Coherent Accumulation for Measuring Maneuvering Weak Targets Based on Stepped Dechirp Generalized Radon–Fourier Transform
Abstract
:1. Introduction
2. An Algorithm Based on Stepped DGRFT for Estimating Motion Parameters and HRRP Focusing
2.1. Principle of Dechirp Receiving
2.2. Principle of the Stepped DGRFT Algorithm
2.3. Discretized Stepped DRFT
2.4. A Dechirp-Receiving Stepped-Frequency Imaging Algorithm Based on Time-Domain Splicing and Synthesis
2.5. Motion Compensation and HRRP Focusing
3. Simulation Verification and Analysis
3.1. Algorithmic Performance Analysis for a Target with a Constant Velocity
3.1.1. Simulation Parameters
3.1.2. Performance Analysis of Stepped DRFT and Conventional DRFT
3.2. Algorithmic Performance Analysis for a Target under Constant Acceleration
3.2.1. Simulation Parameters
3.2.2. Performance Analysis of Stepped DGRFT and Conventional DGRFT
4. Measured Data Verification and Analysis
4.1. Measured Data Parameters
4.2. Performance Analysis of Stepped DGRFT and Conventional DGRFT
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, P.; Xia, X.; Liao, G.; Yang, Z.; Zhang, Y. Long-Time Coherent Integration Algorithm for Radar Maneuvering Weak Target with Acceleration Rate. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3528–3542. [Google Scholar] [CrossRef]
- Chen, X.; Guan, J.; Chen, W.; Zhang, L.; Yu, X. Sparse Long-Time Coherent Integration–Based Detection Method for Radar Low-Observable Maneuvering Target. IET Radar Sonar Navig. 2020, 14, 538–546. [Google Scholar] [CrossRef]
- Gao, C.; Tao, R.; Kang, X. Weak Target Detection in the Presence of Sea Clutter Using Radon-Fractional Fourier Transform Canceller. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 14, 5818–5830. [Google Scholar] [CrossRef]
- Xu, S.Z.; Kooij, B.J.; Yarovoy, A. Joint Doppler and DOA estimation using (Ultra-)Wideband FMCW signals. Signal Process. 2020, 168, 107259. [Google Scholar] [CrossRef]
- Pan, M.; Liu, A.; Yu, Y.; Wang, P.; Li, J.; Liu, Y.; Lv, S.; Zhu, H. Radar HRRP target recognition model based on a stacked CNN–Bi-RNN with attention mechanism. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, G.; Leung, H.; Dai, Q.; Fang, Z. An Applied Ambiguity Function Based on Dechirp for MIMO Radar Signal Analysis. IEEE Trans. Geosci. Remote Sens. Lett. 2022, 19, 4021005. [Google Scholar] [CrossRef]
- Wang, L.; Huang, T.; Liu, Y. Phase Compensation and Image Autofocusing for Randomized Stepped Frequency ISAR. IEEE Sens. J. 2019, 19, 3784–3796. [Google Scholar] [CrossRef]
- Li, W.J.; Fan, H.Y.; Ren, L.X.; Mao, E.K.; Liu, Q.H. A High-Accuracy Phase-Derived Velocity Measurement Method for High-Speed Spatial Targets Based on Stepped-Frequency Chirp Signals. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1999–2014. [Google Scholar] [CrossRef]
- Liu, S.; Cao, Y.; Yeo, T.; Wang, F.; Han, J. Range Sidelobe Suppression for Randomized Stepped-Frequency Chirp Radar. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 3874–3885. [Google Scholar] [CrossRef]
- Liu, M.; Chen, J. Synthesizing of Stretched Chirp-Step Signal: Theory and Application Techniques. Electron. Opt. Control 2019, 26, 71–75. [Google Scholar]
- Pang, C.; Liu, S.; Han, Y. Coherent detection algorithm for radar maneuvering targets based on discrete polynomial-phase transform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3412–3422. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Y.; Zhang, L.; Zhang, Q.; Du, L. Target Detection for Multistatic Radar in the Presence of Deception Jamming. IEEE Sens. J. 2021, 21, 8130–8141. [Google Scholar] [CrossRef]
- Perry, R.; DiPietro, R.; Fante, R. SAR Imaging of Moving Targets. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 188–200. [Google Scholar] [CrossRef]
- Fang, X.; Li, J.; Zhang, Z.; Xiao, G. FMCW-MIMO Radar-Based Pedestrian Trajectory Tracking Under Low-Observable Environments. IEEE Sens. J. 2022, 22, 19675–19687. [Google Scholar] [CrossRef]
- Ding, T.; Zhang, J.; Tang, S.; Zhang, L.; Li, Y. A Novel Iterative Inner-Pulse Integration Target Detection Method for Bistatic Radar. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5114915. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, J.; Zhao, L.; Gao, M. An MTRC-AHP Compensation Algorithm for Bi-ISAR Imaging of Space Targets. IEEE Sens. J. 2020, 20, 2356–2367. [Google Scholar] [CrossRef]
- Liang, M.; Su, W.; Gu, H. Focusing High-Resolution High Forward-Looking Bistatic SAR with Nonequal Platform Velocities Based on Keystone Transform and Modified Nonlinear Chirp Scaling Algorithm. IEEE Sens. J. 2018, 19, 901–908. [Google Scholar] [CrossRef]
- Deng, T.D.; Jiang, C.S. Evaluations of Keystone Transforms Using Several Interpolation Methods. In Proceedings of the 2011 IEEE CIE International Conference on Radar, Chengdu, China, 24–27 October 2011; Volume 2, pp. 1876–1878. [Google Scholar]
- Xu, J.; Yu, J.; Peng, Y.; Xia, X.G. Radon–Fourier Transform for Radar Target Detection, I: Generalized Doppler Filter Bank. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1186–1202. [Google Scholar] [CrossRef]
- Qian, L.; Xu, J.; Xia, X.; Sun, W.; Long, T.; Peng, Y. Wideband-Scaled Radon-Fourier Transform for High-Speed Radar Target Detection. IET Radar Sonar Navig. 2014, 8, 501–512. [Google Scholar] [CrossRef]
- Xu, J.; Yan, L.; Zhou, X.; Long, T.; Xia, X.-G.; Wang, Y.-L.; Farina, A. Adaptive Radon-Fourier Transform for Weak Radar Target Detection. IEEE Trans. Aerosp. Electr. Syst. 2018, 99, 686–697. [Google Scholar] [CrossRef]
- Li, X.; Sun, Z.; Yeo, T.S. Computational Efficient Refocusing and Estimation Method for Radar Moving Target with Unknown Time Information. IEEE Trans. Comput. Imag. 2016, 2, 13–26. [Google Scholar] [CrossRef]
- Li, X.; Sun, Z.; Zhang, T.; Yi, W.; Cui, G.; Kong, L. Computational Efficient Refocusing and Estimation Method for Radar Moving Target with Unknown Time Information. Signal Process. 2020, 166, 544–557. [Google Scholar] [CrossRef]
- Xia, L.; Gao, H.; Liang, L.; Lu, T.; Feng, B. Radar Maneuvering Target Detection Based on Product Scale Zoom Discrete Chirp Fourier Transform. Remote Sens. 2023, 15, 1792. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Y.; Wang, W.; Liu, B.; Wu, W. Long-Time Coherent Integration for Marine Targets Based on Segmented Compensation. Remote Sens. 2023, 15, 4530. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, J.; Liang, Z.; Long, T. Motion Parameter Estimation and HRRP Construction for High-Speed Weak Targets Based on Modified GRFT for Synthetic-Wideband Radar with PRF Jittering. IEEE Sens. J. 2021, 21, 23234–23244. [Google Scholar] [CrossRef]
- You, P.; Ding, Z.; Liu, S.; Zhang, G. Dechirp-receiving Radar Target Detection Based on Generalized Radon-Fourier Transform. IET Radar Sonar Navig. 2021, 15, 1096–1111. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Pulse width | 100 µs |
Instantaneous bandwidth B | 2 GHz |
Accumulation time T | 1.2 s |
Stepped-frequency interval | 1.8 GHz |
Number of steps N | 5 |
Number of frames used for coherent accumulation M | 40 |
Initial target range | 300 km and 300.000625 km |
Target velocity | 50 m/s |
SNR after pulse compression | −10 dB |
Property | Value |
---|---|
Pulse width | 100 µs |
Instantaneous bandwidth B | 2 GHz |
Accumulation time T | 1.2 s |
Stepped-frequency interval | 1.8 GHz |
Number of steps N | 5 |
Number of frames used for coherent accumulation M | 40 |
Initial target range | 300 km and 300.000625 km |
Initial target velocity | 50 m/s |
Target acceleration | 3.6 m/s |
SNR after pulse compressionn | −10 dB |
Property | Value |
---|---|
Pulse width | 100 µs |
Instantaneous bandwidth B | 2 GHz |
Accumulation time T | 1.92 s |
Stepped-frequency interval | 1.8 GHz |
Number of steps N | 2 |
Number of frames used for coherent accumulation M | 160 |
SNR after pulse compression | −10 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Chang, S.; Cai, B.; Wang, D.; Liu, Q. Coherent Accumulation for Measuring Maneuvering Weak Targets Based on Stepped Dechirp Generalized Radon–Fourier Transform. Remote Sens. 2023, 15, 5161. https://doi.org/10.3390/rs15215161
Sun Y, Chang S, Cai B, Wang D, Liu Q. Coherent Accumulation for Measuring Maneuvering Weak Targets Based on Stepped Dechirp Generalized Radon–Fourier Transform. Remote Sensing. 2023; 15(21):5161. https://doi.org/10.3390/rs15215161
Chicago/Turabian StyleSun, Yuxian, Shaoqiang Chang, Bowen Cai, Dewu Wang, and Quanhua Liu. 2023. "Coherent Accumulation for Measuring Maneuvering Weak Targets Based on Stepped Dechirp Generalized Radon–Fourier Transform" Remote Sensing 15, no. 21: 5161. https://doi.org/10.3390/rs15215161
APA StyleSun, Y., Chang, S., Cai, B., Wang, D., & Liu, Q. (2023). Coherent Accumulation for Measuring Maneuvering Weak Targets Based on Stepped Dechirp Generalized Radon–Fourier Transform. Remote Sensing, 15(21), 5161. https://doi.org/10.3390/rs15215161