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Abstract: The transmitted beam of frequency diversity array (FDA) has the range–angle–time cou-
pling property, which has essential applicative potential in angle deception and active anti-jamming.
In this paper, the concept of time index within pulse is introduced. Firstly, the phase characteristics
of FDA-transmitted signals based on the time index within pulse concept are studied. Then, the
deceptive angle performance of FDA-transmitted signals is discussed. The theoretical analysis and
simulation results show that the phase characteristics of the FDA signal are not related to the range,
but to the time index within pulse. With the phase center as the reference point, the phase is equal as
long as the time index within the pulse is the same. Angle deception and active anti-jamming can be
achieved using the optimized frequency increment of each FDA.

Keywords: frequency diversity array (FDA); time index within pulse; phase center; angle deception;
active anti-jamming

1. Introduction

Frequency diversity array (FDA) has attracted wide attention since it was first pro-
posed [1]. Unlike phased array (PA), which transmits signals with the same carrier fre-
quency, FDA introduces different frequency increments in each array element so that the
transmitted beam is range–angle–time-dependent [2–4]. When the frequency increment
is zero, FDA simplifies to PA so that PA is a particular case for FDA. Due to the increased
freedom of range dimension and improved capacity for information processing, FDA
has potential application value in many areas, such as radar detection, positioning, and
anti-jamming [5,6].

When the frequency increment of FDA increases linearly, its transmitted beam is cou-
pled in range, angle, and time [7]. Regarding de-coupling, many scholars pay attention to
the transmitted beam with a non-uniform increase in the frequency increment of FDA. For
example, Log frequency offset [8], cubic frequency offset [9], multi-carrier frequency [10],
random frequency offset [11], time-dependent frequency offset [12,13], and genetic algo-
rithm optimization frequency increment [14] are used to achieve beam focusing. However,
these methods ignore the influence of the time factor and lead to an instantaneous beam.
The literature [15] points out that these methods ignore the signal propagation process, and
that the beam cannot only focus on a specific position in space and last for a particular time.
The literature [16] emphasizes that the propagation process of the electromagnetic wave
cannot be ignored. The literature [17–19] has obtained the corrected pulse FDA expression
by analyzing the frequency–phase and time–range relationships. Furthermore, the litera-
ture [20] points out that the FDA beam is time–angle-dependent, not range-dependent, and
that a reasonable signal processing scheme at the receiving end is necessary for activating
FDA distance correlation [21,22]. Ref. [23] further explains the relationship between the
time index within pulse and real-time, which is similar to the relationship between radar
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fast time and slow time. However, ref. [20] does not give the relationship between the time
index within pulse and the phase.

Radar needs not only a good detection performance, but also a good capacity for
anti-jamming. With the development of digital radio frequency memory (DRFM), active
jammers can produce complex and flexible jamming signals, which seriously threaten the
performance of radar systems. Therefore, radar anti-jamming technology is essential. FDA
radar beam can activate range correlation. Based on this, many scholars have researched
the suppression of deceptive interference [24–30]. However, these methods are targeted at
specific interference scenes. The literature [31] discusses the low interception performance
of FDA-transmitted signals, indicating that FDA-transmitted signals are less likely to be
intercepted by jammers than PA-transmitted signals, thus making it difficult for jammers
to target jamming signals in arrays. The literature [32] has preliminarily discussed the
possibility of FDA’s resistance to interferometer-based direction of arrival (DOA) recon-
naissance. On this basis, the literature [33–37] has studied the phase characteristics of
FDA’s transmitted signals and their cheating effect on the interferometer. However, all
such studied have taken the spatial phase and range into one-to-one correspondence, have
not considered the influence of wave propagation, and have ignored the time index within
pulse. At the same time, it has also been ignored that interferometer direction finding is
based on its measurement and the estimation of the incident signal frequency, and that it
then estimates the direction of the phase center of the received signal. Inspired by the study
of uniform linear PA phase centers in the literature [38], based on the time index within
pulse, this paper discusses the phase characteristics of FDA-transmitted signals and the
calculation method of the phase center, and uses the adjustable phase center to achieve
FDA active anti-jamming.

Finally, for the jammer based on the interferometer to determine the position of the
array radar, this paper proposes an active anti-jamming method so that the jammer signal
cannot be aligned with the array, even by setting multiple phase center flashing so that
the jammer completes the direction finding with difficulty. The main contributions of this
paper are as follows:

1. The phase characteristics of the FDA-transmitted signal based on the time index
within pulse are analyzed.

2. The phase center of the FDA-transmitted signal is calculated, and the theoretical basis
of FDA angle deception is analyzed by adjusting the phase center.

3. An active anti-jamming algorithm based on the FDA phase center is proposed by
optimizing each element’s frequency increment.

The rest of this paper is arranged as follows. Sections 2 and 3 derive and analyze the
phase characteristics of PA and FDA, respectively. Next, Section 4 presents the calculation
method of the phase center of the array-transmitted signal and discusses how FDA imple-
ments angle deception. Finally, the theoretical analysis is verified through simulation in
Section 5, and the conclusion is given in Section 6.

Notation: We use boldface for vectors a and matrices A. Scalar a is denoted by italics.
The transpose, conjugate and conjugate transpose are denoted by the symbols (·)T , (·)∗

and (·)H , respectively. The letter j represents the imaginary unit (i.e., j =
√
−1).

2. Phase Characteristics of PA

In this section, we first analyze the propagation characteristics of electromagnetic
waves to fully understand the relationship between real-time and the time index within
pulse, and determine the real-time–phase relationship. Then, the time–angle–phase rela-
tionship of the transmitted signal is determined by analyzing the phase of the PA signal
based on the time index within pulse.
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2.1. Phase Propagation Analysis

Set the time index within pulse as t′ and the real-time as t. The pulse signal with the
carrier frequency f0 can be expressed as follows:

s(t) = rect(
t

Tp
) ej2π f0t (1)

rect(
t

Tp
) =

{
1 , 0 ≤ t ≤ Tp
0 , else

(2)

where Tp stands for the pulse duration when the pulse signal propagates to r1 and r2; the
phase changes in the propagation process are shown in Figure 1.
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Figure 1. Phase-change process of pulse signal.

The pulse signals of the two moments can be expressed as follows:

s(t− r1/c) = rect(
t− r1/c

Tp
) ej2π f0(t−r1/c),

r1

c
≤ t ≤ r1

c
+ Tp (3)

s(t− r2/c) = rect(
t− r2/c

Tp
) ej2π f0(t−r2/c),

r2

c
≤ t ≤ r2

c
+ Tp (4)

Figure 1 shows that the pulse signal phase is related to its real-time spatial propagation,
which can be divided into two parts: propagation delay τ and the time index within pulse
t′. Further, when the time index within pulse is equal, the phases of the pulse signals are
also equal. In order to highlight the vital parameter of the time index within pulse, we let
t′ = t− τ; then, (3) and (4) can be unified into (5).

s(t′) = rect(
t′

Tp
) ej2π f0t′ , 0 ≤ t′ ≤ Tp (5)

Equation (5) can uniformly represent the pulse signals transmitted to different ranges,
which means that the phase of the pulse signal is only related to the time index within
pulse but has nothing to do with the propagation delay. Therefore, the time index within
pulse can be used to replace the real-time when analyzing the phase of the pulse signal.

The continuous wave signal can be regarded as the pulse signal with an infinite pulse
time, and its phase is only related to the time index within pulse. In a word, the phase
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of both the pulse signal and continuous-wave (CW) signal is only related to the time
index within pulse and has nothing to do with the propagation delay. The propagation
delay is related to the range, which means that the electromagnetic wave signal constantly
propagates forward.

2.2. PA Signal Analysis

Through the above analysis, it is clear that the signal phase is related to the time index
within pulse. In this section, we will analyze the phase characteristics of PA emission signals
so that we can accurately understand the phase characteristics of FDA emission signals.

Consider a uniform linear PA with M isotropic antennas, as shown in Figure 2.
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The carrier frequency is f0 and the array spacing is d. When it propagates to the far
field with range r and angle θ, the signal can be expressed as follows:

yPA(t) =
M−1

∑
m=0

sm(t) =
M−1

∑
m=0

rect(
t− rm/c

Tp
)ej(2π f0(t−rm/c)) (6)

where rm = r0 − md sin θ. Under the far-field narrow-band condition, the envelope is
approximately invariant, as follows:

rect(
t− rm/c

Tp
) ≈ rect(

t− r0/c
Tp

) (7)

Meanwhile, we replace the real-time t with the time index within pulse t′, and Equation (6)
can be further expressed as follows:

yPA(t) = rect( t−r0/c
Tp

)ej2π f0(t−r2/c)
M−1
∑

m=0
ej(2π f0(m−1)d sin θ/c)

= rect( t′
Tp
)ej2π f0t′

M−1
∑

m=0
ej2π f0md sin θ/c

= rect( t′
Tp
)ej(2π f0t′+π(M−1) f0d sin θ/c) sin(πM f0d sin θ/c)

sin(π f0d sin θ/c)

(8)

According to (8), the amplitude and phase of the PA-transmitted signal in the far field
can be expressed as follows:

PPA(t′, θ) = rect(
t′

Tp
)

∣∣∣∣ sin(πM f0d sin θ/c)
sin(π f0d sin θ/c)

∣∣∣∣ (9)

ϕPA(t′, θ) = rect(
t′

Tp
)(2π f0t′ + π(M− 1) f0d sin θ/c) (10)
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According to (10), the far-field phase of the PA-transmitted signal is related to the time
index within pulse, angle, and array spacing, but not to the range; in addition, the phase of
each point in the far field changes with the change in the time index within pulse. During
the reconnaissance phase, the phase measured by the jammer is as follows:

ϕPA_n(t′, θ) = rect(
t′

Tp
)arctan(

sin(2π f0t′ + π(M− 1) f0d sin θ/c)
cos(2π f0t′ + π(M− 1) f0d sin θ/c)

) (11)

3. FDA Phase Characteristics

Consider a uniformly linear FDA with M isotropic antennas, as shown in Figure 3.
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The carrier frequency of each array is fM = f0 + ∆ f (m), and the array spacing is d.
When it propagates to the far field with range r and angle θ, the signal can be expressed
as follows:

yFDA(t) =
M

∑
m=1

sm(t) =
M

∑
m=1

rect(
t− rm/c

Tp
)ej(2π fm(t−rm/c)) (12)

where rm = r0 − (m− 1)d sin θ. First, consider the FDA with linearly increasing frequency
offset (LIFDA), namely ∆ f (m) = (m− 1)∆ f . Assuming that the envelope of the far-field
condition is approximately unchanged and that the real-time t is replaced by the time index
within pulse t′, Equation (12) can be further expressed as follows:

yLIFDA(t) = rect( t−r0/c
Tp

)ej2π f0(t−r0)/c
M
∑

m=1
ej2π(m−1)(∆ f (t−r0/c)+ f0d sin θ/c)

= rect( t′
Tp
)ej2π f0t′

M
∑

m=1
ej2π(m−1)(∆ f t′+ f0d sin θ/c)

= rect( t′
Tp
)ej(2π f0t′+π(M−1)(∆ f t′+ f0d sin θ/c)) sin(πM(∆ f t′+ f0d sin θ/c))

sin(π(∆ f t′+ f0d sin θ/c))

(13)

It can be concluded from (13) that the amplitude and phase of the LIFDA in the far
field are, respectively, expressed as follows:

PLIFDA(t
′, θ) = rect(

t′

Tp
)

∣∣∣∣ sin(πM(∆ f t′ + f0d sin θ/c))
sin(π(∆ f t′ + f0d sin θ/c))

∣∣∣∣ (14)

ϕLIFDA(t′, θ) = rect( t′
Tp
)(2π f0t′ + π(M− 1)(∆ f t′ + f0d sin θ/c))

= rect( t′
Tp
)(2π fct′ + π(M− 1) f0d sin θ/c)

(15)

fc = f0 +
M− 1

2
∆ f =

1
M

M

∑
m=1

fM (16)
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According to (15), the far-field phase characteristics of the LIFDA are similar to those
of PA, which is related to the time index within pulse, angle, and array spacing, but not
to the range. The phase of each point in the far field changes with the change in the time
index within pulse. The different phase of PA and FDA in the same far-field location is due
to their different carrier frequencies. The PA carrier frequency is f0, while the equivalent
carrier frequency of the LIFDA is fc, which is the average of each array carrier frequency.
During the reconnaissance phase, the phase measured by the jammer is as follows:

ϕLIFDA_n(t′, θ) = rect(
t′

Tp
)arctan(

sin(2π fct′ + π(M− 1) f0d sin θ/c)
cos(2π fct′ + π(M− 1) f0d sin θ/c)

) (17)

Further, consider an FDA with an arbitrary frequency offset (AIFDA), assuming that
the frequency offset ∆ f (m) can be any value. By replacing the real-time t with the time
index within pulse t′, (12) can be further expressed as follows:

yAIFDA(t) = rect( t−r0/c
Tp

)ej2π f0(t−r0)/c
M
∑

m=1
ej2π(∆ f (m)(t−r0/c)+ f0(m−1)d sin θ/c)

= rect( t′
Tp
)ej2π f0t′

M
∑

m=1
ej2π(∆ f (m)t′+ f0(m−1)d sin θ/c)

(18)

For observation (18), we found it challenging to adjust yAIFDA(t) to a form similar to
yPA(t). Therefore, we used Matlab function “angle” to extract the phase of (18), which can
be expressed as follows:

ϕAIFDA(t′, θ) = angle(yAIFDA(t)) (19)

The phase of the AFFDA in the far field can be obtained using (19). By observing (18)
and (19), it can be seen that the far-field phase of the FDA-transmitted signal is related to
the time index within pulse, angle, array spacing, and frequency increment, but has nothing
to do with the range. The phase changes with the change in the time index within pulse.
Furthermore, the phase of the far-field point can be modulated by setting an appropriate
frequency increment, which is also the theoretical basis for implementing FDA angle
deception and active anti-jamming.

4. Phase Center and Angle Deception
4.1. Phase Center

As shown in Figure 4, a single-baseline phase interferometer was considered to mea-
sure the phase of FDA-transmitted signals to obtain the DOA. It is worth noting that the
DOA points to the phase center of the array signal.

The single-baseline phase interferometer consists of two channels. The line formed by
antenna 1 and antenna 2 is called the interferometer baseline. If the array-equivalent phase
center is far enough from the receiver, the electromagnetic wave received is approximately
a plane wave, and the angle between the incoming wave direction and the antenna is θ.
Then, the time of the plane wave arriving at antenna 1 and antenna 2 is different, and there
is a phase difference ϕ∆, which is related to the carrier equivalent frequency fe. This can be
expressed as follows:

ϕ∆ =
2π fel

c
sin θ (20)

If the gains of the two channels are entirely consistent, then the DOA of the array
radiation signal can be written as follows after angle transformation:

θ = arcsin(
cϕ∆

2π fel
) (21)
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Phase ambiguity is discussed in ref. [27]. This paper does not consider phase ambiguity,
and the DOA points to the phase center of the array. The measurement of phase difference
ϕ∆ depends on the equivalent frequency fe of the incident array signal. Therefore, the FDA
has the potential to mislead the interferometer’s measurement of the DOA by optimizing
the phase difference in the frequency increment modulation of each array element, meaning
that ultimately the jammer cannot align the array in space.

The phase center of the array plays a vital role in the direction-finding process of the
jammer, so we need to analyze the phase center of the array. According to IEEE standards,
the phase center is defined as the position of the point associated with the antenna. If
the phase center is used as the reference point, the phase of the radiant sphere surface is
constant. We can conclude that if the phase center is taken as the reference point, its phase
is only related to the time index within pulse and not to the angle. If the time index within
pulse is the same, the phase of the signals is equal regardless of the angle.

Let the range between the phase center and the first antenna be dc. Firstly, PA is
considered. With the phase center as the reference point, the PA-transmitted signal can be
expressed as follows:

yPA(t) =
M−1

∑
m=0

sm(t) =
M−1

∑
m=0

rect(
t− rm+dc sin θ

c
Tp

)ej(2π f0(t− rm+dc sin θ
c )) (22)

By replacing the real-time t with the time index within pulse t′, (22) can be expressed
as follows:

yPA_c(t) = rect( t′
Tp
)ej2π f0t′

M−1
∑

m=0
ej 2π f0(md−dc) sin θ

c

= rect( t′
Tp
)ej(2π f0t′+ π(M−1) f0d sin θ

c − 2π f0dc sin θ
c ) sin(πM f0d sin θ/c)

sin(π f0d sin θ/c)

(23)

In this case, the far-field phase characteristics can be expressed as follows:

ϕPA_c(t′, θ) = rect(
t′

Tp
)(2π f0t′ +

π(M− 1) f0d sin θ

c
− 2π f0dc sin θ

c
) (24)

Because the reference point is the phase center, ϕPA_c(t′, θ) = ϕPA_c(t′) is required; the
phase has nothing to do with the angle. In this case, the coefficient sum of the angle should
be zero, so the phase center can be expressed as follows:
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dc =
M− 1

2
d (25)

Equation (25) indicates that the phase center of the PA-transmitted signal is located
in the geometric center of PA, which the phase interferometer can accurately measure.
Therefore, PA has no capacity for angle deception according to the phase interferometer.

Then, considering the FDA, with the phase center as the reference point, its transmitted
signal can be expressed as follows:

yFDA_c(t) =
M

∑
m=1

rect(
t− rm+dc sin θ

c
Tp

)ej(2π fm(t− rm+dc sin θ
c )) (26)

For the FDA, the LIFDA is first analyzed. By replacing the real-time t with the time
index within pulse t′, (26) can be expressed as follows:

yLIFDA_c(t) = rect(
t′

Tp
)ej2π f0(t′− dc sin θ

c )
M

∑
m=1

ej2π(m−1)(∆ f t′+ f0d sin θ
c − ∆ f dc sin θ

c ) (27)

According to (27), the far-field phase characteristics of the LIFDA-transmitted signals
can be expressed as follows:

ϕLIFDA_c(t′, θ) = rect( t′
Tp
)(2π f0(t′ − dc sin θ

c ) + π(M− 1)(∆ f t′ + f0d sin θ
c − ∆ f dc sin θ

c ))

= rect( t′
Tp
)2π( fct′ + ( (M−1) f0d

2 − (M−1)∆ f dc
2 − f0dc)

sin θ
c )

(28)

where fc = f0 +
M−1

2 ∆ f = 1
M

M
∑

m=1
fM. Because the reference point is the phase center, the

phase has nothing to do with the angle, that is, ϕLIFDA_c(t′, θ) = ϕLIFDA_c(t′). Therefore,
the phase center can be expressed as follows:

(M− 1) f0d
2

− (M− 1)∆ f dc

2
− f0dc = 0 (29)

Through further simplification, (29) can be expressed as follows:

dc =
(M− 1) f0d

2 f0 + (M− 1)∆ f
=

(M− 1)d
2

· f0

fc
=

(M− 1)d
2

· f0
M
∑

m=1
fM/M

(30)

Equation (30) shows that when the frequency increment is zero, the phase center of
the FDA-transmitted signal is equal to that of the PA, both located in the geometric center
of the array. When ∆ f 6= 0, the phase center of the FDA-transmitted signal is related to
the ratio of the base carrier frequency and to the center carrier frequency that treats the
FDA-transmitted signal as a whole signal. The angle deception of the FDA according to the
phase interferometer can be realized by taking the appropriate value of ∆ f .

Finally, the phase center of the AIFDA-transmitted signal is analyzed. By replacing
the real-time t with the time index within pulse t′, (26) can be expressed as follows:

yAIFDA_c(t) = rect(
t′

Tp
)ej2π f0(t′− dc sin θ

c )
M

∑
m=1

ej2π(∆ f (m)t′+ f0(m−1)d sin θ
c − ∆ f (m)dc sin θ

c ) (31)

By observing (31), it can be found that it is not easy to extract the phase expression
due to the arbitrariness of frequency increment, but it can be found that the phase is related
to t′, θ, dc, and f = [∆ f (1), . . . , ∆ f (M)]. The phase of (31) is extracted by using the function
“angle”, which can be expressed as follows:

ϕAIFDA(t′, θ, dc, f) = angle(yAIFDA_c(t)) (32)
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According to the definition of phase center, the phase of the array signal in space has
nothing to do with the angle. When the time index within pulse t′ = t′1 and frequency
increment f = f1 are determined, the phase at each angle is equal; this can be expressed
as following:

ϕAIFDA(t′1, θ1, dc, f1) = ϕAIFDA(t′1, θ2, dc, f1) = C (33)

Equation (33) shows that after t′, θ and f are determined, dc can be calculated.

4.2. Angle Deception

Before analyzing the angle deception, we first discuss obtaining dc through the use
of (33). Then, on this basis, we set the phase center of the virtual radiation source as dc

′.
Finally, by optimizing the frequency increment f, the phase center is located at dc

′. At
this time, the direction measured using the phase interferometer points to the center of
the virtual radiation source, and the FDA angle deception and active anti-interference
are realized.

As the parameters in (33) are coupled with each other, it is difficult to derive the phase
center directly, so the particle swarm optimization (PSO) algorithm is adopted in this paper.
PSO is derived from the well-developed laws of bird population activities, and it uses
swarm intelligence to establish a simplified model, comparing the search space of solving
problems to the flight space of birds. Each particle represents a possible solution and then
solves complex optimization problems through the evolution of population particles. Its
operation flow chart is shown in Figure 5.

The parameters of PSO include the particle position, particle velocity, individual
optimal position, and optimal global position. Suppose that each particle has a D dimension
and N particles form a population, then the position of the i-th particle can be expressed
as follows:

xi = [xi1, xi2, . . . , xiD], i = 1, 2, . . . N (34)

The velocity of the i-th particle is expressed as follows:

vi = [vi1, vi2, . . . , viD], i = 1, 2, . . . N (35)

The optimal position searched by the i-th particle so far is the extreme individual
value, which can be expressed as follows:

pbest = [pi1, pi2, . . . , piD], i = 1, 2, . . . N (36)

The optimal position searched by the whole population so far is the extreme global
value, expressed as follows:

gbest = [g1, g2, . . . , gD] (37)

The process of particle evolution can be expressed as follows:

vij(t + 1) = wvij(t) + l1r1(t)(pij(t)− xij(t)) + l2r2(t)(pg(t)− xij(t)) (38)

xij(t + 1) = xij(t) + vij(t + 1) (39)

where l1 and l2 are learning factors. r1 and r2 are uniform random numbers in the range
of [0, 1]. pg stands for the globally optimal particle. w is the inertial weight related to the
capacity for global convergence, and weighs the capacity for global search and local search.
The dynamic inertial weight is used in this paper, and is expressed as follows:

w = wmax −
(wmax − wmin)·T

Tmax
(40)

where wmax and wmin represent the maximum and minimum inertial weights, respectively.
T and Tmax represent the current and maximum iterations, respectively.
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The optimization problem used to obtain dc can be expressed as follows:

Find dl
s.t. |ϕAIFDA(t′1, θ1, dc, f1)− ϕAIFDA(t′1, θ2, dc, f1)| < b

dc_min ≤ dc ≤ dc_max

(41)

where dc_min and dc_max represent the minimum and maximum search values, respectively. b
is a minimal value, which means that the phases at different angles are approximately equal.

Because dc is a one-dimensional variable, this paper adopts the discrete PSO algorithm
proposed in the literature [39] to solve it. At this time, the value of the particle state space
can only be 0 or 1, and the D-dimensional binary particle corresponds to the value of dc,
one by one. The velocity update formula is still (36), and the position update formula is
as follows:

s(vij) =
1

1 + e−vij
(42)

xij =

{
1 q < s(vij)
0 else

(43)

where q is a random number in [0, 1]. Finally, the expression of the fitness function f it_1(dc)



Remote Sens. 2023, 15, 5171 11 of 18

is determined as (44), according to (41):

f it_1(dc) =
∣∣ϕAIFDA(t′1, θ1, dc, f1)− ϕAIFDA(t′1, θ2, dc, f1)

∣∣ (44)

When the frequency increment f is determined, the phase center dc can be obtained.
Similarly, f can be optimized to make the direction finding of the phase interferometer
point to the phase center of the virtual radiation source dc

′. The optimization problem for
obtaining f can be expressed as follows:

Find f
s.t. |ϕAIFDA(t′1, θ1, dc

′, f)− ϕAIFDA(t′1, θ2, dc
′, f)| < b

fmin ≤ f(m) ≤ fmax, 1 ≤ m ≤ M
(45)

where fmin and fmax represent the minimum and maximum frequency offset search, re-
spectively. Because f is a multidimensional variable, the PSO algorithm proposed in the
literature [40] can be adopted. According to (45), the fitness function can be expressed
as follows:

f it_2(f) =
∣∣ϕAIFDA(t′1, θ1, dc

′, f)− ϕAIFDA(t′1, θ2, dc
′, f)

∣∣ (46)

Finally, when the frequency increment of the FDA is f, it can realize angle deception
and active anti-jamming.

5. Simulation Results

The numerical simulation results will be presented in this section. Unless otherwise
stated, base carrier frequency f0 = 1 GHz, the total number of transmitting array elements
is M = 8, and the interval is half wavelength d = 0.15 m. The pulse duration Tp = 20 us,
and the pulse repetition interval T = 1 ms.

5.1. PA Phase Characteristics

In order to understand the propagation law of the signal phase in space, we simulate
the time–angle–phase diagram. When the signal propagates to 6 km, the propagation delay
is τ = 20 us. In this case, the real-time t = 20 us can be expressed as the propagation delay
τ = 20 us plus the time index within pulse t′ = 0 us, and the real-time t = 40 us can be
expressed as the propagation delay τ = 20 us plus the time index within pulse t′ = 20 us.
When the signal propagates to 120 km, the propagation delay is τ = 400 us. In this case,
the real-time t = 400 us can be expressed as the propagation delay τ = 400 us plus the
time index within pulse t′ = 0 us, and the real-time t = 420 us can be expressed as the
propagation delay τ = 400 us plus the time index within pulse t′ = 20 us. The simulation
results of the two cases are shown in Figure 6.
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Figure 6. Time–angle–phase relationship of PA-transmitted signal: (a) r = 6 km; (b) r = 120 km.

As seen from Figure 6, the phase of the PA-transmitted signal propagates to the far end
along with the electromagnetic wave, and each point in space traverses the phase value,
independent of the propagation range. In order to understand this problem more clearly,
the simulation results of the time index within pulse–angle–phase diagram are given, as
shown in Figure 7.
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It can be seen from Figure 7 that the value of the phase is related to the angle and
the time index within pulse, but not to the range. The phase value of each point in space
changes with the time index within pulse. The direction finding of the phase interferometer
points to the phase center of the array. According to (23), the phase center of the PA-
transmitted signal is dc = 0.525 m. The time index within the pulse–angle–phase diagram
of the PA-transmitted signal with dc as the reference point is shown in Figure 8.

As shown in Figure 8, with the phase center as the reference point, the phase value in
space has nothing to do with the angle and is only related to the time index within pulse.
For the interferometer, the baseline is constant, so the time difference within the pulse of the
receiving antenna is constant and the phase difference is a constant value, which ultimately
enables the phase interferometer to measure the phase center of the PA signal accurately.
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5.2. FDA Phase Characteristics

Considering the LIFDA, its frequency increment is set as shown in (47):

∆ f LI
m = (m− 1)∆ f (47)

where ∆ f = 0.3 MHz. After the parameters are determined, similar to the previous section,
considering the signal propagation to 6 km and 120 km, the simulation results of the
time–angle–phase relationship are shown in Figure 9.
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As seen in Figure 9, the phase of the LIFDA-transmitted signal is the same as that of
the PA-transmitted signal, which propagates to the far end along with the electromagnetic
wave, and each point in space traverses the phase value, which is independent of the
propagation range. In order to have a clearer understanding, the simulation results of the
time index within the pulse–angle–phase diagram are given, as shown in Figure 10.
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Figure 10. Time index within the pulse–angle–phase relationship of the LIFDA-transmitted signal.

It can be seen from Figure 10 that when the first element is taken as the reference point,
the value of the phase is related to the angle and the time index within pulse, but not to
the range, and that the phase value of each point in the space changes with the change in
the time index within pulse. This paper pays attention to the location of the phase center.
According to (28), the phase center of the LIFDA is dc = 0.5244 m. The time index within
the pulse–angle–phase diagram of the LIFDA-transmitted signal with dc as the reference
point is shown in Figure 11.
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Figure 11. Time index within pulse–angle–phase relationship of the LIFDA-transmitted signal with
the phase center as the reference point.

As shown in Figure 11, with the phase center as the reference point, the phase value
in space is only related to the time index within the pulse, which is consistent with the
theoretical analysis above. At this time, the phase interferometer direction finding is no
longer pointed at the center of the array geometry, but slightly offset.

5.3. FDA Angle Deceptive

This section first calculates the phase center of the LIFDA-transmitted signal through
the discrete PSO algorithm and verifies the correctness of the algorithm by comparing it
with the theoretical analysis above. Then, the phase center of the virtual radiation source is
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set, and the PSO algorithm obtains the frequency offset of the FDA angle deception. The
simulation parameters are set as follows: N = 100, Tmax = 100, D = 20, l1 = l2 = 1.5,
t′1 = 0 us, θ1 = 50◦, θ2 = 20◦, wmax = 0.8, and wmin = 0.4.

The frequency increment is ∆ f LI
m = (m − 1)∆ f ; according to (28), phase center

dc = 0.5244 m. Therefore, the search space is set to dc_min = 0 m, dc_max = 1 m. The
fitness function is (42). The simulation results are shown in Figure 12.
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Figure 12. Relation between the LIFDA optimization results and iteration times: (a) fitness function
value; (b) phase center.

It can be seen from Figure 12 that with the increase in the number of iterations, the
fitness function approaches 0, indicating that the angles are different, the phases of each
point with the same time index within pulse are equal, and the final phase center converges
to 0.5244 m, which is consistent with the theory mentioned above.

The main lobe of the jammer is large. In order to prevent the array from being affected
by the interference signals of the jammer’s main lobe, the phase center of the virtual
radiation source should be set as far away from the array as possible. The simulation
parameters were set as follows: dc

′ = 100 km, fmin = −2 MHz, and fmax = 2 MHz. The
fitness function is (44), and the simulation results are shown in Figure 13. The frequency
offsets of each element are shown in Table 1.

As can be seen from Figure 13, as the number of iterations increases, the fitness function
approaches 0, and each array of the FDA adopts the frequency increment, as shown in
Figure 12b, to make the phase center far away from the transmitting array, thus realizing
the active angle deception of the phase interferometer.
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Figure 13. FDA frequency increment optimization results: (a) fitness function value; (b) frequency
increment of each element.

Table 1. The frequency offsets of each element.

Number of
Element 1 2 3 4 5 6 7 8

frequency offsets
(MHz) −1.83 −0.5818 1.722 1.801 −0.6737 −0.7543 −1.84 −0.7185

6. Conclusions

This paper studied the phase characteristics of FDA-transmitted signals based on the
time index within pulse. In order to fully understand the phase characteristics of the array,
the relationship between the time index within pulse and the phase was first analyzed, and
the time index within pulse was further understood by discussing the phase characteristics
and the phase center of the PA. Secondly, the phase characteristics and phase centers of the
FDA-transmitted signals with linearly increasing frequency offset and arbitrary frequency
offset were analyzed, and it was concluded that the phase of FDA-transmitted signals is
independent of range but related to the time index within pulse, and that its phase center
can deviate from the array. The potential of the FDA to cheat the phase interferometer was
theoretically elaborated. Furthermore, the PSO algorithm obtained the phase center of the
LIFDA, and the algorithm’s effectiveness was verified. Finally, based on this algorithm, the
phase center of the virtual radiation source was set, and the frequency increment of the
FDA was obtained. The theoretical analysis and simulation experiments have proved that
the FDA can realize angle deception and achieve active anti-interference.
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