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Abstract: With the rapid development of coastal cities, environmental problems are becoming
increasingly severe. Therefore, it is imminent to assess the environmental carrying capacity (ECC) of
coastal cities. We take Yueqing City, China, as the study area and establish an ECC evaluation system.
For the objectivity and scientificity of this study, the coefficient of variation-back propagation neural
network (CV-BPNN) method is used to determine the weight of the indicators and a multi-temporal
evaluation is conducted. This paper also explores the relationship between coastline changes and
ECC variations for the first time. The results indicate: (1) The ECC of Yueqing City first decreased and
then increased, and the inland ECC is better than the coastal area. The future trend is expected to rise.
(2) The coastline is continuously extending seaward, and the natural coastline retention rate gradually
declines. (3) The coupling coordination degree between the change in the ECC and the change in
the coastline shows a trend of “first fluctuation, then stability, and then decline,” and the ecological
environment situation was still challenging. (4) Based on the above results, some suggestions are put
forward to strengthen coastal ecological development and promote the sustainable development of
coastal cities.

Keywords: environmental carrying capacity (ECC); coastline; coastal cities; CV-BPNN; coupling
coordination degree

1. Introduction

China’s coastal areas make full use of its unique geographical location, convenient
transportation, and open policies to communicate with the world and become an important
window for China’s opening up [1]. In recent decades, the acceleration of urbanization
and industrialization in coastal areas has caused the destruction of the ecological envi-
ronment and seriously affected the coastal ecosystem [2]. The coastal zone is a special
zone of ocean–sea–land–air interaction, characterized by complex interface processes, rich
natural resources, and a fragile ecological environment [3]. The stability of this region
is poor, and once damaged, it will cause a series of environmental problems, bring great
pressure to the local environment, even destroy the ecological balance, and limit sustainable
development [4]. In order to quantify the impact of human activities on the environment
and seek the harmonious coexistence of man and nature, environmental carrying capacity
(ECC) has attracted the attention of scholars [5]. ECC has an important impact on social
and economic development, and scientific evaluation of ECC has important scientific and
practical significance for ensuring sustainable development of coastal areas [6].

ECC refers to the limit of the support capacity of the environment in a certain region
for human social and economic activities under a certain environmental state at a certain
period, which can quantify the ecological environment level of the study area [7]. Early
ECC research primarily obtained evaluation results through subjective weighting methods,
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such as expert scoring and the analytic hierarchy process, which affected the objectivity
of the assessment [8,9]. After entering the 21st century, with the application of emerging
technologies such as geographic information systems and spatial analysis in this field,
researchers began to carry out quantitative studies on ECC [10,11]. In order to reduce or
eliminate the negative impact of subjective factors on the evaluation results, researchers
began to apply objective weighting methods in this field [12], such as principal component
analysis, entropy weight, and so on [13–15]. In addition, due to its high precision, strong
correlation, and practical value, regional ECC has gradually become a mainstream research
direction [16–18].

In the past ten years, the theory and methods of ECC have been further expanded;
researchers continuously refine evaluation methods and have proposed the ecological
footprint theory [19–21], fuzzy reasoning and driving-pressures-state-impact-response
(DPSIR) model [22–24], and a range of valid perspectives and evaluation methods [25–27].
At the same time, ECC methods are increasingly diversified without a fixed research frame-
work [28]. According to the actual situation of the study area, the researchers constructed
the local ECC assessment system according to local conditions [29–32]. For example, the
construction of the ECC indicator system in inland and coastal areas is different, and the
research on ECC in different areas (such as forests and mining areas) also needs to be
adjusted accordingly [33,34], which reflects the development of ECC in comprehensive,
regional and broad directions [35,36]. In addition, researchers have continuously explored
the feasibility of studying ECC in various fields and have made good progress in some of
them that have not been involved in ECC, such as water resources, tourism, and resource
development, and have gradually become popular [19,37–39]. In addition, In the past five
years, the rapid development of geographic information systems has made the spatiotem-
poral dynamic analysis of ECC gradually become a research hotspot, and researchers have
begun to analyze and predict the trend of ECC [40]. According to the long-term ECC of
the study area, they select an appropriate model to obtain the development law of ECC
and predict the trend in the next few years [41]. At present, the research on ECC presents
a trend of integrating long-term monitoring results and multi-factor prediction. Using a
time-series assessment method, researchers have shown that the ECC of different regions
differs in terms of resource development and utilization intensity, environmental pollution,
etc. [42–44]. The ECC model focuses on the complementary relationship between human
and natural resources, so it has become one of the important indicators for evaluating
regional sustainable development [45,46]. These indicators include but are not limited to as-
pects such as sustainable resource use, environmental protection, and economic and social
development [47]. Therefore, these models have been widely used in the spatiotemporal
dynamic analysis of regional ECC.

The research on ECC has achieved good results, but the interaction among natural
resources, human activities, and socioeconomic development is extremely complex and af-
fected by cross-scale factors. Therefore, the study of ECC also faces the following challenges:

(1) The ECC evaluation needs improvement, especially in building differentiated indi-
cators for different regions, and its spatiotemporal analysis capability needs to be
enhanced, given its insufficient grasp of future trends.

(2) The weight of evaluation indicators is affected by subjectivity and uncertainty, and
more scientific allocation methods need to be explored.

(3) ECC evaluation should be combined with other research directions to improve com-
prehensive analysis and promote urban sustainable development.

In order to deeply solve the above challenges existing in ECC evaluation, this study
selects Yueqing City, China, as the study area, selects 18 indicators from four dimensions of
environment, society, economy, and pollution, and constructs the ECC evaluation frame-
work. The coefficient of variation-BP neural network (CV-BPNN) is used to increase
objectivity and scientificity to assign weights. We conduct an in-depth analysis of ECC’s
spatiotemporal trends and spatial differences, predict the future ECC, and further explore
the relationship between ECC changes and the coastline. This paper is committed to solv-
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ing the above problems, and its results have important implications for the sustainable
development of coastal cities.

2. Materials and Methods
2.1. Study Area

As shown in Figure 1, Yueqing City is located on the southeast coast of Zhejiang
Province, on the north bank of the Oujiang Estuary, connected to Yandang Mountain in the
northwest and Haiping Plain in the southeast. The city’s land area is 1391 km2, and its sea
area is 284.3 km2. Yueqing Bay is located at 27◦5′–28◦23′ north latitude and 120◦57′–121◦16′

east longitude.
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The city’s administrative area includes 8 subdistricts and 17 towns, with a registered
population of 326,511 households and a total population of 111,919. In 2020, Yueqing’s
GDP reached 126.301 billion yuan, an increase of 4.5% over the previous year, with the
primary, secondary, and tertiary industries increasing by 2.2%, 4.3%, and 4.9%, respectively,
and the per capita GDP reaching 95,934 yuan (about US$13,909), up 4.3%. The economic
structure of the three major industries was 1.7%, 46.9%, and 51.5%, respectively.

2.2. Available Data

In this paper, taking Yueqing City as the research area, the ECC is analyzed using
multi-temporal and multi-spectral remote sensing images. Two remote sensing images
are needed to cover Yueqing City. The specific remote sensing data from 2006 to 2020 are
listed in Table 1. To ensure the accuracy of subsequent processing, the cloud content of each
image is less than 5%. The land use data comes from the 30-m resolution data set released
by Wuhan University, rainfall data comes from the Global Rainfall dataset, and the rest of
the evaluation indicator data comes from the “Yueqing Yearbook” officially published by
the Yueqing Municipal Government.
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Table 1. Remote sensing images employed for the study area.

Serial Number Satellite Sensor Track Number Imaging Time Spatial Resolution

1

Landsat 7 ETM+

118

18 August 2006

30 m

2 18 August 2006
3 4 June 2008
4 4 June 2008
5 25 May 2010
6 25 May 2010
7 27 March 2012
8 27 March 2012

9

Landsat 8 OLI

13 June 2014
10 13 June 2014
11 17 May 2016
12 17 May 2016

13

Sentinel-2A 46

22 March 2018

10 m
14 22 March 2018
15 20 May 2020
16 20 May 2020

Before conducting the experiments, it is necessary to preprocess remote sensing images,
including radiometric calibration, atmospheric correction, cropping, mosaicking, etc. For
statistical data, visualization should be carried out using the ArcGIS 10.7 software.

2.3. ECC Response Mechanism and Technical Route of Coastal Cities

Cities are the main places where human activities are concentrated [48]. From the
perspective of urban sustainable development carrying capacity, a city is a complex, com-
prehensive system coupled with multiple elements, which can generally be divided into
environmental, social, and economic subsystems.

Coastal areas tend to be more urbanized and industrialized than inland areas, and the
ensuing environmental pollution problems are also more prominent. From the perspective
of the sustainable development carrying capacity of coastal cities, pollution is an important
issue. Urban pollution will affect the air, water, soil, ecology, and landscape of the city and
then affect the sustainable development of the urban environment. In addition, pollution is
closely related to the life and health of urban residents. Therefore, pollution can be included
in the evaluation system of ECC of coastal cities. The ECC of sustainable development
of coastal cities refers to the scale of the population and socioeconomic activities that
can be carried by the resource and environmental capacity of a certain regional space to
ensure the rational development and utilization of resources and the virtuous cycle of
resource development. In the coupling system of environment, society, economy, and
pollution (ESEP), the environment is the material basis of social and economic development.
The social and economic growth will increase the demand and pressure on the natural
environment, and the resulting pollution will have an impact on the environment. The
ecological pressure of coastal cities, especially ports and industrial centers, is more obvious.
At the same time, as the main body of material production, human beings can improve
resource utilization efficiency and pollution control capabilities by increasing investment
in the environmental system and the governance of the pollution system. Therefore, the
coordinated development of various systems is the key to ECC. The response mechanism
of ECC is shown in Figure 2.

According to the basic structure and development characteristics of coastal cities
and the response mechanism of ECC, specific evaluation indicators are selected from
4 subsystems, including 18 indicators in terms of positive and negative environments. The
specific indicators are shown in Table 2.
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Figure 2. Response mechanism of the ECC for coastal urban system coupled with environment-
society-economy-pollution.

Table 2. Comprehensive evaluation indicator system of ECC in Yueqing City.

Target Layer Subsystem Indicator Layer Unit Indicator Properties

ECC

Environment

Acid rain frequency - Negative
Rainfall mL Positive
NDVI - Positive

Humidity - Positive
Natural coastline retention rate % Positive

Forest coverage - Positive
Population density - Negative

Per capita cultivated area hm2/person Positive

Society

Industrial electricity consumption 10,000 kW·h Negative
Land use index - Negative

Environmental protection investment Yuan Positive
Comprehensive utilization rate of

Industrial waste - Positive

Economy GDP per capita Yuan Negative
Proportion of the tertiary industry - Positive

Pollution

Chemical oxygen demand (COD) Ton Negative
Industrial solid waste discharge 10,000 tons Negative

SO2 emissions Ton Negative
Discharge of wastewater 10,000 tons Negative

The entire process of this study is shown in Figure 3.
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2.4. ECC Evaluation
2.4.1. Weight Initialization and ECC Calculation

Before assigning weights to each indicator, it is necessary to standardize each indicator
due to the differences in their units and magnitudes [49]. Each indicator has either a
positive or negative impact on ECC, so the range standardization method is used to process
the data. When the indicator is positive, the formula is shown as follows:

x =
xi −min(xi)

max(xi)−min(xi)
(1)

And when the indicator is negative, the formula is shown as follows:

x =
max(xi)− xi

max(xi)−min(xi)
(2)

where x is the initial indicator of the evaluation indicator, x is the standardized value of the
evaluation indicator xi, and max(xi) and min(xi) are the maximum and minimum values
of the indicator, respectively.

After data standardization, initial indicator weights can be calculated. The CV method
assigns weights to each indicator based on the individual values and target value varia-
tions. If an indicator exhibits significant value disparities, it implies rich discrimination
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information, resulting in a higher indicator weight. On the contrary, a smaller weight is
assigned to the indicator. The formula is as follows:

Vi =
σi

∑n
i=1 xi

(i = 1, 2, . . . , n) (3)

Wi =
Vi

∑n
i=1 Vi

(4)

where Vi is the CV of the i-th indicator, σi is the standard deviation of the i-th indicator, xi
is the average of the i-th indicator, and Wi is the weight of each indicator.

The ECC of the study area can be calculated using the comprehensive index method
of the ArcGIS 10.7 raster calculator as follows [50]:

X =
n

∑
i=1

sixi (5)

where X represents the comprehensive score of the ECC, si represents the weight of the
i-th indicator, xi represents the standardized value of the i-th indicator data, and n is the
number of evaluation indicators.

2.4.2. Weight Optimization

In this study, BPNN is used to optimize index weights. The core concept of BPNN is
gradient descent, involving two phases: forward propagation and error backpropagation.
In forward propagation, input samples pass through layers, including hidden layers, and
reach the output layer. If the output does not match expectations, errors are iteratively
sent back, adjusting neuron connections via a weight matrix to minimize errors [51]. After
repeated learning, the error is finally minimized.

Applying BPNN requires inputting the numerical values of each evaluation indicator
as inputs without the need to construct a fixed model. The initial ECC evaluation results
calculated from the initial weights are used as the target output of BPNN. Through extensive
learning and training with a large number of samples, the output is compared to the
expected value. Training concludes when the error falls below a set threshold, resulting in
an adaptive BPNN. Once the ECC evaluation model is obtained, a specific set of sample
data is selected for testing [52]. The indicator weights are calculated using the connection
weights between neurons [53]. The formula is shown as follows:

si =
∑k

l=1

∣∣∣wjl

∣∣∣
∑m

i=1 ∑k
i=1|wil |

, j = 1, 2, . . . , m (6)

where wjl and wil represent the weights from the j-th node to the l-th and from the i-th
node to the l-th, respectively, si is the optimized weight of evaluation indicator i.

Finally, the ECC is calculated using the optimized weights according to the compre-
hensive index method.

2.5. ECC Trend Analysis and Prediction
2.5.1. Trend Analysis of ECC

Sen’s slope estimator is a median-based approach for long-term series analysis but
lacks significance testing for time series trends. In contrast, the Mann–Kendall method
is distribution-agnostic and robust to outliers. Combining these methods yields the
Sen–Mann–Kendall trend analysis, which incorporates significance testing for time series trends.

The Sen’s slope estimator can be calculated as follows:

β = Median
( xj − xi

j− i

)
, j > i (7)
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where the trend degree β can judge the rise and fall of the time series trend. When
β > 0, the time series shows an upward trend, and when β < 0, the time series shows a
downward trend.

The Mann–Kendall’s formula for time series X(x1, x2, x3) is shown as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
xj − xi

)
(8)

where n is the number of sequences, and sgn is the symbol function. When n < 10, the
statistic is directly used for the bilateral trend test, and when n > 10, the statistic roughly
obeys the normal distribution, and the test statistic Z is used for the trend test shown
as follows:

Z =


S−1√
VAR(S)

, S > 0

0, S = 0
S+1√
VAR(S)

, S < 0
(9)

VAR(S) =
n(n− 1)(2n + 5)−∑m

i=1 ti(ti − 1)(2ti + 5)
18

(10)

where m is the number of knots (repeated data groups) in the sequence, and ti is the width
of the knot (the number of repeated data in the first repeated data group). In this study,
a bilateral trend test is performed on the Z value. At a given significance level α, when
|Z|≥ Z1−α/2 , the trend is significant, and when |Z|≤ Z1−α/2 , the trend is not significant.

2.5.2. Prediction of ECC

In this study, ECC subsystems are predicted first, and then ECC predicted values are
obtained from the predicted values of each subsystem. This study uses MATLAB R2022b
for multi-model comparison. It starts by separately fitting subsystem scores to various
functions (e.g., polynomial regression, exponential functions, generalized linear models,
etc.). The most suitable fitting function for each subsystem is selected based on fitting errors
and practical considerations. Next, the relationship between subsystem scores and time
is employed to predict future scores. Finally, a comprehensive index method calculates
ECC scores for future years using the predicted scores from each subsystem. Hence, the
multi-model comparison method offers excellent applicability and flexibility, ensuring
accurate and reliable ECC value predictions.

The functions are calculated as follows:

y1 = a0 + a1t + a2t2 + ... + antn + ε (11)

y2 = aebt + ε (12)

g(y) = a + bt + ε (13)

where a, b represent the regression coefficient, ε is the error term, and g is a monotone
differentiable connection function, such as a logarithmic function, a logical function, etc.

We assess fitting results and prediction model accuracy using percentage error as follows:

Percentage error =

∣∣∣y− y f it

∣∣∣
y

× 100% (14)

The smaller the percentage error, the higher the accuracy of the prediction model.

2.6. Coastline Analysis
2.6.1. Coastline Extraction

In this study, we use the professional object-oriented classification method to divide
the study area into two materials, ocean and others, and then extract their boundaries as
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the coastline. Due to the uniform and stable characteristics of the ocean, it is easy to classify,
so we directly extracted the ocean, while the remaining land was classified as “others.” The
interpretation keys shown in Table 3 are first constructed.

Table 3. Remote sensing interpretation keys for the coastline.

Coastline Type Interpretation Keys Characteristics

Natural coastline
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Object-oriented classification, based on individual objects rather than pixels, diversifies
classification criteria beyond the sole reliance on spectral characteristics in remote sensing
images, reducing salt and pepper effects. Hence, this study extracts the study area’s
coastline using Trimble eCognition 9.5, a professional object-oriented analysis software [54].

Before classification, remote sensing images need to be segmented. Multi-scale seg-
mentation is employed for image segmentation, considering the spectral factor, smoothness,
and compactness of various image bands to group similar pixels into coherent objects. In
this study, aiming to extract the coastline between water and land, the modified normalized
difference water index (MNDWI) serves as the auxiliary band for image segmentation,
effectively distinguishing between water and non-water areas as follows:

MNDWI =
Green− SWIR
Green + SWIR

(15)

where Green and SWIR represent the green and short-wave infrared bands of remote
sensing images, respectively—Figure 4 shows the RGB color composite image and the
MNDWI result. The higher the value of the MNDWI, the closer it is to white, and vice
versa, the closer it is to black.

In the experiment, the three parameters are adjusted for each image, and the control
variable experiment is carried out to obtain the optimal segmentation scale of each image.
Then, we classify the segmented images and import the classified images into ArcGIS
10.7 software to extract boundaries, and finally, we obtain the coastline of the study area.
Affected by various factors, the classification results in some areas may not be satisfactory,
resulting in inaccurate coastline extraction. Therefore, it is necessary to combine the remote
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sensing images of the year and Google Earth to correct the coastline in ArcGIS 10.7 to make
it more realistic.
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2.6.2. Baseline Method

In this paper, the Digital Shoreline Analysis System (DSAS) is used to analyze coastline
changes. The analysis principle is shown in Figure 5.
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The end point rate (EPR) is calculated by dividing the distance of coastline position
movement in two periods by the time interval. The formula is as follows:

EPR(i,j) =
dj − di

4Y(j,i)
(16)

where EPR(i,j) represents the end-point variability between the profile line and the ith and
jth shoreline, while di and dj represent the distance from the intersection point of the profile
line and the ith and jth shoreline to the baseline, and4Y(j,i) is the time interval between
phase i and phase j.

The linear regression rate (LRR) refers to the linear regression fitting of the intersection
point between the profile line and the coastline using the least squares method. The slope
in the fitting formula is the coastline change rate, and the formula is as follows:

y = a + bx (17)

https://www.usgs.gov
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a =
n

∑
i=1

(xi − x)(yi − y) (18)

b = y− ax (19)

where x represents the year, y represents the spatial position of the coastline, and a repre-
sents the fitted constant intercept. And b represents the linear regression rate LRR, which is
the change in y for every change in x.

2.7. The Coupling Coordination Degree of ECC Changes and Coastline Changes

In order to better understand the overall coordination effect between subsystems and
reflect the degree of coordination, the coupling coordination degree formula is introduced:

D =
√

C×U (20)

where D represents the coupling coordination degree, and the larger D is, the better the
coupling coordination degree is. C represents coupling degree U = αUa × βUb, Ua and
Ub represent the subsystem values, respectively, and α and β represent the weights of the
two systems.

This paper divides the coupling coordination degree into 10 levels by referring to
previous research results, as shown in Table 4.

Table 4. Coupling coordination degree classification.

Coupling Coordination Degree D Coordination Level

(0.0~0.1) Extremely dysfunctional
[0.1~0.2) Severely dysfunctional
[0.2~0.3) Moderately dysfunctional
[0.3~0.4) Mildly dysfunctional
[0.4~0.5) Near dysfunctional
[0.5~0.6) Barely coordinated
[0.6~0.7) Primary coordinated
[0.7~0.8) Intermediate coordinated
[0.8~0.9) Good coordination
[0.9~1.0) Quality coordination

3. Results
3.1. ECC Results
3.1.1. Weight Determination

Due to the large amount of selected ECC indicator data, this study randomly se-
lected 8000 pixels at different locations to comprehensively evaluate ECC according to
the indicator weight determined by the VC method. After the sample data were collected
in the experiment, we selected a three-layer network structure, used MATLAB R2022b
software to build a BPNN within the range of hidden layer nodes, and used the sam-
ple data of 18 evaluation indicators for learning and training. Then, 5600 samples of the
standardized data were randomly selected for training, and the remaining 2400 samples
were randomly divided into two as the validation set and test set. After the 5600 data
training converged, the overall error of different hidden layer models was compared, and
the number of neurons in the hidden layer was finally determined to be 10. After deter-
mining the number of hidden layer nodes, we use the training data to train the model
using the Levenberg–Marquardt algorithm. Figure 6a shows that the model is trained after
84 iterations and achieves an accuracy of 9.3559 × 10−5, and Figure 6b demonstrates that
the model performs well in predicting the results of training, validation, testing, and overall
samples since all R values are over 0.9 and close to 1. After the training of all samples is
completed, the connection weights from the input layer to the hidden layer and from the
hidden layer to the input layer are obtained, and the optimized weights of each indicator
are obtained by Equation (6).
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The weights of each indicator before and after optimization are listed in Table 5. It
can be observed that the optimization weight is optimized and adjusted for individual
indicators whose initial weight is too large or too small to reduce their dependence on data.

Table 5. Weights of each indicator before and after optimization.

Target Layer Subsystem Indicator Layer Initial Weight Optimizing Weight

ECC

Environment

Acid rain frequency 0.1131 0.0573
Rainfall 0.0302 0.0428
NDVI 0.0624 0.0386

Humidity 0.0057 0.0436
Natural coastline retention rate 0.0656 0.0583

Forest coverage 0.0690 0.0523
Population density 0.0271 0.0460

Per capita cultivated area 0.0865 0.0673

Society

Industrial electricity consumption 0.0552 0.0619
Land use index 0.0433 0.0529

Environmental protection investment 0.0663 0.0575
Comprehensive utilization rate of

industrial waste 0.0330 0.0578

Economy GDP per capita 0.0474 0.0539
Proportion of the tertiary industry 0.0839 0.0654

Pollution

Chemical oxygen demand (COD) 0.0706 0.0608
Industrial solid waste discharge 0.0687 0.0599

SO2 emissions 0.0550 0.0586
Discharge of wastewater 0.0443 0.0650

3.1.2. Evaluation Results

Figure 7 shows the ECC evaluation results of Yueqing City from 2006 to 2020. The
spatial distribution characteristics of ECC have remained similar over the years. Influenced
by the terrain, the northwest part of Yueqing City is primarily mountainous, characterized
by a good ecological environment, abundant natural resources, lower population density,
and limited commercial and agricultural activities, resulting in generally higher scores
in ecological environment assessments. Yueqing City’s terrain slopes from northwest to
southeast, and the southeastern coastal areas mostly consist of plains adjacent to Yueqing
Bay. It is characterized by higher population density and higher economic and development
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levels compared to the inland areas. With the rapid development of Yueqing City, this
region’s ecological environment and natural resources are facing greater pressure, leading
to lower ECC scores in the southeastern region.
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In this study, the evaluation results are divided into five grades according to the
ECC scores: loadable (0.8, 1], weakly loadable (0.6, 0.8], critical load (0.4, 0.6], overload
(0.2, 0.4], and heavy overload (0, 0.2]. Ignoring the grading interval with very few pixels,
according to this grade, the ECC grading results of Yueqing City in different years are
listed in Table 6. From 2006 to 2020, the ECC of Yueqing City exhibited a downward trend
with fluctuations. The decline from 2006 to 2012 can be attributed to imbalanced economic
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development during a period of rapid growth driven by urbanization and economic
expansion, leading to increased resource consumption and pollution. During the “Twelfth
Five-Year Plan” period, Yueqing City focused on ecological protection and the construction
of “811” ecological civilization, achieving significant results in improving the ecological
environment and reducing pollution. By 2018, ECC had returned to the level seen in
2006. In the “Thirteenth Five-Year Plan” period, increased investments in environmental
protection, stricter enforcement of environmental laws, and heightened public awareness
led to further improvements in the ecological environment. However, due to the adverse
effects of previous rapid development, the ECC still experienced a decline in 2020. In
comparison to 2006, this period marked a partial recovery of the environment but remained
in an unstable state, underscoring ongoing challenges and contradictions in environmental
protection efforts. A significant gap persists between the current environmental quality
and public expectations.

Table 6. The grading distribution ratio and average score of the ECC every two years in Yueqing City
from 2006 to 2020.

Years 2006 2008 2010 2012 2014 2016 2018 2020

Overload (0.35–0.4) 0 0 0 11.67% 0 0 0 0
Critical load (0.4–0.45) 0 0 0 88.33% 0 0 0 13.24%
Critical load (0.45–0.5) 1.59% 0 2.39% 0 40.58% 0 0 86.76%
Critical load (0.5–0.55) 75.96% 16.15% 94.26% 0 59.42% 60.27% 16.13% 0
Critical load (0.55–0.6) 22.45% 83.85% 3.35% 0 0 39.73% 83.87% 0

Average ECC 0.5739 0.5668 0.5325 0.4179 0.5013 0.5421 0.5717 0.4728

3.1.3. Sen’s Slope Estimator and Mann-Kendall Trend Test

In this section, we superimpose the ECC evaluation results of Yueqing City from
2006 to 2020 and use Sen’s slope estimator and the Mann–Kendall trend test to analyze the
ECC’s temporal and spatial change trend and significance in Yueqing City. Figure 8 shows
the spatial changes and significant changes in ECC in Yueqing City. It can be seen from
Figure 8a that most of the study areas show a slight upward trend, while some areas show
a downward trend. Combined with remote sensing images, it can be seen that most of the
decline areas are located in the coastal areas. According to the Mann–Kendall significance
test results, it can be divided into a slight significant decrease (−1.96 < S < −0.05), no
significant (−0.05 < S < 0.05), and a slight significant increase (0.05 < S < 1.96). Figure 8b
shows the significance test plot. It can be seen that the ECC in the study area shows a slight
upward trend as a whole from 2006 to 2020, and the change is not significant in some areas
and the slight downward trend is mainly distributed in the coastal areas.

3.1.4. Prediction of ECC of Yueqing City

In this subsection, the model comparison method is used to fit each subsystem and to
find the most suitable fitting function for each subsystem. Then, these fitting functions are
used to predict the evaluation results of each subsystem from 2006 to 2020 and calculate
the ECC from 2006 to 2020 according to the predicted results. The average percentage error
of the ECC from 2006 to 2020 is calculated and shown in Figure 9. It can be seen that the
percentage error is very small, and its distribution range is also concentrated at 0–12%,
indicating that the overall accuracy of the prediction model is relatively high. Next, the
ECC of Yueqing City in 2024 and 2028 is comprehensively calculated using the predicted
scores of each subsystem in 2024 and 2028, as shown in Figure 10. From the 2-year forecast
results, the spatial characteristics of a few years in the future are basically similar to those
of 2006–2020, showing that inland areas are higher than coastal areas, and areas with high
population density are higher than areas with low population density. Table 7 lists the ECC
evaluation and prediction results of Yueqing City from 2020 to 2028. We can observe from
the table that the ECC in Yueqing City has an upward trend, and most areas may reach a
better state in 2028.
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Table 7. ECC grading prediction results every two years in Yueqing City from 2020 to 2028.

Year 2020 2024 2028

Critical load (0.4–0.45) 13.24% 0 0
Critical load (0.45–0.5) 86.76% 10.11% 1.98%
Critical load (0.5–0.55) 0 47.34% 22.44%
Critical load (0.55–0.6) 0 42.55% 75.58%

Average ECC 0.4728 0.5372 0.5709

In the context of the accelerated urbanization process, Yueqing City’s future planning
decisions are also facing great challenges. The above experimental results show that the
ECC in Yueqing City showed a recovery growth trend from 2012 to 2018, but there was a
significant decline from 2018 to 2020, and it is expected to return to an upward trajectory
from 2024 to 2028 years. To address this challenge, a series of measures strengthening
environmental protection, monitoring, management, and investment are needed. It is
also essential to improve the environmental technologies of relevant industries to reduce
emissions. For areas where environmental quality has significantly declined, more effective
measures should be taken, such as strengthening law enforcement, establishing reward and
punishment mechanisms, and promoting the development of the environmental protection
industry. As for areas with severe environmental quality deterioration, more urgent
measures are required, including restricting the operation of highly polluting enterprises,
temporarily closing heavily polluting factories and enhancing regulatory efforts to rapidly
improve environmental quality. In summary, Yueqing City needs to implement various
measures to enhance environmental quality to ensure the health and quality of life of
its residents.

3.2. Coastline Extraction Results

According to the controlled variable method, the optimal segmentation scale for
historical remote sensing images was obtained, as listed in Table 8. Then, the remote
sensing image was classified to extract the coastline, and finally, the extracted result was
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corrected by combining the remote sensing images. Partial examples of image segmentation
results and coastline extraction results are shown in Figures 11 and 12, respectively.

Table 8. Optimal segmentation scales for images at different times.

Year Segmentation Scale Shape Compactness

2006 115 0.8 0.4
2008 120 0.8 0.5
2010 110 0.9 0.5
2012 110 0.8 0.5
2014 100 0.8 0.4
2016 100 0.9 0.4
2018 150 0.7 0.3
2020 160 0.7 0.5
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According to the coastline extraction results, this study calculated the length of the
coastline over the years and used ArcGIS 10.7 software to divide the coastline into the
natural coastline and artificial coastline according to the coastline interpretation marks.
The natural coastline retention rate was calculated by the ratio of the length of the natural
coastline to the total length of the coastline. Table 9 lists the coastline length and natural
coastline retention rate from 2006 to 2020 with a step size of two years. It can be seen
that the length of the coastline has not changed much from 2010 to 2016, but the overall
trend has been increasing. Meanwhile, the retention rate of natural coastlines has shown a
downward trend. Overall, the length of the natural coastline in 2020 has been shortened by
nearly half compared with 2006.

Table 9. Coastline length and natural coastline retention rate at different times.

Year 2006 2008 2010 2012 2014 2016 2018 2020

Coastline length (km) 121.48 123.82 139.41 136.20 137.52 134.69 147.08 156.22
Natural coastline retention rate 20.63% 15.93% 14.72% 12.97% 11.95% 11.55% 8.96% 8.37%

In this study, there are 973 section lines generated based on the DSAS system. The
overall distribution of the section lines is shown by the blue markings in Figure 13. Accord-
ing to Figure 14a, it can be observed that the coastline changes of Yueqing City presented an
unstable state over the past 15 years, in which the coastlines of Wengyang Street, Yanpeng
Street, Chengnan Street, Chengdong Street, and Hongqiao Town have obvious changes,
among which the coastline change rate (LRR) around the intersection of No. 230 (Wengyang
Street) is as high as 160 m/a. The coastline change rate (LRR) around the intersection of
No. 420 (Hongqiao Town) exceeds 100 m/a, and the average coastline change rate around
Yanpan Street and Chengnan Street is 50 m/a. The peak value of the coastline change rate
in these areas is mainly due to land reclamation, port construction, wharf construction, etc.
The detailed analysis is as follows.
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As shown in Figure 14b, the change in the coastline of Yueqing City over the past
15 years presented a state of first expansion and then stability, in which the change rate was
relatively stable from 2008 to 2010, from 2014 to 2016, from 2016 to 2018 and from 2018 to
2020. The average rate in each time period was 106.3 m/a in 2006–2008, 8 m/a in 2008–2010,
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23.22 m/a in 2010–2012, 64.9 m/a in 2012–2014, −6.29 m/a in 2014–2016, and −11.1 m/a
in 2016–2018. In 2018–2020, it will be 4 m/a. The coastline changes in 2006–2008 and
2012–2014 were more drastic. Yueqing City, relying on good location advantages, has
continuously reclaimed land from the sea in Hongqiao Town, Chengdong Street, Chengnan
Street, and other areas over the past 15 years and has expanded to the sea. In order to
adapt to modern development, the local government established an economic development
zone in the coastal area of Yanpan Street and built a port pier in Hongqiao Town. As a
result, large-scale land reclamation led to a significant expansion of the coastline. Yueqing
City completed a number of ponds during 2008–2013, resulting in a dramatic increase in
the coastline in section line number 200–500 from 2006 to 2008, and the maximum rate
of coastline change is about 1000 m/a (EPR). From 2010 to 2012, at the 600 intersection
(Hongqiao Town), due to the construction of the port, the transition rate was 500 m/a.
From 2014 to 2020, because land reclamation projects have basically stopped, the coastline
has not changed significantly.
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3.3. Coupling Coordination Degree Analysis of ECC Change and Coastline Transition

We calculated the coupling coordination degree between the annual change rate of
ECC and the coastline in Yueqing City, as listed in Table 10.

Table 10. Coupling coordination degree of the ECC changes and coastline changes in Yueqing city.

District 2006–2008 2008–2010 2010–2012 2012–2014 2014–2016 2016–2018 2018–2020

Hongqiao Town 0.289 0.765 0.346 0.957 0.93 0.917 0.425
Liushi Town 0.29 0.763 0.316 0.957 0.932 0.917 0.42

Tiancheng Street 0.29 0.75 0.356 0.957 0.93 0.924 0.408
Dajing Town 0.291 0.758 0.334 0.966 0.922 0.926 0.41
Danxi Town 0.29 0.765 0.051 0.962 0.928 0.924 0.415

Yanpen Street 0.291 0.767 0.208 0.959 0.933 0.906 0.453
Qingjiang Town 0.291 0.763 0.346 0.957 0.931 0.913 0.431
Wengyang Street 0.291 0.765 0.29 0.955 0.933 0.913 0.431

Baishi Street 0.289 0.764 0.265 0.96 0.93 0.922 0.414
Xianxi Town 0.291 0.761 0.27 0.966 0.924 0.925 0.414

Chengnan Street 0.291 0.763 0.255 0.959 0.929 0.915 0.432
Lecheng Street 0.29 0.766 0.29 0.963 0.927 0.922 0.416
Shifan Street 0.291 0.757 0.229 0.962 0.926 0.925 0.419
Furong Town 0.29 0.763 0.27 0.963 0.927 0.922 0.41

Yandang Town 0.292 0.761 0.337 0.963 0.925 0.918 0.429
Beibaixiang Town 0.29 0.762 0.309 0.958 0.929 0.922 0.409
Chengdong Street 0.291 0.768 0.275 0.96 0.93 0.914 0.438

Average 0.29 0.762 0.274 0.96 0.928 0.919 0.422

The coupling coordination degree of the ecological environment and coastline in
Yueqing City has gone through several stages of evolution from 2006 to 2020, which is
closely related to the change speed of ECC and coastline. During 2006–2008, the ECC
declined at a faster rate while the coastline expanded rapidly to the sea. The superposition
of these two adverse trends resulted in relatively low coordination between the ECC and
coastline change, and the local coupling coordination degree was moderately dysfunc-
tional. During 2008–2010, although the ECC was still declining, the coastline expansion
speed slowed down. This trend indicated that the coordination between the ECC and
coastline change gradually increased, making the coupling coordination degree upgraded
to intermediate coordinated. During 2010–2012, the ECC declined at a faster rate, and the
coastline expansion rate also increased. In this case, the two adverse situations echoed
each other, decreasing the coupling coordination degree to mildly dysfunctional. During
2012–2018, the ECC maintained positive growth, which meant that the local ecological
environment continued to improve. The change rate of the coastline fluctuated and was not
obvious. On the whole, the positive change in the ECC had a more significant impact on
the coordination degree. During this period, the coupling coordination degree remained at
quality coordination. From 2018 to 2020, the ECC continued to decline while the coastline
began to expand to the sea. This combination of the deterioration of the ECC and the
adverse changes to the coastline resulted in the coupling coordination degree falling to the
level of near dysfunctional. Although it has not yet fallen to the level of 2006–2008, great
attention should be paid to local ecological and environmental protection.

3.4. Yueqing City Ecological Reconstruction

Figure 8 shows the changing trend of the ECC in Yueqing City over the past 15 years.
From the ECC evaluation results, it can be seen that over the past 15 years, the score has
declined from 2006 to 2012, recovered from 2012 to 2018, and declined again from 2018 to
2020, and the evaluation results of coastal areas are relatively poor. Among them, the
ECC scores of Wengyang Street, Yanpan Street, Chengdong Street, and Hongqiao Town
showed a downward trend or a slight upward trend. From the coastline extraction results
and the coupling coordination degree between ECC changes and coastline changes, it can
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be seen that the coastline has continuously expanded to the sea in the past 15 years, and
the changes in the coastline reflect the changing trend of the ECC in the study area to a
certain extent. Combined with the above Sen’s trend analysis, it can be found that most of
the ECC has shown a downward trend in areas where the coastline has changed greatly
in the past 15 years. These results indicate that ECC is correlated with coastline changes
to a certain extent, and the expansion of coastlines to the sea will reduce wetland area,
ecosystem service function, and water exchange capacity, thereby reducing the ECC value.
According to the literature review, a number of pond enclosure projects were completed in
Yueqing Bay between 2008 and 2013, resulting in the expansion of the coastline and the
reduction of tidal wetlands, which also affected water exchange and water quality and led
to the decline of the ECC. From 2014 to 2020, the ECC has been restored to a certain extent
due to the basic cessation of land reclamation projects, little change in the coastline, and a
series of environmental protection measures introduced by Yueqing City.

Based on the above analysis, this study has formulated the following ecological
protection and restoration plan tailored to the study area in order to maintain and improve
the natural coastline retention rate.

(1) Strict protection of the coastline

The coastlines of Dajing Town, Yandang Town, and Qingjiang Town are located in the
north of Yueqing City. The decline in the ECC in this area is small, and the retention rate
of the natural coastline is also the highest in the city. However, the coastline in this area
has not changed much over the past 15 years and has not advanced to the sea. The overall
ecological environment of Yueqing City has deteriorated. The local government should
maintain the status quo of the coastline in these areas and prohibit human activities and
land reclamation that destroy the topography of the local coastline to effectively guarantee
a safe coastline.

(2) Restricted development of the coastline

Beibaixiang Town and Liushi Town are located in the south of Yueqing City. Most of
the coastline in these areas is man-made and has a harbor. However, the coastline has not
changed much in recent years and has not suffered further damage. Hongqiao Town is
located in the middle of Yueqing City, and the coastline of the wharf has changed greatly.
For the above-mentioned areas, the local government can retain the existing coastline
development activities and no longer carry out projects to change the coastline, such as
land reclamation, and properly develop without destroying the coastline environment. In
addition, coastline management needs to be strengthened to promote coordination between
environmental protection and development.

(3) Renovation and restoration of the coastline

Wengyang Street, Yanpen Street, and Chengdong Street are located in the southeast
of Yueqing City. They are the areas where the local coastline has changed the most in the
past 15 years, and it is also the area where the ECC has declined the most. In recent years, a
large number of human engineering activities, such as land reclamation, have caused the
coastline to continue to advance towards the ocean. We should take measures to achieve the
goal of a 35% natural coastline retention rate in these areas, including stopping reclamation
activities, carrying out coastline restoration work, carrying out ecological construction on
the formed artificial coastline, retaining the coastline retreat distance, and speeding up the
restoration of ecological functions.

4. Discussion

This paper has proposed an “environment-society-economy-pollution” framework
for ECC evaluation, which is more targeted compared to previous generic frameworks
such as PSR and DPSR [16,18]. This study employed a comprehensive weighting method
combined with the BPNN to achieve a more precise evaluation of the ECC. Compared
to the conventional singular weighting method [55–57], this integrated approach exhibits
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greater objectivity and scientific rigor. Upon obtaining the comprehensive evaluation
results for the ECC, we utilized the Sen + MK method and incorporated future ECC pre-
dictions for analysis, thereby enhancing the accuracy and reliability of the spatiotemporal
analysis. It is noteworthy that prior research seldom conducted a comprehensive analysis
of the ECC [21,58,59]. Hence, this study delves deeply into the spatial prediction of ECC,
providing a more refined spatial analysis tool and decision-making support for environ-
mental protection and sustainable development. Additionally, for the first time, this paper
integrates the ECC evaluation of Yueqing City with the results of coastline extraction, thor-
oughly investigating the correlation between coastline changes and ECC [60]. This offers
a novel perspective and strategy for environmental protection and sustainable growth.
However, this study still has some shortcomings, which can be improved in future research
in the following aspects:

(1) The choice of evaluation indicators has a direct impact on the evaluation results. While
this study considered the characteristics of the research area, data availability, and
operability when selecting evaluation indicators, the selection process still possesses a
degree of subjectivity due to the multifactorial nature of environmental carrying ca-
pacity. Further research is needed to deepen our understanding of indicator selection.
Additionally, some important indicators were not included in this study due to data
acquisition difficulties. It is hoped that in the future, new methods can be developed
to obtain more comprehensive data.

(2) This study provides predictions for future ECC. However, in order to improve the
accuracy and reliability of predictions, sufficient sample support is needed. Due to the
limitation of data samples, future research should expand the data volume to enhance
the accuracy and reliability of the prediction model.

5. Conclusions

In this study, we proposed an ECC evaluation framework for coastal cities based
on the “environment-society-economy-pollution,” especially for the actual situation of
Yueqing city. By selecting 18 indicators of the four dimensions of environment, society,
economy, and pollution to evaluate the ECC of the research area from 2006 to 2020 and
analyzing the changes in the coastline in these years, we calculated and analyzed the
coupling coordination degree between ECC changes and coastline changes. In 15 years,
Yueqing city’s economy developed rapidly, urbanization level continued to increase, but
various pollutants emissions also increased. The total length of Yueqing City’s coastline
increased from 121.48 km to 156.22 km, and the natural coastline retention rate decreased
from 20.63% to 8.36%. The ECC results showed that the environmental quality experienced
the process of deterioration, improvement, and deterioration again. In the future, the ECC
is expected to continue to rise, but local ecological environment protection work should
not be taken lightly. Based on these findings, we put forward corresponding suggestions
for the ecological construction of different regions in the study area.
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