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Abstract: The integration of structure from motion (SFM) and unmanned aerial vehicle (UAV)
technologies has allowed for the generation of very high-resolution three-dimensional (3D) point
cloud data (up to millimeters) to detect and monitor surface changes. However, a bottleneck still
exists in accurately and rapidly registering the point clouds at different times. The existing point cloud
registration algorithms, such as the Iterative Closest Point (ICP) and the Fast Global Registration
(FGR) method, were mainly developed for the registration of small and static point cloud data, and
do not perform well when dealing with large point cloud data with potential changes over time. In
particular, registering large data is computationally expensive, and the inclusion of changing objects
reduces the accuracy of the registration. In this paper, we develop an AI-based workflow to ensure
high-quality registration of the point clouds generated using UAV-collected photos. We first detect
stable objects from the ortho-photo produced by the same set of UAV-collected photos to segment
the point clouds of these objects. Registration is then performed only on the partial data with these
stable objects. The application of this workflow using the UAV data collected from three erosion plots
at the East Tennessee Research and Education Center indicates that our workflow outperforms the
existing algorithms in both computational speed and accuracy. This AI-based workflow significantly
improves computational efficiency and avoids the impact of changing objects for the registration of
large point cloud data.

Keywords: point cloud; image registration; image segmentation; deep learning

1. Introduction

The recent advances of structure from motion (SfM) and unmanned aerial vehicle
(UAV), commonly known as drones, technologies have allowed the generation of up to
millimeter and centimeter resolution digital surface models (DSMs) to quantify surface
processes [1–3], to be used as a base map for geologic mapping [4], to derive vegetation
structures [5], to investigate soil erosion [6], and to extract urban features [7,8]. SfM is
developed in computer vision for three-dimensional (3D) object reconstruction based
on highly overlapped photos taken with commonly used cameras, smartphones, and
tablets [9,10]. SfM significantly reduces the cost of the land survey because the traditional
photogrammetry requires specific and expensive cameras and aircrafts to reconstruct both
natural and man-made land features. Specifically, the integration of SfM with low cost
UAVs has the capability to conduct large-scale surface reconstructions for geographic and
environmental studies [11–16].

A common SfM-UAV-based 3D topographic reconstruction includes two stages. The
first stage is to capture a set of photos of the land by the cameras on UAVs. These photos
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are then used to generate a point cloud, a digital surface model of the mapped area, and an
orthomosaic photo to provide a detailed and accurate representation of the land’s topogra-
phy. Several software programs, such as Pix4DMapper 4.6 and Agisoft Photoscan 1.4, can
perform this task and their effectiveness has been proven in numerous studies [17–19].

The reconstructed surface can be further used to detect surface changes if multiple
surveys are conducted over time. Such analysis requires the precise alignment, called
registration, of the point clouds obtained by different surveys together. Several existing al-
gorithms, such as the Iterative Closest Point (ICP) [20], Globally Optimal ICP (Go-ICP) [21],
or Fast Global Registration (FGR) method [22], have been developed for point cloud reg-
istration. However, these algorithms are mainly developed for the registration of small
and static point cloud data, but do not perform well when dealing with large point cloud
datasets. In addition, some parts of the surface may be changed over time, and including
the changing parts reduces the registration accuracy. Consequently, in practice, many stud-
ies still rely on the registration of the point clouds based on manually selected point pairs,
which is time-consuming, labor-intensive, and subjective. Therefore, there is an urgent
need for the development of a fast, accurate, and objective point cloud registration method.

In this paper, we propose an AI-based workflow to address the aforesaid problem
based on the point cloud and ortho-photo generated by the UAV photos using SfM soft-
ware, such as Pix4DMapper 4.6 and Photoscan 1.4. This workflow is implemented with
Cloudcompare, a free and open source software (https://www.danielgm.net/cc/, accessed
on 16 July 2023 ), for the point cloud registration. The innovation of this workflow is that
we first implement an AI-based object-detection model to derive the bounding boxes of
reference objects on the 2D ortho-photo, such as black/white targets, houses, and pipes.
Then, we clip the point clouds of the selected reference objects based on the coordinates
of the bounding boxes on the ortho-photo and only use these partial point clouds for
the registration. This partial registration speeds up the registration process and avoids
the potential impacts of moving objects on the registration. Finally, the transformation
matrix derived from the partial registration is applied to the whole point cloud to complete
the whole registration. We conduct experiments on the datasets that were collected for
monitoring hillslope erosion on the erosion plots of the University of Tennessee. Detailed
information on the plots is described in Section 4. Our major objective is to ensure the
high-quality registration of the point clouds generated using UAV-collected photos. This
proposed workflow can be used for other UAV-related applications as well, apart from
soil-erosion measurement.

The rest of the paper is organized as follows. Section 2 provides relevant background
studies and the motivation. Section 3 introduces our workflow and lists the algorithm
and software we used. In Section 4, we present the experimental results conducted with
our proposed workflow. In Section 5, we provide our analysis and discussion of the
proposed workflow. Finally, we summarize the conclusions and discuss possible future
development in Section 6. The codes used in our study can be found at https://github.
com/hahaBlizzard/Main-Code.git (accessed on 16 October 2023).

2. Background and Motivation

Several algorithms have been developed for 3D point cloud registration. In 1992, Besl
and his team proposed the ICP algorithm [20], which addresses the registration problem
using a point-to-point approach. The ICP algorithm iteratively computes a registration
vector through a least square quaternion operation until the error measure decreases to a
low level. However, the ICP method has been criticized for its heavy computation [23],
with a quadratic time complexity of O(NpNx), where Np and Nx represent the number of
points in the two point cloud datasets. Additionally, the point cloud data need to be given
a good initial rotation state in order to enhance the performance of the ICP method.

Since then, several variants of the ICP method have been developed to tackle the
problem from a local approach [24,25]. However, this approach introduces the issue of
local minima, which can degrade the overall performance of the algorithms. As a result,

https://www.danielgm.net/cc/
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global registration methods have been explored. Yang et al. (2016) introduced the Go-
ICP method [21], a global version of the ICP method that incorporates a nested Branch
and Bound Algorithm as a global optimization step. Furthermore, Zhou et al. (2016)
created the FGR algorithm, which also addresses the registration problem from a global
perspective [22]. Their algorithm requires computing normals of points in a point set,
which is essential for calculating the Fast Point Feature Histogram of the two point cloud
datasets. Based on these histograms, an initial correspondence set is generated, and the
global registration is achieved by solving an optimization problem.

The aforementioned algorithms have demonstrated their superiority over others in
terms of efficiency and accuracy through some conducted experiments. However, most of
those experiments have only dealt with point clouds consisting of an average of approxi-
mately 14,000 points. On the other hand, several million points are common to represent
geographic data. Registering the entire point cloud set using any of the above algorithms
takes a significant amount of time, and the resulting accuracy is often unsatisfactory be-
cause of the inclusion of changing parts, noises, different point densities, and so on. Our
proposed workflow focuses mainly on improving the registration efficiency and accuracy
of large-scale geographic data.

3. Proposed Workflow

The registration process is mathematically a coordinate transformation based on a
transformation matrix, representing offset, rotation, and scale changes. Let P be the point
cloud to be aligned and Q be the reference point cloud. Let PC and QC be the point cloud
generated from reference objects chosen from P and Q, respectively. There are several
requirements for selecting the reference object:

1. the reference object must be fixed in position;
2. the area enclosed by the reference object should include the target object for registration.
3. The appearance and location of the reference object will not change over time.

Let PT and QT be the target objects of P and Q, respectively. Suppose a registration
is performed on PC to align it to QC and the resultant transformation matrix is given as T.
Then we have the following relationship:

T(PC) = QC (1)

Note that due to the properties of reference objects, we have PT ⊆ PC and QT ⊆ QC.
Although our goal is to use the point cloud subset of the reference objects for the registration,
some points from the areas enclosed by the reference objects are also preserved in the point
cloud subset. Assuming the point cloud is well generated, the area enclosed by PC is the
same as that enclosed by QC. As the target objects from both point cloud datasets are the
same, the location of PT in PC is the same as the location of QT in QC. Moreover, since T is
linear, we have

T(PT) = T(QT) (2)

The transformation matrix generated by performing registration on the reference
objects can properly align the target object. Therefore, instead of performing the registration
on the entire point cloud, we can only perform registration on chosen stable objects to
obtain the transformation matrix and then apply it to the entire point cloud.

As illustrated in Figure 1, the whole process was separated into two parts. The first
part is to generate the 3D point clouds and 2D ortho-photos of different surveys based
on the SfM software, such as Pix4D and Photoscan. The second part is our proposed
workflow to register the point clouds of different surveys together. This part consists of
three components.

The first is to extract the stable reference objects from the ortho-photo produced by the
UAV-collected photos. We name it the reference-object-detection model.
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The second component determines the bounding box coordinates of the reference
objects in the point cloud. These coordinates are used to clip point clouds of the reference
objects from the entire point cloud. We name it the coordinate converter model.

The last component is to perform the registration of the clipped point clouds of the
reference objects and the resulting transformation matrix is then applied to the entire point
cloud. We name it the segment-registration model.

Figure 1. Complete workflow of the proposed model.

3.1. Reference-Object-Detection Model

We use the ortho-photo generated via SfM software using UAV-collected photos as
inputs for reference-object detection. The ortho-photo, usually in the tiff format, is a
geometrically corrected representation of an area of interest with the same point cloud
coordinate system. We use YOLO (you only look once) as the core algorithm of the
detection model and Roboflow as the server to deploy the YOLO algorithm. Compared to
the traditional object-detection algorithm, such as R-CNN, YOLO can employ a relatively
simple CNN architecture to compute the detected object’s bounding box directly. Generally,
the YOLO algorithm performs faster regarding the object-detection area [26].

The reference-object-detection model first opens the ortho-photo using the Python
Image library and runs a developed crop_center() function to keep the centre of the image.
Then, the model keeps decompressing the image size until it fits the size that the Roboflow
server can handle. After that, the image is sent to the AI object-detection server on Roboflow
to extract the expectant object. The detection result is a JSON file consisting of two parts:
the width and length of the compressed image and the detected object’s bounding box
width and length and its class name. After that, the model performs further processes on
the JSON file, extracting the class names from the JSON file, setting them as the dictionary
key, and displaying them on the user interface. Furthermore, under each key, it will store
two lists, coordinates and dimensions. The coordinate list contains each object’s central
XY coordinates on the image, and the dimension list contains the width and length of each
corresponding bounding box. We use these values combined with the values from the
XYZ file and TFW file, which are both created during the generation of the point cloud, to
calculate the three variables: box_bottom_left, photo_projected, and photo_bottom_left.
Their explanations are given as follows:

• box_bottom_left contains the x,y-coordinate of the bottom left point in the point
cloud dataset.

• photo_projected contains the length and width of the land shown in the cropped
ortho-photo, measured in meters.

• photo_bottom_left contains the x,y-coordinate of the bottom left point of the land
shown in the cropped ortho-photo.
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Figure 2 illustrate the example dataset for object detection. Note that the coordinates
calculated are based on the World Geodetic System. The XYZ file contains the x-, y-, and
z-coordinates of all points in the point cloud dataset. By extracting the minimum value of
them, we can find the box_bottom_left (denoted bbl) as follows:

bblx = min(x) ; bbly = min(y) (3)

Apart from that, we also need to extract maximum and minimum values of the z-
coordinate, which are needed in the crop stage later. The TFW file contains six parameters
related to the properties of ortho-photo, namely the pixel size in the x-direction (denoted
pixelx), the pixel size in the y-direction (denoted pixely), the x-coordinate of the upper left
corner (denoted pulx), the y-coordinate of the upper left corner (denoted puly), the rotation
parameter for the x-axis, and the rotation parameter concerning the y-axis. We only use the
first four parameters. Note that the length and width of the entire ortho-photo is given by:

lengthfull = pixely × im_length (4)

widthfull = pixelx × im_width (5)

The value stored in photo_projected is calculated by:

length = lengthfull × resize_h (6)

width = widthfull × resize_w (7)

where im_length, im_width can be obtained from the properties of ortho-photo and
resize_h, resize_w corresponds to the value used in the crop_center() function. The
photo_bottom_left (denoted pbl) can be found via the following formulas:

pblx = pulx +
1− resize_w

2
×widthfull (8)

pbly = puly −
(

1− 1− resize_h
2

)
× lengthfull (9)

(a) Ortho-photo (b) Point Cloud (c) Ortho-photo on Point Cloud

Figure 2. The ortho-photo and point cloud of three erosion plots located in the University of Tennessee
Plant Science unit of the East Tennessee AgResearch and Education Center. The ortho-photo (a) and
point cloud (b) are generated by Pix4Dmapper. The point corresponding to box_bottom_left is
marked on (b). (c) The position of the ortho-photo inside the point cloud. The value of height
and width corresponding to photo_projected and the point corresponding to photo_bottom_left are
marked in (c).
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3.2. Coordinate Converter Model

From the previous component, we obtained the properties of bounding boxes for
reference objects in the ortho-photo. These bounding boxes can be used to extract the point
clouds of the detected reference objects. Before doing that, a noise removal algorithm is
applied to remove outliers from the point cloud. The outliers or noise points are generated
when employing the SfM software, such as Pix4D and Photoscan, for the reconstruction of
the point cloud, due to the bad quality (overexposure, underexposure, or blurred images) of
some photos (Figure 3). As previously mentioned, the 3D point cloud data of a geographic
area are usually a large dataset. Employing traditional statistical approaches like distance-
based or density-based calculations imposes a substantial computational burden [27] for
large datasets. Furthermore, the density-based approach fails to remove a dense noise
set, like the example shown in Figure 3, effectively. Hence, we develop a standard score
method for noise removal. Note that this noise-removal method is restricted to flat land
only; in this case, instead of calculating the Euclidean distances between each pair of points,
we only consider the z-coordinates of the entire point cloud for noise removal. We make
this noise-removal step an optional step. The users can also implement other methods for
noise removal in other topographic settings.

Figure 3. A point cloud of our test area generated by Pix4D with a dense noise set (the part circled in
blue) because of bad photo quality.

Assume a point cloud A. Traversing all points p in A, we first calculate z̄, the mean
value of z-coordinates, using the formula:

z̄ = ∑
p∈A

pz

NA
(10)

where pz is the z-coordinate of point p, and NA is the number of points in A. The standard
deviation σz is given by:

σz =

√√√√ ∑
p∈A

(pz − z̄)2

NA
(11)

and the cleaned point cloud A′ is obtained by selecting the points that fall within a specified
range of z-coordinate values. A formal definition is given as follows:

A′ := {p ∈ A | pz ≤ z̄ + 2× σz and pz ≥ z̄− 3× σz} (12)
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Note that the multiplier of sigma can be modified if the target object for registration is
also cropped out.

The width and length of the bounding boxes are given in pixels from the reference-
object-detection model. It is necessary to convert these values to meters to be consistent
with the coordinate system of the point cloud. Several calculations are developed for
this conversion.

3.2.1. Projection

The coordinates of the detected objects in the reference-object-detection model only
refer to the pixel coordinates (columns and rows) of the ortho-photo, not the geographic
coordinates of the SfM reconstruction. Thus, we need a project function to map the pixel-
based coordinates of the detected objects to the geographic coordinates (the UTM projection
in this study) based on the World Geodetic System. The Coordinate Cropping Model
will start when the user chooses the class names on the interface and consists of one
primary function, crop_coordinate(). The crop_coordinate() is the function that controls the
Coordinate Cropping Model’s whole workflow. The crop_coordinate() function calculates
the projected coordinates on the point cloud using the variable photo_bottom_left and
box_bottom_left, and stores them in the array projected_reference_center and also the
range of their corresponding bounding box is stored in the reference_box array. After
that, we pass the projected_reference_box and reference_box arrays along with the Z range
of the original point cloud to the function crop_las_file(). The point cloud cropping and
generating process will be covered in the next part.

3.2.2. Cropping

This component employs an iterative process, analyzing tuples within the ‘projected_
reference_center’ and ‘reference_box’ arrays. Each iteration entails reading the point
cloud file via the ‘pylas.read()’ library, storing the point cloud data in the variable ‘las’.
Subsequently, a 2D NumPy array named ‘points’ is generated by vertically stacking the
‘x’, ‘y’, and ‘z’ coordinates of the points in the ‘las’ object. Each row in the ‘points’ array
represents a 3D point. The array is then transposed using ‘.T’ to ensure the appropriate
shape. The model acquires half of the bounding box’s x and y dimensions from the
‘reference_box’ list. With this information, the program computes the minimum and
maximum bounding coordinates of a 3D box (bounding box) centered around specific
coordinates within the point cloud, enabling filtering points within the bounding box. This
is accomplished through the use of NumPy’s logical comparison, where each point in
the ‘points’ array is assessed to check if its coordinates (x, y, z) are greater than or equal
to ‘min_bounds’ and less than or equal to ‘max_bounds’. Subsequently, a Boolean mask
(‘mask’) is applied to the ‘las.points’ attribute, which is a 2D array containing all point
data, including x, y, z, and other attributes within the ‘las’ object. This process results in
the retention of points exclusively within the specified bounding box, while discarding the
remaining points (known as bounding box cropping).

3.3. Segment Registration Model

Two existing models are primarily applied in cloud registration: ICP and FGR. The
two algorithms are conveniently integrated into CloudCompare. However, it is crucial
to understand the principles behind these methods and effectively adjust the data and
parameters to improve running time and registration accuracy.

We have developed comprehensive workflows for both FGR (Figure 4) and ICP
(Figure 5) algorithms, aiming to enhance the clarity and comprehensibility of each step in
the registration process. In terms of the data size, those two methods perform differently
based on their principles.

The FGR method is renowned for its exceptional computational efficiency, especially
when handling large point clouds. Unlike other registration algorithms with potentially
higher time complexities, the FGR method maintains a linear time complexity in the order
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of points (O(n)). This advantage makes it particularly well suited for large-scale point
cloud registration. Furthermore, the FGR method’s iterative and data-parallel nature makes
it highly amenable to parallelization, harnessing the power of multi-core processors or GPU
acceleration. This parallel processing capability significantly accelerates the registration
process, rendering the FGR method even more favorable for large-scale point cloud align-
ment tasks. As a result, the FGR method stands out as an ideal choice when dealing with
extensive datasets, offering both computational efficiency and parallelization advantages.

Figure 4. Workflow of FGR.

Figure 5. Workflow of Iterative Closest Points.
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ICP, in contrast, performs better when there are fewer points to match and optimize.
ICP converges more quickly to an acceptable alignment. In each iteration, the algorithm
aims to minimize the distance between corresponding points, and with fewer points, this
process becomes more efficient, leading to faster convergence. The time complexity of ICP
is generally linear concerning the number of points in the datasets. Therefore, when fewer
points exist, the algorithm’s computational load is reduced, making it more efficient for
small point clouds. In addition, finding correspondences between two point clouds is a
crucial step in the ICP algorithm. With fewer points, the search for corresponding points
becomes less complex and time-consuming, enhancing the accuracy of the alignment. The
quality of the initial alignment estimate can influence the outcome of ICP as well.

Based on the above discussion, the segment registration model serves the function
of determining the appropriate registration method to apply by evaluating the attributes
of the cropped point cloud. As described in Section 4, we recommend that when the
cropped point cloud contains a relatively small number of points, ICP is a better choice for
registration. Conversely, if the cropped point cloud is substantial in size, FGR is a better
option. Although the time complexity of the ICP and the FGR methods remains O(n2) and
O(nlogn), respectively, the sample size n is greatly reduced by just using the point clouds
of the reference objects. Hence, the operation time can be improved.

4. Experimental Results

We evaluate the performance of our proposed workflow based on the UAV data
collected from three erosion plots at the Plant Science unit of the East Tennessee Research
and Education Center (ETREC), University of Tennessee. With an approximate length
of 21 m, a width of 6 m, and a slope of 15 percent, these plots were designed to be
hydrologically isolated with a sediment capturing system installed at the bottom [28,29].
These plots were used for testing the detection limit of TLS and UAVs on bare hillslope
erosion [28]. They were maintained to be largely free of vegetation [29]. Several sets of
UAV data were collected from these plots from 2019 to 2021. Six concrete mounting points
were installed at the corners of each plot as fixed locations for placing ground targets.
Four black/white ground targets were placed on the four corners of these plots during
each UAV flight. A DJI Mavic Pro drone was used to map the area with a double grid
flight mission designed using the Pix4DCapture App. This flight mission was designed to
enhance the 3D reconstruction of the topography. In each survey, the drone flew at a height
of approximately 10 m above the ground, achieving a ground sampling distance (GSD) of
the photo of about 0.35 cm/pixel. After collecting the photos, we used the Pix4DMapper
to reconstructed the 3D point clouds and ortho-photos, based on the default settings for
standard 3D mapping. Specifically, Pix4DMapper used a photo-size-reduction factor of 1

2
to speed up the reconstruction. This setting also allowed the average spacing of the point
cloud to be tailored according to the resolution of the UAV photos, thereby facilitating a
more accurate and detailed 3D reconstruction. The average spacing of the point cloud
generated using this setting is about 1.2 to 1.4 cm.

In our test cases, the reference objects are chosen to be House (tent), Pipe, and Drone
targets. The values of resize_h and resize_w corresponding to the crop_center() function
are both set to 70%. To cope with the condition of the survey site, several steps are added
beyond the Coordinate Converter Model to handle different detected objects. For instance,
when the object identified is a ‘House’, the model processes the object as mentioned in the
previous section. Upon the completion of the ‘House’ object’s processing, the program
proceeds to handle the other two types of objects, namely ‘Drone targets’ and ‘Pipe’.
Specifically, white color segmentation and noise removal are executed for the ‘Drone
targets’ and ‘Pipe’ objects. This is particularly significant for the ‘Pipe’ point cloud, as it is
susceptible to noisy points introduced during bounding box cropping.

Further processing is also performed if the object is a ‘Drone targets’. Specifically, the
model calculates the center point of the segmented point cloud (white points). Then, the
center point is returned to the unsegmented drone point cloud. Leveraging the NumPy
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‘argpartition()’ function, the indices of the 500 points closest to the center are identified.
These indices are then used to crop the sub-point cloud from the drone point cloud and
store it in the predefined directory. After that, all the cropped drone point clouds are
combined into one for future transformation matrix calculation convenience.

We test the performance of our proposed workflow based on four sets of data, which
record the topographic change of the erosion plots over about one year from 4 September 2020
to 8 September 2021. In each set of data, we use approximately 300 pictures taken by the
same DJI Mavic Pro to generate the point cloud. The details of the point cloud are listed in
Table 1. The erosion plots experienced minor topographic changes over this period due
to the rainfall events. During this period, the sediments captured at the bottoms of these
three erosion plots ranged from 540 to 1300 kg, corresponding to the average erosion
depths (topographic changes) of 2.3 to 5.1 mm over the plots. Note that two UAV surveys
(set 1 and set 2) were conducted on the same date of 4 September 2020, allowing for the
assessment of the registration accuracy of the two point clouds from the ‘same’ topography.
With the whole point cloud, we can detect and extract houses, pipes, and drone targets.
Figure 6 shows how these objects are marked on the ortho-photo. In all four datasets,
there are four black/white targets, three pipes and three houses (tents) to choose from as
reference objects. In Figure 6 , the purple boxes are the bounding boxes for the Houses
(Tents), and the red bounding boxes with blue labels represent the Pipes. Last, the green
bounding boxes with green labels are for the drones located at the four corners of the plots.
Each bounding box contains a label on the left upper corner, which contains the class name
of its objects, which is House, Pipe, and Drone for our case. Besides the class name, it also
shows the confidence level of the detected objects. An enlarged version of the same figure
is shown in Appendix A. The object-detection process takes 6 s, and the extraction of the
partial point cloud of these reference objects takes around 10 s for the test data.

Figure 6. Reference objects detected from the ortho-photo. The object marked as the drone class are
the black/white ground targets.
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Table 1. The four datasets used for the performance test.

Number of Points Average Point Spacing (m)

4 September 2020 (set 1) 16,355,234 0.011

4 September 2020 (set 2) 17,838,314 0.012

23 April 2021 16,536,909 0.014

8 September 2021 15,201,529 0.012

Both the ICP and FGR methods are performed on the partial point cloud of extracted
reference objects. Since ICP is a local method while FGR is a global method, we use
the segmented point cloud containing only black/white targets for ICP, while we use
the segmented point cloud formed with black/white targets, houses, and pipes for FGR.
Figure 7 shows the segmented point cloud that we extracted for registration.

(a) Original Point Cloud (b) Segmented Point Cloud
with black/white targets

(c) Segmented Point Cloud
with black/white targets,
houses, and pipes

Figure 7. The original point cloud (a) and the segmented point clouds used for ICP (b) and FGR
(c) registrations. The ”+” indicates the center location of the view in CloudCompare.

Since our focus of the registration is on the three erosion plots and the cars that
we parked were at different locations on different dates of the survey, which affect the
accuracy assessment of the registration, we crop the point clouds to the extent of the
three erosion plots as illustrated in Figure 8f for the accuracy assessment. We name it
the entire cropped point cloud in the following part of the paper. In general, running
ICP on the partial point cloud takes around 5 s, while performing ICP on the entire
cropped point cloud takes around 50 s. For the FGR method, we have to compute the
normals of the partial point cloud before registration. We compared the outcome of normal
approximation by employing the Hough Transform [30] and the built-in calculator in
CloudCompare and the latter one performs better. The normal approximation process
takes around 40 s. Once the normals are derived, the FGR method is applied, which takes
around 75 s to accomplish. However, it is essential to note that during a preliminary test
on the entire cropped point cloud, the normal approximation process alone consumes
about 40 min and the registration stage takes more than five hours to operate. Hence,
we do not consider the FGR on the entire cropped point cloud as a practical approach
for real-time applications and exclude it from our tests. The test results are listed in
Tables 2–4. We denote D as the point cloud formed by drone targets, P as the point cloud
formed by pipes, H as the point cloud formed by houses, and E as the entire cropped
point cloud. Note that we need to merge all the desired reference objects into one point
cloud before performing registration. For each pair of point clouds, we evaluate the mean
distance, calculated using Euclidean distance, between each pair of erosion plots and make
the maximum value the Distance. Moreover, the Standard Deviation (SD) is calculated
using the pairs with the maximum mean distance. All distance and standard deviation
values listed in the tables are based on the calculations for the entire cropped point cloud.



Remote Sens. 2023, 15, 5163 12 of 18

Figure 8. The two point clouds (4 September 2020 (set 2) and 8 September 2021) at each stage
of the ICP registration based on our proposed workflow: The point cloud of segmented objects
(drone ground targets, pipes, and houses) before registration (a). A screenshot of the transformation
matrix for the registration in CloudCompare (b). The registered point clouds of the drone ground
targets (c). (d,e) The positions of all the point clouds before and after applying the transformation
matrix, respectively. (f) The three erosion plots after registration and (g) a swath profile along the red
line marked on (f). A and B are the start and end points of the swath profile. The ”+” indicates the
center location of the view in CloudCompare.

Table 2. The data collected on 8 September 2021 are aligned with those collected on 23 April 2021.
D denotes the extracted point cloud of drone targets; D, P, and H denote the extracted point cloud of
pipes, drone targets, and houses; E denotes the entire (original) point cloud.

ICP on D ICP on E FGR on D, P and H

Distance (m) 0.0018 0.6286 0.0419

Standard Deviation (m) 0.0155 0.7997 0.0639

Table 3. The data collected on 4 September 2020 (set 2) are aligned with those collected on 8 September
2021. D, P, H, E are the same as Table 2.

ICP on D ICP on E FGR on D, P and H

Distance (m) 0.0015 0.9173 0.0396

Standard Deviation (m) 0.0144 1.0871 0.0623

Table 4. Two sets of data are both collected on 4 September 2020; 4 September 2020 (set 1) is aligned
with 4 September 2020 (set 2). D, P, H, E are the same as Table 2.

ICP on D ICP on E FGR on D, P and H

Distance (m) 0.0001 0.0005 0.0329

Standard Deviation (m) 0.0041 0.0086 0.0595
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Figure 8 showcases the results (the alignment and the cross-section of the plots) ob-
tained from our proposed workflow using the ICP registration. Note that the two point
clouds are apparently in very different locations in CloudCompare with a large offset
(about 78.7 m for this case). This offset does not indicate the real distance between the
two point clouds. CloudCompare applies a global shift to convert a point cloud with
big coordinates (>100,000) to a local coordinate system with smaller coordinates to keep
the original precision of the coordinates and speed up the computation. The application
of this global shift may cause the two point clouds from a same area to be apart from
each other due to the impact of noise points on the extent of each point cloud. Please
check the CloudCompare online manual for details. These results indicate an effective
registration of the two point clouds based on the ICP registration using the black/white
targets. The mean point–point cloud distances are about 0.15 cm (SD = 1.4 cm) to 0.17 cm
(SD = 1.5 cm) for the point clouds of different times. The mean point–point cloud distance
is only 0.01 cm (SD = 0.4 cm) for the two point clouds on September 4, 2020, suggesting a
highly accurate registration.

Figure 9 demonstrate the registration results using the FGR method. The registration
also looks effective although the mean point–point distances are about 3 to 4 cm with
standard deviations of around 6 cm (Tables 2–4).

Figure 9. The two point cloud files (4 September 2020 (set 2) and 8 September 2021) at each stage
of the FGR based on our proposed workflow. The point cloud of segmented objects (drone ground
targets, pipes, and houses) before registration (a). A screenshot of the transformation matrix for the
registration in CloudCompare (b). The registered point clouds of segmented objects (c). (d,e) The
positions of all the point clouds before and after applying the obtained transformation matrix,
respectively. (f) The three erosion plots after registration and (g) a swath profile along the red line
marked on (f). A and B are the start and end points of the swath profile. The ”+” indicates the center
location of the view in CloudCompare.

We apply the ICP method directly to the entire cropped point cloud (Figure 10a). As
illustrated, the registration is not effective with a noticeable shift observed for the grey
triangular object (collection triangle), demonstrating that directly applying the ICP method
to the entire point cloud fails to produce satisfactory registration. The ICP registration
using the segmented point cloud, consisting of black/white targets, pipes, and houses, also
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falls short of our expectations with a mean distance of 0.425 m between the three erosion
plots of the two point clouds (Figure 10b).

Figure 10. The cropped three erosion plots after performing the ICP registration on all the point
clouds (a) and on the point clouds of segmented drone ground targets, pipes, and houses (b). Both
registrations are carried out by aligning the data collected on 4 September 2020 (set 2) with those
collected on 8 September 2021. For (a), the distance between the 2 sets is about 0.917 m (Table 3). For
(b), the distance between the 2 sets is about 0.425 m.

5. Discussion

The average spacing of the point clouds from our test area is about 1.2 to 1.4 cm,
indicating that any detailed horizontal changes less than this average spacing are likely not
to be detected. However, it is hard to evaluate the accuracy of the changes in elevation. As
listed in Table 4, the cloud-to-cloud distance from the two point clouds generated using
the two UAV flights on the same day reached 0.1 mm for the registration based on the four
drone targets (ICP-D) and 0.5 mm for the registration based on the entire cropped point
cloud (ICP-E). Since the registration is performed on two datasets on the same day, we
can treat the reconstructed topography as the same surface and neglect the impact of soil
erosion and grass changes. Thus, the cloud-to-cloud distance of 0.1 mm for ICP-D and
0.5 mm for ICP-E only represent the registration error, indicating a very high registration
accuracy in horizontal distance and elevation. The cloud-to-cloud distance from the point
clouds generated using the two UAV flights about one year apart includes both registration
error and the impacts of soil erosion on the surface and different grass conditions outside
of the plots. In the case listed in Table 3, the cloud-to-cloud distance reached 1.5 mm for
ICP-D, about 15 times higher than the registration error of 0.1 mm from the same day. It
is still a very accurate registration because even though we could put the black/white
ground targets on the same spots of the concrete mounting points, the orientation and
slope of each target were slightly different each time, affecting the registration. In addition,
the grass conditions near the plots were also slightly different during the two survey
periods and the soil surface within the plots also experienced 2.3 to 5.1 mm erosion on
average based on the collected sediments from each plot. All these factors affect the
calculated cloud-to-cloud distance. Note that the cloud-to-cloud distance of 1.5 mm is at
the same level of magnitude of the soil surface changes of the three plots (2.3 to 5.1 mm),
suggesting that the UAV-collected data may be capable of detecting mm-level detailed
surface changes. We acknowledge that the purpose of this study is the registration of point
clouds, and the quantification of detailed soil surface changes is beyond the scope of this
study. We recommend more work in the future to quantify detailed soil surface changes
after registering the point clouds to a high level of accuracy using our proposed workflow.

Among the test results, the application of the ICP method on the partial point cloud
of black/white targets stands out as the most effective. It outperforms the others in both
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time efficiency and registration accuracy, with an average distance smaller than the average
point spacing of the datasets (Table 1). These registration targets were placed at the same
concrete mounting points during each survey, which is relatively stable compared to the
tents covering the sample collection systems (houses). The pipes have relatively stable
features, but extracted pipe point clouds include a significant amount of points from the
nearby grasses. Additional cleanup of the pipe point clouds may improve the registration
accuracy. In addition, the use of only black/white targets reduced the size of the point
clouds for registration, reducing the chances of encountering a local minima problem.
In contrast, the error incurred when applying the ICP to the entire point cloud is about
600 times greater than the registration applied solely to black/white targets. This indicates
that applying the ICP method to a large point cloud dataset is not stable.

Regarding the FGR method, it performs significantly faster under our proposed work-
flow, with a reasonable error. This advantage becomes particularly important when dealing
with large datasets, where processing time plays a critical role in real-world applications.
As shown in Tables 2 and 3, applying the FGR method with our proposed workflow results
in a lower error when compared with the registrations using the ICP method on the entire
point cloud. It is possible that applying the FGR method to the entire point cloud may yield
a slightly higher accuracy. However, it may take a significantly long time to process the
registration for the entire dataset. Thus, we believe that it is more practical to apply the
FGR method under our workflow.

In our test cases, the black/white targets prove to be an optimal choice for reference
objects, enabling the successful application of the ICP method within our workflow. This is
due to their fixed positional nature and suitability for segmentation, reducing the negative
impact of noises and non-target points on the registration. However, it is important to note
that this approach is contingent on the availability of such objects. In scenarios where such
objects are absent, the FGR method may be more reliable in the registration.

Our test data were collected from a relatively flat hillslope. However, we believe that
this AI-based workflow can apply to other topographic settings like steep topography, as
long as stable ground target objects are detectable. The transformation matrix is generated
from the registration of partial point clouds of detected stable objects, which remain
unaffected by steep topography. We employed a simple Z-threshold approach to remove
the noise because of its efficiency in our test data. This noise-removal method may not be
suitable for cases involving steep topography, as the variation of z-values becomes much
larger. This noise-removal step is optional and the users can implement other methods for
noise removal in those topographic settings.

Despite the good performance of our model on large dataset registration, improve-
ments are still needed to enhance its capabilities. First, the object-detection model can be
trained further so that it can detect a wider variety of objects that may exist in different
topographic settings. Presently, the model is only trained to detect three types of objects,
namely the black/white target for UAV drones, pipes, and houses (tents). However, these
targets may not appear in other areas for registration. Furthermore, we can employ parallel
computing techniques to optimize the efficiency of our model. With parallel processing
power, we can magnificently speed-up tasks such as noise removal while mitigating the risk
of buffer overflow at the same time. Finally, we can make this workflow more accessible
and user-friendly by building a plugin in CloudCompare with more customized interfaces.
At present, users are required to manually apply the resultant transformation matrix to reg-
ister the entire point cloud, which can be time-consuming. Automating all steps related to
this AI-based workflow could streamline the registration process and significantly improve
the usability and efficiency of this workflow.
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6. Conclusions

The Iterative Closest Point (ICP) and Fast Global Registration (FGR) algorithms are
common approaches used for point cloud registration. However, they are not specifically
designed to handle large point cloud datasets. To address this limitation, we develop an
AI-based workflow to extract stable reference objects and then only use the partial point
clouds from the stable reference objects to enable accurate and effective registration of
large point cloud data. This workflow ensures a more controlled and focused registration
process, specifically tailored to the reference objects of interest. This targeted approach
minimizes the possibility of errors or inaccuracies, contributing to a more reliable and
robust registration.

One of the key advantages of our proposed workflow is its flexibility. Users are allowed
to select their own reference objects for the registration process. By incorporating both ICP
and FGR methods into our proposed workflow and applying them to smaller point cloud
segments, we can efficiently align point clouds while mitigating the risk of encountering
local minima issues. Although this workflow is demonstrated for the registration of the
same erosion plots with a relatively flat topography at different times, it has the potential
to be used for the registration of UAV-produced point clouds in other topographic settings.
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Appendix A. Detected Image

Figure A1. This is an enlarged version of the detected_image demonstrating the result of object detection.

References
1. Eltner, A.; Schneider, D. Analysis of different methods for 3D reconstruction of natural surfaces from parallel-axes UAV images.

Photogramm. Rec. 2015, 30, 279–299. [CrossRef]
2. Cândido, B.M.; Quinton, J.N.; James, M.R.; Silva, M.L.N.; de Carvalho, T.S.; de Lima, W.; Beniaich, A.; Eltner, A. High-Resolution

Monitoring of Diffuse (Sheet or Interrill) Erosion Using Structure-from-Motion. Geoderma 2020, 375, 114477. [CrossRef]
3. d’Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.B. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco.

Remote Sens. 2012, 4, 3390–3416. [CrossRef]
4. Pavlis T.L.; Serpa L.F. Accuracy of Structure-from-Motion/Multiview Stereo Terrain Models: A Practical Assessment for

Applications in Field Geology. Geosciences 2023, 13, 217. [CrossRef]
5. Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating multispectral images and vegetation indices for

precision farming applications from UAV images. Remote Sens. 2015, 7, 4026–4047. [CrossRef]
6. Patil, M.; Saha, A.; Pıngale, S.M.; Rathore, D.S.; Goyal, V.C. Identification of potential zones on the estimation of direct runoff

and soil erosion for an ungauged watershed based on remote sensing and GIS techniques. Int. J. Eng. Geosci. 2023, 8, 224–238.
[CrossRef]

7. Li, M.; Nan, L.; Smith, N.; Wonka, P. Reconstructing building mass models from UAV images. Comput. Graph. 2016, 54. [CrossRef]

http://doi.org/10.1111/phor.12115
http://dx.doi.org/10.1016/j.geoderma.2020.114477
http://dx.doi.org/10.3390/rs4113390
http://dx.doi.org/10.3390/geosciences13070217
http://dx.doi.org/10.3390/rs70404026
http://dx.doi.org/10.26833/ijeg.1115608
http://dx.doi.org/10.1016/j.cag.2015.07.004


Remote Sens. 2023, 15, 5163 18 of 18

8. Yakar, M.; Dogan, Y. 3D Reconstruction of Residential Areas with SfM Photogrammetry. In Proceedings of the 1st Springer
Conference of the Arabian Journal of Geosciences (CAJG-1), Sousse , Tunisia, 12–15 November 2019; pp. 73–75.

9. Fonstad, M.A.; Dietrich, J.T.; Courville, B.C.; Jensen, J.L.; Carbonneau, P.E. Topographic structure from motion: A new develop-
ment in photogrammetric measurement. Earth Surf. Process Landforms 2012, 38, 421–430. [CrossRef]

10. Smith, M.W.; Carrivick, J.L.; Quincey, D.J. Structure from motion photogrammetry in physical geography. Prog. Phys. Geogr. Earth
Environ. 2015, 40, 247–275. [CrossRef]

11. Eltner, A.; Kaiser, A.; Castillo, C.; Rock, G.; Neugirg, F.; Abellán, A. Image-based surface reconstruction in geomorphometry—merits,
limits and developments. Earth Surf. Dyn. 2016, 4, 359–389. [CrossRef]

12. Javernick, L.; Brasington, J.; Caruso, B. Modeling the topography of shallow braided rivers using Structure-from-Motion
photogrammetry. Geomorphology 2014, 213, 166–182. [CrossRef]

13. Wójcik, A.; Klapa, P.; Mitka, B.; Piech, I. The use of TLS and UAV methods for measurement of the repose angle of granular
materials in terrain conditions. Measurement 2019, 146, 780–791. [CrossRef]

14. Ouédraogo, M.M.; Degré, A.; Debouche, C.; Lisein, J. The evaluation of unmanned aerial system-based photogrammetry and
terrestrial laser scanning to generate DEMs of agricultural watersheds. Geomorphology 2014, 214, 339–355. [CrossRef]

15. Candan, L.; Kaçar, E. Methodology of real-time 3D point cloud mapping with UAV lidar. Int. J. Eng. Geosci. 2023, 8, 301–309.
[CrossRef]

16. Karatas, L.; Dal, M. Deterioration analysis of historical village house structure in Mersin Kanlıdivane archaeological area by UAV
method. Mersin Photogramm. J. 2023, 5, 32–41. [CrossRef]

17. Barbasiewicz, A.; Widerski, T.; Daliga, K. The analysis of the accuracy of spatial models using photogrammetric software: Agisoft
Photoscan and Pix4D. In E3S Web of Conferences ; EDP Sciences: Les Ulis, France, 2018; Volume 26, p. 00012. [CrossRef]

18. Yilmaz, C.S.; Yilmaz, V.; Güngör, O. Investigating the performances of commercial and non-commercial software for ground
filtering of UAV-based point clouds. Int. J. Remote Sens. 2018, 39, 5016–5042. [CrossRef]

19. Alidoost, F.; Arefi, H. Comparison of UAS-based photogrammetry software for 3D point cloud generation: A survey over a
historical site. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-4/W4, 55–61. [CrossRef]

20. Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256.
[CrossRef]

21. Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A globally optimal solution to 3D ICP point-set registration. IEEE Trans. Pattern Anal.
Mach. Intell. 2016, 38, 2241–2254. [CrossRef]

22. Zhou, Q.; Park, J.; Koltun, V. Fast global registration. In Proceedings of the 14th European Conference (ECCV 2016), Amsterdam,
The Netherlands, 11–14 October 2016; pp. 766–782.

23. Jost, T.; Hügli, H. Fast ICP algorithms for shape registration. In Proceedings of the 24th DAGM Symposium, Zurich, Switzerland,
16–18 September 2002; pp. 91–99.

24. Fitzgibbon, A.W. Robust registration of 2D and 3D point sets. Image Vis. Comput. 2002, 21, 1145–1153. . [CrossRef]
25. Granger, S.; Pennec, X. Multi-scale EM-ICP: A fast and robust approach for surface registration. In Proceedings of the 7th

European Conference on Computer Vision (ECCV 2002), Copenhagen, Denmark, 28–31 May 2002; pp. 418–432.
26. Joiya, F. Object detection: Yolo vs Faster R-CNN. Int. Res. J. Mod. Eng. Technol. Sci. 2022, 4, 1911–1915. [CrossRef]
27. Hodge, V.J.; Austin, J. A survey of outlier detection methodologies. Artif. Intell. Rev. 2004, 22, 85–126. [CrossRef]
28. Bailey, G.; Li, Y.; McKinney, N.; Yoder, D.; Wright, W.; Washington-Allen, R. Las2DoD: Change Detection Based on Digital

Elevation Models Derived from Dense Point Clouds with Spatially Varied Uncertainty. Remote Sens. 2022, 14, 1537. [CrossRef]
29. Bailey, G.; Li, Y.; McKinney, N.; Yoder, D.; Wright, W.; Herrero, H. Comparison of Ground Point Filtering Algorithms for

High-Density Point Clouds Collected by Terrestrial LiDAR. Remote Sens. 2022, 14, 4776. [CrossRef]
30. Boulch, A.; Marlet, R. Fast and robust normal estimation for point clouds with sharp features. Eurographics Symp. Geom. Process.

2012, 31, 1765–1774. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/esp.3366
http://dx.doi.org/10.1177/0309133315615805
http://dx.doi.org/10.5194/esurf-4-359-2016
http://dx.doi.org/10.1016/j.geomorph.2014.01.006
http://dx.doi.org/10.1016/j.measurement.2019.07.015
http://dx.doi.org/10.1016/j.geomorph.2014.02.016
http://dx.doi.org/10.26833/ijeg.1178260
http://dx.doi.org/10.53093/mephoj.1290231
http://dx.doi.org/10.1051/e3sconf/20182600012
http://dx.doi.org/10.1080/01431161.2017.1420942
http://dx.doi.org/10.5194/isprs-annals-IV-4-W4-55-2017
http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1109/TPAMI.2015.2513405
http://dx.doi.org/10.1016/j.imavis.2003.09.004
http://dx.doi.org/10.56726/IRJMETS30226
http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9
http://dx.doi.org/10.3390/rs14071537
http://dx.doi.org/10.3390/rs14194776
http://dx.doi.org/10.1111/j.1467-8659.2012.03181.x

	Introduction
	Background and Motivation
	Proposed Workflow
	Reference-Object-Detection Model
	Coordinate Converter Model
	Projection
	Cropping

	Segment Registration Model

	Experimental Results
	Discussion
	Conclusions
	Appendix A
	References

