Total

Number of
monitoring points 1,154,432 179,464 29,457 2959 278 1,366,590

Percentage 84.48% 13.13% 2.16% 0.22% 0.02% 100%

Significant regional differences are observed in the monitoring results in Figure 4,
with urban areas, especially urban surfaces, exhibiting higher coherence. This indicates
that we can obtain more reliable and detailed ground deformation monitoring data
in these areas. In contrast, areas with high vegetation cover, such as farmland, rice
paddies, and mountains, yield fewer deformation results. This phenomenon may be
attributed to the impact of vegetation cover on the radar signal. In addition, the moni-
toring results identify four significant ground subsidence centers in Zhuhai (Figure 5),
including Baijao Town in Doumen District (Area A, with an average deformation rate
of −16.8 mm/y), Hongqi Town in Jinwan District (Area B, with an average deformation
rate of −9.4 mm/y), Gaolan Port Economic Zone in the southern part of Jinwan District
(Area C, with an average deformation rate of −8.4 mm/y), and the northern part of
Hengqin Town (Area D, with an average deformation rate of −8.8 mm/y). Among
these, the issue of ground settlement in the harbor area is most prominent in Area C,
with a maximum deformation rate of 117 mm/y.
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The red dashed box represents the key deformation area, while the pink solid line represents the
main road.

Under the influence of the upper loads, certain sections of the road exhibited notable
deformation, particularly along the main roads (Table 4). As an essential node city in the
Guangdong–Hong Kong–Macao Greater Bay Area, Zhuhai’s rapid development relies on a
well-established transportation network. In addition to port trade transportation, the city
of Zhuhai heavily relies on road transportation. Major roads in the city include the Gaolan
Port Expressway, the Western Coastal Expressway, the Zhuhai Airport Expressway, the
Guangzhou–Foshan–Jiangsu–Zhuhai Expressway, the Guangzhou–Australia Expressway,
and Zhuhai Boulevard, which traverses the city. During the monitoring period, Zhuhai
Avenue had the highest average deformation rate of −6.6 mm/y. The topsoil layer may
become disturbed due to the dynamic and static forces associated with the construction
and maintenance of a roadway, potentially resulting in ground deformation. Based on this,
conducting a quantitative investigation into the factors influencing ground deformation in
Zhuhai has become an urgent problem.

Table 4. Main roads deformation information.

Road Average Deformation Rate
(mm/y)

Maximum Subsidence
Rate (mm/y)

Maximum Uplift Rate
(mm/y)

Zhuhai Avenue −6.6 −37.9 9.1
Gaolan Port Expressway −2.9 −21.9 7.5

Western Coastal Highway −1.1 −32.5 7.4
Zhuhai Airport Expressway −0.8 −30.6 5.8

Guangzhou–Macao Expressway −4.1 −46.0 5.4
Guangzhou Foshan Jiangmen

Zhuhai Expressway −4.9 −29.7 6.1

4.2. Model Results and Comparison

To thoroughly analyze the factors contributing to the spatial heterogeneity in ground
deformation in Zhuhai, we used data from 2020 to 2021 in our study, encompassing several
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factors influencing ground deformation. We constructed a spatial regression model with
ground deformation as the dependent variable and various influencing factors as the
explanatory variables to uncover the spatial heterogeneity in how these factors affect
ground deformation in Zhuhai. In this paper, the Zhuhai urban planning and compilation
unit was selected as the basic unit for analyzing the driving factors of ground deformation in
Zhuhai. Before performing the regression analysis, the selected data on ground deformation
influencing factors were min–max standardized so that the results were within the range of
[0, 1] due to the different data sources with different scales and magnitudes, which have a
significant difference in the results. Multicollinearity will be more likely to develop when
there is too much correlation between the explanatory variables, which will then impact
the model’s fit. By removing variables with variance inflation factors higher than 7.5 from
the explanatory variables, the variance inflation factor was used to perform local regression
feature selection. The results are shown in Table 5. The results indicate that the VIF value
for each explanatory variable is less than 5.0, which suggests a low correlation among the
explanatory variables, specifically indicating a reduced level of multicollinearity between
the variables.

Table 5. VIF values of all explanatory variables.

Variable VIF Variable VIF

Intercept Proximity to faults 1.444
Slope 4.349 Lithology 1.271

Aspect 1.355 Road network density 1.914
Elevation 4.147 Building density 2.273

Soft soil thickness 1.749 Land use types 1.853
Groundwater exploitation intensity 1.597 NDVI 2.207

Precipitation 1.256 Soil moisture 1.043

An OLS analysis was conducted using data that passed the significance test. To
determine whether the residuals obtained using the OLS model exhibit spatial randomness,
we conducted a spatial autocorrelation analysis. The results indicate a Moran’s I statistic
of 0.967, corresponding to a z-score of 3.790 and a p-value of 0.000. These results indicate
that the residuals obtained using the OLS model exhibit significant spatial autocorrelation;
the spatial correlation between the residuals is not random but exhibits significant spatial
non-stationarity. Therefore, we can justify the use of geographically weighted regression
(GWR) and multi-scale geographically weighted regression (MGWR) methods to better
explain spatial patterns and correlations in the data. These methods allow for a more
comprehensive consideration of the effects of geographic location on ground deformation
and help to provide a more accurate understanding of the spatial patterns of change in
ground deformation.

The results of the OLS, GWR, and MGWR models were compared, as shown in Table 6.
The results indicate that the overall fit of the local regression models (GWR and MGWR) is
better than that of the global regression model (OLS), with both GWR and MGWR having
higher R-sq values compared with OLS. In particular, the MGWR model outperforms
both OLS and GWR, demonstrating higher Log-likelihood and R-sq values, as well as
lower AICc and RSS values. As a result, the MGWR model excels in explaining ground
deformation, offering greater explanatory power and improved fitting performance.

Figure 6 displays the distribution of the three models’ regression residuals. The
comparison reveals that the regression residuals of the MGWR model are generally smaller
and exhibit a more random spatial distribution, indicating that the model is well-suited for
most regions. In contrast, the regression residuals of the other two models are relatively
large and display some spatial structure.
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Table 6. Model diagnostics for OLS, GWR, and MGWR.

Diagnostic Information OLS GWR MGWR

Log-likelihood −172.220 −151.405 −47.033
AICc 376.782 368.412 291.755
RSS 61.488 50.931 19.805
R-sq 0.722 0.770 0.910

Adj. R-sq 0.704 0.737 0.871

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 25 
 

 

Table 6. Model diagnostics for OLS, GWR, and MGWR. 

Diagnostic Information OLS GWR MGWR 
Log-likelihood −172.220 −151.405 −47.033 

AICc 376.782 368.412 291.755 
RSS 61.488 50.931 19.805 
R-sq 0.722 0.770 0.910 

Adj. R-sq 0.704 0.737 0.871 
Figure 6 displays the distribution of the three models’ regression residuals. The com-

parison reveals that the regression residuals of the MGWR model are generally smaller 
and exhibit a more random spatial distribution, indicating that the model is well-suited 
for most regions. In contrast, the regression residuals of the other two models are rela-
tively large and display some spatial structure.  

 
Figure 6. Space distribution of the regression residuals for OLS, GWR, and MGWR. 

In the fitting results of the two localized spatial regression models (Figure 7), the R-
sq values of the GWR model exhibited considerable variation among the evaluation units 
and were notably lower in certain areas, particularly in the northwestern part of the study 
area. This suggests a less accurate model fit in that specific region. In contrast, in the 
MGWR model, the R-sq values for all 221 evaluation units exceeded 0.90, and there was 
no significant variation in R-sq among these units, indicating a consistently good model 
fit. It is particularly noteworthy that the highest R-sq values were observed in areas such 
as Hengqin New Area, western Xiangzhou District, and southern Doumen District. This 
suggests that the combined explanatory power of known factors for ground deformation 
is more significant in these areas. In summary, the MGWR model significantly outper-
forms the OLS and GWR models in terms of fitting effectiveness. 

Figure 6. Space distribution of the regression residuals for OLS, GWR, and MGWR.

In the fitting results of the two localized spatial regression models (Figure 7), the R-sq
values of the GWR model exhibited considerable variation among the evaluation units
and were notably lower in certain areas, particularly in the northwestern part of the study
area. This suggests a less accurate model fit in that specific region. In contrast, in the
MGWR model, the R-sq values for all 221 evaluation units exceeded 0.90, and there was
no significant variation in R-sq among these units, indicating a consistently good model
fit. It is particularly noteworthy that the highest R-sq values were observed in areas such
as Hengqin New Area, western Xiangzhou District, and southern Doumen District. This
suggests that the combined explanatory power of known factors for ground deformation is
more significant in these areas. In summary, the MGWR model significantly outperforms
the OLS and GWR models in terms of fitting effectiveness.
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There are variations in the degree of influence of different factors on ground defor-
mation, thus requiring the selection of different bandwidths based on distinct explanatory
variables. The traditional GWR model uses a uniform bandwidth for all explanatory
variables, resulting in variations in the interpretation of the three explanatory variables:
elevation, proximity to faults, and land use type, between the two models (Table 7). Specif-
ically, elevation shows a negative correlation with the dependent variable in the GWR
model, while it demonstrates a positive correlation in the MGWR model. Similarly, fault
distance and land use type show a positive correlation with the dependent variable in the
GWR model and a negative correlation in the MGWR model. This difference arises from
the varying choice of bandwidths for each explanatory variable in the two models. The
MGWR model utilizes distinct bandwidths for each explanatory variable, enabling each
variable to more accurately capture the scale of its own spatial process.

Table 7. Model bandwidth for MGWR.

Variable Bandwidth (MGWR) Variable Bandwidth (MGWR)

Intercept 46.000 Building density 44.000
Slope 60.000 Soft soil thickness 46.000

Aspect 100.000 Groundwater exploitation intensity 44.000
Elevation 219.000 Land use types 219.000

Proximity to faults 181.000 NDVI 44.000
Lithology 211.000 Precipitation 110.000

Road network density 46.000 Soil moisture 219.000

4.3. Spatial Heterogeneity in the Influencing Factors

After comparative analysis, we found that the MGWR model performed well in
providing the best fit. Therefore, this study used the MGWR model to obtain the regression
coefficients for each explanatory variable, and these coefficients are presented in Table 8.
We visualize the results to better illustrate the local effects of each explanatory variable.
The color of the area in the figure indicates the degree of correlation between the variable
and the ground deformation in that area, i.e., the variable is more negatively correlated
with ground deformation the closer it is to blue, and it is more positively correlated with
ground deformation the closer it is to red.

Table 8. Summary statistics for MGWR parameters.

Variable Mean STD Min Median Max Adj. t-Val (95%)

Intercept 0.031 0.116 −0.190 0.022 0.296 2.748
Slope 0.043 0.148 −0.247 0.052 0.349 2.684

Aspect 0.011 0.054 −0.091 0.004 0.122 2.404
Elevation 0.104 0.010 0.082 0.109 0.118 2.078

Proximity to faults −0.016 0.058 −0.110 −0.016 0.091 2.341
Lithology −0.065 0.019 −0.092 −0.068 −0.030 2.138

Road network density 0.177 0.098 −0.115 0.106 0.372 2.778
Building density 0.155 0.136 −0.072 0.135 0.484 2.787

Soft soil thickness −0.182 0.115 −0.435 −0.199 0.113 2.749
Groundwater

exploitation intensity −0.207 0.214 −0.620 −0.266 0.257 2.638

Land use types −0.017 0.005 −0.024 −0.018 −0.005 2.090
NDVI 0.240 0.176 −0.109 0.275 0.568 2.792

Precipitation 0.068 0.039 −0.034 0.074 0.139 2.427
Soil moisture 0.006 0.002 0.002 0.005 0.011 2.007

4.3.1. Geotectonic Conditions

As can be clearly observed in Figure 8, the influence of the geotectonic background on
ground deformation is highly complex. Specifically, the influence of the slope coefficient
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ranges from −0.247 to 0.349, and its spatial distribution exhibits a distinct multipolar
pattern. The central region is regarded as the focal point of low polarization, encompassing
primarily the central part of Doumen District and the High-tech District. These areas feature
significant slopes, resulting in a negative impact on ground deformation. Conversely, areas
such as the northern part of Doumen District, Gaolan Port District, and Jinwan District are
predominantly highly polarized areas, where the flatter topography positively influences
ground deformation.
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The influence of slope orientation on ground deformation is weak and is mainly
observed in the central part of Doumen District, the northeastern part of Xiangzhou District,
and the southern part of the High-tech District. These areas exhibit a mild negative effect on
ground deformation. The influence of slope gradient and slope orientation shows spatial
consistency due to their similar spatial distribution.

The estimated coefficients of the elevation parameters ranged from 0.082 to 0.118,
indicating a relatively small degree of influence, although it had a significant positive effect
on ground deformation. Spatially, elevation exhibits a clear stepwise distribution trend,
with the high-value areas primarily located in the northern part of the study area. Among
these areas, the most significant effect of elevation on ground deformation is observed in
the Baijiao Town area.

The distance from the fault has a weak positive effect on ground deformation in the
northern part of Doumen District, whereas it has a significant negative effect on ground
deformation in other areas. Overall, this influence factor had a weak effect during the
monitoring period but may be related to the fault activity in Zhuhai.

The influence of soft soil thickness and stratigraphic lithology on the ground deforma-
tion in Zhuhai City is relatively significant. The widely distributed soft soil and quaternary
sediments cause negative effects on ground deformation. This influence is closely linked
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to the spatial distribution of soft soil layer thickness, with thicker soft soil layers having a
more substantial impact on ground deformation.

4.3.2. Human Activities

The parameter estimates of building density ranged from −0.072 to 0.484, with a
strong influence on ground deformation in the southeastern part of Jinwan District and
the northern part of Doumen District (Figure 9). The areas with greater negative effects on
ground deformation were in the High-tech District, the northeast of Xiangzhou District,
and the Gaolan Port Economic Zone, but with a weaker intensity. The results shown that
the denser the buildings were in the planning unit, the greater the impact on ground
deformation, which is in line with the previous study on urban buildings and ground
settlement [62]. The ground deformation was largely influenced positively by the road
network density parameter, which was estimated to be in the range of −0.115 to 0.372. In
the High-tech District and the northeast of Xiangzhou District, where the road network
density was higher, the effect on ground deformation was weak, which further indicated
that the road network density was not the main factor causing ground deformation in the
area. Groundwater exploitation was one of the major influencing factors in urban ground
deformation, and the parameter estimation of the groundwater exploitation intensity
obtained using the MGWR model was negative except for some planning units in the north
of Doumen District and the south of the Gaolan Port Economic Zone. The groundwater
exploitation intensity had a greater impact on ground deformation in the southern and
northern parts of Doumen District and Jinwan District, respectively. This was due to local
aquaculture occurring there more frequently.
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4.3.3. Geographical Environment

The estimated mean value of the precipitation parameter was 0.068, which was not
the main factor affecting ground deformation during the monitoring period (Figure 10).
It showed a spatial distribution pattern of high in the south and low in the north and
had a strong and positive influence on ground deformation in the eastern part of Jinwan
District and Hengqin New District. Ground deformation was negatively impacted by some
planning units in places with high average annual precipitation, such as the High-tech
District. The ground deformation in the study area was significantly positively influenced
by NDVI, and its influence was of the highest intensity. In terms of spatial distribution,
there was a more obvious polarization trend, except for the southern part of the Gaolan
Port Economic Zone, Hengqin New District, and some planning units in the central part of
Xiangzhou District, which had a negative influence on ground deformation, and the rest of
them had a positive influence. The estimated parameter of the soil moisture parameter was
in the range of 0.002–0.011, which showed a weak positive effect on ground deformation,
and the spatial distribution showed a distinct stepwise distribution. The high-value areas
were distributed in some of the planning units in the northern part of the Doumen District,
and the soil moisture in these areas was also at higher values compared with other locations
in the study area.
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5. Discussion
5.1. Results of Ground Deformation in Zhuhai

The absence of field measurements in the study area during the monitoring period
prevented the validation of the deformation data obtained. However, the areas with
more pronounced deformation in the results align with the spatial distribution of factors
such as the thickness of the soft soil layer, the intensity of groundwater extraction, and
the density of buildings. Overall, the magnitude and spatial distribution of ground de-
formation in Zhuhai obtained in this study for the years 2020-2021 are consistent with the
historical deformation patterns in Zhuhai observed by previous researchers for the years
2006–2011 [11,63] and 2015–2020 [5,10,49]. The maximum sedimentation rate, as reported
in previous studies [10,11,49], is consistently observed in the reclaimed area of Zhuhai,
specifically in the Gaolan Port area (Area C), which aligns with the findings of this study.
Furthermore, the maximum subsidence rates reported by Ma et al. [10], Du et al. [11],
and Liu et al. [49], which were −150.9 mm/y, −112.3 mm/y, and −87.3 mm/y, respec-
tively, do not significantly differ from the maximum subsidence region and rate of
−117 mm/y obtained in this study. This further confirms the reliability of the results
from our study.
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5.2. Validity and Applicability of the Methodology

The results indicate significant differences in the extent to which various geographic
factors influence ground deformation, highlighting the need to select different bandwidths
based on the characteristics of each explanatory variable. Compared with the traditional
GWR model, the MGWR model uses distinct bandwidths for each explanatory variable.
This feature enables the model to better reflect the spatial scale characteristics of each ex-
planatory variable, resulting in a more accurate representation of the relationships between
these variables and ground deformation (Table 7). This highlights the advantages of the
MGWR model in conducting multi-scale spatial analysis and underscores its adaptability
and flexibility in explaining ground deformation.

Ground deformation is the result of various interacting factors. For geographic data,
the strong spatial relationship makes it impossible to analyze the influencing factors alone,
so we used regression models to investigate the factors contributing to urban ground
deformation in Zhuhai. The model fitting results were used to evaluate the model’s
performance using metrics such as R-squared (R-sq), Akaike information criterion corrected
(AICc), and residual sum of squares (RSS). The GWR model uses a uniform bandwidth for
all explanatory variables, whereas the MGWR model considers the spatial scale at which
each explanatory variable operates and consequently calculates a bandwidth value for each
explanatory variable. The localized R-sq suggests that almost 90% of the variables in the
MGWR model can be accounted for, and the overall fit of the model for the region is strong.
Compared with the GWR model, the MGWR model improved R-sq by 23.5% and reduced
AICc by 20.8%. Similarly, compared with the OLS model, the MGWR model improved
R-sq by 26.0% and reduced AICc by 22.6%. Meanwhile, the R-sq of the GWR model was
6.4% higher than that of the OLS model, and the AICc was reduced by 2.2%. In the results
of RSS, the MGWR model was reduced by 61.1% compared with the GWR and by 67.8%
compared with the OLS model, indicating that the MGWR model provided a better fit.
In summary, both the GWR and MGWR models provide a better fit compared with the
OLS model. Among the two local regression models, the MGWR model outperforms the
GWR model, showing additional reductions in AICc and RSS values. Additionally, the
MGWR model exhibits smaller regression residuals and displays a more random spatial
distribution. Therefore, the MGWR model fits better than the GWR model and better than
the OLS model. By comparing the performance metrics of the MGWR, OLS, and GWR
models, we conclude that the MGWR model excels in explaining the spatial variation in
ground deformation, emphasizing the significance of considering spatial heterogeneity
in ground deformation studies. Given the fundamental importance of spatial factors, the
MGWR model enhances our comprehension of ground deformation by considering the
distinct spatial scales of each explanatory variable, enabling a more comprehensive analysis
of the role of driving factors.

5.3. Analysis of Factors Influencing Ground Deformation

Based on the model evaluation results, the MGWR model can effectively assess the
driving factors of regional ground deformation and rank the importance of these influencing
factors. Of the three selected influencing factors, the geographical environment during the
monitoring period has the most significant impact on ground deformation in the study area.
The influence of human activities should not be neglected, while the regional geotectonic
background has a comparatively smaller influence on ground deformation in the short
term when compared with the first two aspects.

In the four priority deformation areas, the A-region model identified building density,
soft soil thickness, road network density in certain planning units, and groundwater extrac-
tion intensity as the most significant drivers, with the average absolute values of the fitted
parameters exceeding 0.2. The presence of river systems in the region, including the Xijiang
River to the east and the Huangyang River and the Naiwanmen Waterway to the west, has
led to the accumulation of a thick layer of soft soil. This soft soil primarily consists of gray
or dark gray silty sand and sandy silt, and it includes widespread under-consolidated soft
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soil layers, indicating poor regional stability. Consequently, the combination of frequent
human activities and the geological background has contributed to the occurrence of more
pronounced ground deformation in the area.

In the results obtained from the B-region model, groundwater extraction intensity and
NDVI are the most important driving factors for ground deformation, with the absolute
value of the average parameter estimation reaching 0.4. Additionally, building density,
road network density, and soft soil layer thickness are also crucial factors, with average
parameter estimations of 0.27, 0.26, and 0.22, respectively. The Hongqi Town area features
a higher concentration of rivers, a thicker soft soil layer, and a thriving aquaculture in-
dustry. Residents extensively extract groundwater for aquaculture, leading to intensified
groundwater extraction. Meanwhile, recent economic development and surface engineer-
ing construction have increased the ground load, resulting in a rapid subsidence rate.
These factors collectively contribute to more pronounced ground deformation in areas with
frequent human activities.

The thickness of the soft soil layer was identified as the primary driving factor in
Areas C and D, with mean parameter estimates of −0.21 and −0.22, respectively. Area
C is a significant comprehensive port in Zhuhai, and economic demand has led to its
transformation into the primary reclamation area in Zhuhai, resulting in the accumulation
of a substantial layer of silt-like soft soil. With the increase in trade, dynamic disturbance
from the upper loads accelerates ground subsidence and becomes more severe in areas
close to the coast. As a newly constructed economic zone near the Macao Special Economic
Zone, Area D has seen an increase in the scope and extent of ground deformation caused
by soft ground in recent years with the increase in engineering activities such as large-scale
industrial construction as well as the construction of new rural areas.

Important factors that influenced ground deformation analyzed using the MGWR
model are consistent with previous analyses (Table 9). Meanwhile, the MGWR model
takes into account the spatial heterogeneity in the explanatory variables, which can
quantitatively study the driving factors of ground deformation in different regions
and help the government and its related personnel formulate appropriate strategies for
ground deformation disasters.

Table 9. Comparison of current research on factors that influence ground deformation in
Zhuhai, China.

Area Previous Studies This Study

Baijiao Town (A) Groundwater exploitation [52];
soft soil thickness [49,54]

NDVI > groundwater exploitation
intensity > soft soil thickness

Hongqi Town (B) Upper loads [52];
groundwater exploitation [49,52]

NDVI > groundwater exploitation
intensity > building density

Gaolan Port Economic Zone (C) Soft soil thickness [49,54];
upper loads [64]

Building density > soft soil thickness >
road network density

Hengqin Town (D) Upper loads [64] The soft soil thickness > Building density
> Road network density

Zhuhai
Upper loads [49,52,64];

soft soil thickness [49,54,64];
groundwater exploitation [49,52,65]

NDVI > groundwater exploitation
intensity > soft soil thickness > building

density > Road network density

5.4. Comparison of Research Results with Previous Studies

In order to better explore the causes of ground deformation in Zhuhai, this study
combined the MGWR model and ground deformation based on remote sensing images. At
the same time, remote sensing images can be acquired in a wide range, quickly, efficiently,
and at a low cost, providing new ideas for real-time monitoring of regional deformation
and the timely development of control strategies. Many scholars have used remote sensing
image data to obtain the explanatory variables for ground deformation, but there were
fewer quantitative investigations on the effects of multiple influencing factors on ground
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deformation. The comparison of the present study with the previous studies, as shown in
Table 10, further demonstrates that MGWR compared with the GWR model has better ap-
plicability and can be combined with remote sensing datasets for high-precision monitoring
of large areas of soil shape change.

Table 10. Comparison of current research using GWR and MGWR.

Study Area Dataset(s) Factor(s) Method Area Size R-sq Refs

Beijing Measured data Groundwater level GWR Big 0.765 [41]

SW Poland Measured data Thickness, inclination, and depth of
coal levels and surface slope GWR Small 0.690 [66]

Absheron Remote sensing
image datasets

Eight factors, both natural
and human-made GWR Big 0.10~0.33 [67]

This study Remote sensing
image datasets

Thirteen factors of geotectonic
conditions, geographic environment,

and human activities
MGWR Big 0.910 -

5.5. Strengths and Weaknesses

This study leverages the multi-scale analysis capability of the MGWR model, enhanc-
ing its ability to capture the evolving characteristics of ground deformation at various
spatial scales. Compared with traditional global regression methods, this approach im-
proves the precision and accuracy of the analysis. Multiple potential drivers of ground
deformation were considered and incorporated into the analysis, facilitating a more com-
prehensive understanding of the causal mechanisms behind ground deformation. By
conducting an in-depth analysis of the drivers of ground deformation, this study offers
valuable decision support for urban management and planning.

There are also some shortcomings in our study. The utilization of ground deformation
monitoring data from a single orbit and the absence of field measurements in this study
may have influenced the precision of the results. In future research, we intend to acquire
higher-resolution and more precise data to enhance the accuracy of our findings. We will
also explore the integration of multi-source radar data to obtain a more comprehensive
understanding of ground deformation, allowing us to assess its multidimensional charac-
teristics more accurately. Although the MGWR model can achieve spatial heterogeneity
better in this study, it also introduces some complexity. Therefore, future studies will focus
on the applicability and performance of the MGWR model in different regions to further
assess its feasibility in other regions.

Furthermore, given that Zhuhai is situated in a low-latitude region with abundant
vegetation cover, the application of the SBAS-InSAR technique is still influenced by vege-
tation, potentially resulting in an incoherence phenomenon [68–70]. Monitoring ground
deformation in regions with dense vegetation cover remains a challenge to be addressed.
Subsequent research endeavors could investigate more efficient approaches to overcome
this limitation, in order to improve the precision of ground deformation monitoring in
heavily vegetated areas.

In conclusion, despite some limitations, this study provides important insights into
understanding the drivers of ground deformation and demonstrates the potential of the
MGWR model for spatial heterogeneity analysis.

6. Conclusions

In the face of the increasingly serious issue of urban ground deformation, gaining
timely insights into the current status and distribution patterns of ground deformation, as
well as identifying its various underlying causes, are essential prerequisites for preventing
and effectively managing ground deformation. In this study, remote sensing images
were used to obtain ground deformation data covering Zhuhai City and the driving
factors of ground deformation during the same period to explore the spatial distribution
characteristics of ground deformation. Subsequently, regression models were used to assess
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the impact of a total of 13 influencing factors, categorized into three aspects: geotectonic
conditions, human activities, and the geographic environment, on ground deformation
across various geographic locations.

Firstly, we acquired Sentinel-1 images covering Zhuhai City from 2020 to 2021 and, in
conjunction with SBAS-InSAR technology, obtained detailed information on the surface
deformation in Zhuhai City. It quickly and efficiently provided us with regional high-
resolution surface deformation data.

Secondly, we selected several surface deformation drivers and, with the application of
the MGWR model, assessed the degree of influence these factors had on surface deformation
as well as variations in their spatial distribution across different regions. The results of
this study indicate that surface deformation in Zhuhai City exhibits significant spatial
heterogeneity, with different regions being influenced by distinct driving factors. Among
these factors, NDVI, groundwater extraction intensity, and soft soil thickness were identified
as the primary drivers, each exerting varying degrees of influence in different areas. These
differences can be attributed to the roles of drivers at various spatial scales and necessitate
a consideration of influences at different scales.

Based on remote sensing images, in the results of using the MGWR model to analyze
the driving factors affecting ground deformation in Zhuhai City, the MGWR model is able
to describe the influencing factors of ground deformation more accurately and improve
the prediction accuracy of the model by considering different bandwidth choices for each
explanatory variable. Compared with the GWR model, the MGWR model exhibits better
potential and greater accuracy when incorporating remote sensing data to investigate the
causes of large-scale ground deformation.

This study has some limitations. The study area contains extensive vegetation cover
and water bodies, which resulted in a certain level of incoherence when using radar
data to obtain ground deformation information. Therefore, minimizing the impact of
vegetation during the data processing stage will be a critical consideration in future research.
Additionally, while this study was validated using comparisons with previous research,
it still lacks field measurement data. Combining field measurements with deformation
data would enhance the accuracy of the results. With the integration of geostatistical
methods and remote sensing image monitoring data, this study delves into the causal
mechanisms of urban ground deformation. This research provides valuable insights and
decision-making support for urban planning and geological risk management. These
innovations are expected to be widely used in future ground deformation studies.
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