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Abstract: Spatiotemporal fusion technology effectively improves the spatial and temporal resolution
of remote sensing data by fusing data from different sources. Based on the strong time-series
correlation of pixels at different scales (average Pearson correlation coefficients > 0.95), a new long
time-series spatiotemporal fusion model (LOTSFM) is proposed for land surface temperature data.
The model is distinguished by the following attributes: it employs an extended input framework to
sidestep selection biases and enhance result stability while also integrating Julian Day for estimating
sensor difference term variations at each pixel location. From 2013 to 2022, 79 pairs of Landsat8/9
and MODIS images were collected as extended inputs. Multiple rounds of cross-validation were
conducted in Beijing, Shanghai, and Guangzhou with an all-round performance assessment (APA),
and the average root-mean-square error (RMSE) was 1.60 ◦C, 2.16 ◦C and 1.71 ◦C, respectively, which
proved the regional versatility of LOTSFM. The validity of the sensor difference estimation based
on Julian days was verified, and the RMSE accuracy significantly improved (p < 0.05). The accuracy
and time consumption of five different fusion models were compared, which proved that LOTSFM
has stable accuracy performance and a fast fusion process. Therefore, LOTSFM can provide higher
spatiotemporal resolution (30 m) land surface temperature research data for the evolution of urban
thermal environments and has great application potential in monitoring anthropogenic heat pollution
and extreme thermal phenomena.

Keywords: spatiotemporal fusion (STF); land surface temperature (LST); time-series; Landsat;
moderate resolution imaging spectroradiometer (MODIS)

1. Introduction

The urban thermal environment is one of the most significant phenomena of human
activity on Earth [1], affecting various aspects, including water and air quality, microcli-
mate, energy consumption, and human health [2–4]. Land surface temperature (LST), as
long-term, wide-area data easily accessible by satellites, is the most common quantitative
indicator used in climate and environmental studies [5–8]. Spatial resolutions greater than
50 m [9], represented by the Landsat series of satellites, are considered suitable for detailed
studies of the urban thermal environment because they reflect the thermal structure of
internal urban objects, such as streets and factories [10–13]. The actual availability of LST
data from Landsat satellites is limited in the time series because of the 16-day revisit cycle,
cloud cover, and sensor failures [14–16]. Whereas moderate resolution imaging spectro-
radiometer (MODIS) data, for example, can meet the temporal resolution requirements
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of LST data for many thermal studies [17,18], although it is difficult to adapt the spatial
resolution to the needs of increasingly fine-scale urban studies.

Spatiotemporal fusion received widespread attention for producing higher-resolution
data, which existing single-sensors cannot provide. The spatial and temporal adaptive
reflectance fusion model (STARFM) [19] was one of the first spatiotemporal fusion methods
to become popular and spawned other weight function-based spatiotemporal fusion meth-
ods [20–22], such as the enhanced STARFM (ESTARFM) [23]. The division of spatiotemporal
fusion methods based on differences in principles [24,25] include unmixing-based [26,27],
weight function-based [19], Bayesian-based [28,29], learning-based [30–32], and hybrid
methods [33,34]. Among them, hybrid methods synthesize the above different types of
methods to achieve complementary advantages, and flexible spatiotemporal data fusion
(FSDAF) [35] is representative and derives many improved models [36–38].

The spatiotemporal fusion models were initially applied for generating reflectance
products. Based on the need for the fusion of LST data, classical reflectivity spatiotem-
poral fusion models such as STARFM, ESTARFM, and FSDAF were attempted subse-
quently [39,40]. Additionally, in response to the spatiotemporal distribution characteristics
of LST data, several spatiotemporal fusion methods specifically for LST were designed and
proposed, including spatiotemporal image fusion models based on bilateral filtering [41],
spatiotemporal adaptive data fusion algorithms for temperature mapping (SADFAT) [42],
spatiotemporally integrated temperature fusion models (STITFM) [43], and some other
methods [44–46].

To minimize changes in land cover, the image closest to the predicted date was
selected as the reference image [47–49]. However, LST is also characterized by significant
seasonal and weather variability [40], and even temporally close LST images can exhibit
large numerical differences [50,51]. In this case, the effect of different single-image pair
(minimum) inputs on the fusion results can be significant [52]. Some spatiotemporal fusion
models enhance the fusion performance by adding a reference image to the minimum
input [23,53]. Furthermore, the extended input provides a new perspective for reducing
the uncertainty of single-image pairs.

In contrast to minimum input, extended input involves feeding as much data as pos-
sible while ensuring data quality. Based on the synthesis of available data, an artificial
selection process was avoided. As illustrated in Figure 1, the implementation framework
for extended input can be categorized into the following: (a) Weighting the fusion results
obtained from different image pairs. (b) Combination of multiple image pairs to derive an
image pair that is closer to the prediction time for fusion. (c) Fusion based on the mapping
relationships derived from multiple image pairs. Among these, the (a) framework is the
earliest to emerge [19]. However, as the number of image pairs increases, the time consump-
tion grows linearly. Therefore, even though methods like STARFM and spatial-temporal
data fusion approach (STDFA) [26] incorporate such extended input designs, in practical us-
age, single image pairs are often preferred to mitigate the time overhead. Compared to the
(a) framework, the (b) combines inputs to avoid repetitive fusion processes. Spatiotemporal
models such as virtual image pair-based spatiotemporal fusion (VIPSTF) [54] and robust
optimization-based fusion (ROBOT) [55] have adopted this strategy. The (c) framework
enhances model performance by delving into the mapping relationships among multiple
image pairs and is one of the important trends in the development of extended input
fusion [56]. However, the mapping relationships among multiple image pairs have not
been exhaustively explored yet.
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bining the inputs; and (c) generating mapping relations. P1 to Pn represents the 1st through n-th 
sets of image pairs utilized for extended inputs. Fp is the final high-resolution image of the predicted 
time. The parameters w1 to wn denote the calculation weights for fusing results from distinct image 
pairs, while a1 to an represent the combination coefficients for various image pair ensembles. 

In comparison to traditional spatiotemporal fusion using single-reference image 
pairs, we endeavored to enhance robustness and fusion accuracy by expanding the 
model’s input. Specifically, our approach was based on mapping relationships between 
coarse and fine pixels over a long time series (2013–2022) and thus referred to as the long 
time-series spatiotemporal fusion model (LOTSFM). We proved the reasonableness of 
LOTSFM in principle, and three cities were experimentally verified. The results showed 
that fusion based on pixel-long time-series regression was feasible and exhibited high fu-
sion accuracy and speed. In addition, relative to previous studies that treated the sensor 
difference term as a constant, we considered its variation in the spatiotemporal fusion of 
LST and introduced the variable Julian day for modeling, which optimized fusion accu-
racy. 

The key content arrangement for Section 2 is as follows: In Section 2.3, the material-
ized extended input (c) framework is shown. Sections 2.4 and 2.5 show that the linear and 
non-linear mapping parts of the fusion were modeled separately. Table 1 provides a sum-
mary of the abbreviations and definitions used in this study.  

Table 1. Abbreviations and definitions.  

Acronym Definition 
AD Average difference 

AAD Average absolute difference 
APA All-round performance assessment 
GAN Generative adversarial network 

GAN-STFM GAN-based spatiotemporal fusion model 
LBP Local binary patterns 

LOOCV Leave-one-out cross-validation 
LST Land surface temperature 

LOTSFM Long time-series spatiotemporal fusion model 
LTRM Long time-series regression model 

MODIS Moderate resolution imaging spectroradiometer 
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RC Residual compensation 

RMSE Root-mean-square error 
SDE Sensor difference term estimation 
SF Spatial filtering 
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Figure 1. Three extended frameworks for spatiotemporal fusion: (a) weighting the results; (b) com-
bining the inputs; and (c) generating mapping relations. P1 to Pn represents the 1st through n-th sets
of image pairs utilized for extended inputs. Fp is the final high-resolution image of the predicted
time. The parameters w1 to wn denote the calculation weights for fusing results from distinct image
pairs, while a1 to an represent the combination coefficients for various image pair ensembles.

In comparison to traditional spatiotemporal fusion using single-reference image pairs,
we endeavored to enhance robustness and fusion accuracy by expanding the model’s
input. Specifically, our approach was based on mapping relationships between coarse and
fine pixels over a long time series (2013–2022) and thus referred to as the long time-series
spatiotemporal fusion model (LOTSFM). We proved the reasonableness of LOTSFM in
principle, and three cities were experimentally verified. The results showed that fusion
based on pixel-long time-series regression was feasible and exhibited high fusion accuracy
and speed. In addition, relative to previous studies that treated the sensor difference term as
a constant, we considered its variation in the spatiotemporal fusion of LST and introduced
the variable Julian day for modeling, which optimized fusion accuracy.

The key content arrangement for Section 2 is as follows: In Section 2.3, the materialized
extended input (c) framework is shown. Sections 2.4 and 2.5 show that the linear and non-
linear mapping parts of the fusion were modeled separately. Table 1 provides a summary
of the abbreviations and definitions used in this study.

Table 1. Abbreviations and definitions.

Acronym Definition

AD Average difference
AAD Average absolute difference
APA All-round performance assessment
GAN Generative adversarial network

GAN-STFM GAN-based spatiotemporal fusion model
LBP Local binary patterns

LOOCV Leave-one-out cross-validation
LST Land surface temperature

LOTSFM Long time-series spatiotemporal fusion model
LTRM Long time-series regression model

MODIS Moderate resolution imaging spectroradiometer
MPF Missing pixel filling
OLS Ordinary least squares

PCCs Pearson correlation coefficients
RC Residual compensation

RMSE Root-mean-square error
SDE Sensor difference term estimation
SF Spatial filtering

STARFM Spatial and temporal adaptive reflectance fusion model
Coarse image Image with relatively low spatial resolution;
Coarse pixel Pixel in the coarse image;
Fine image Image with relatively high spatial resolution;
Fine pixel Pixel in the fine image;



Remote Sens. 2023, 15, 5211 4 of 25

Table 1. Cont.

Acronym Definition

Image pair Coarse and fine image of the same location on the same date;
C(xi, t) Value of coarse pixel xi at t

F
(

xij, t
)

Value of fine pixel xij at t

CF(xi, t) Value of ideal coarse pixel xi at t, defined as Equation (6)
ξ(xi, t) Value of sensor difference at the position of coarse pixel xi at t

a, b Time-series pixel regression parameters
αξ , βξ , γξ , θ

ξ
Time-series fitting parameters for sensor difference terms

r, rCF Fit residuals

2. Materials and Methods
2.1. Fusion Data Types

A variety of temperature inversion algorithms can be used to generate LST
data [57–59]. One straightforward way is to use processed LST products. LST prod-
uct data from MODIS and Landsat after multiple experiments and iterative evaluations are
highly accurate and reliable, providing standardized LST results compared with different
inversion algorithms [60–62] and are therefore used in many LST fusion studies [42,43,63].
In this study, LST products, including Landsat8/9 Level-2, MOD11A1, and MYD11A1,
were also used as inputs to the model after band math processing.

Landsat 8/9 OLI_TIRS Collection 2 Level-2 product data covering the study area
were obtained from the United States Geological Survey (USGS, http://glovis.usgs.gov/,
accessed on 6 February 2023). Their LST products are recommended by the National Aero-
nautics and Space Administration (NASA) to avoid atmospheric parameter calculations.
For the Level-2 product, Equation (1) calculation is performed to obtain the LST in degrees
Celsius (◦C), which is the default temperature unit in this study, and band 10 is the relevant
LST band.

LSTL = 0.00341802 ∗ band10 + 149− 273.15 (1)

This Level-2 product of Landsat 8/9 corresponds to LST data at a spatial resolution
of 30 m. MODIS data were sampled to this spatial resolution after nearest-neighbor
interpolation.

Daily MOD11A1 and MYD11A1 data covering the study area were obtained from
NASA (http://ladsweb.nascom.nasa.gov/, accessed on 8 February 2023). MODIS images
corresponding to Landsat dates were collected, projected, cropped, and resampled. Band 1,
LST_Day_1km, was calculated by Equation (2) to obtain the LST.

LSTM = 0.02 ∗ band1− 273.15 (2)

The acquired MODIS LST data were combined with Landsat LST data to form image-
pair data for each date.

2.2. Regions and Date Range

The cities of Beijing, Shanghai, and Guangzhou are more evenly distributed across
different latitudes in China, with the warm temperate semi-humid continental monsoon,
northern subtropical maritime monsoon, and southern subtropical maritime monsoon
climates, all of which are central cities in China and are important regions for the study of
urban thermal environments [64,65].

LOTSFM is expected to be used to generate spatiotemporal data for LST that can be
used for urban thermal environment studies; therefore, these important cities were selected
for fusion as representatives. The locations of the three experimental regions, Beijing,
Shanghai, and Guangzhou, are shown in Figure 2. Among them, the Guangzhou City
region was selected, including a portion of the adjacent Foshan City, to avoid the images

http://glovis.usgs.gov/
http://ladsweb.nascom.nasa.gov/
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being affected by MODIS strips. The three square regions are of the same size, 36 km on
one side, approximately 1300 km2, and include 1.44 million Landsat 8/9 fine pixels.
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Figure 2. Spatial map of the three experimental regions in Beijing, Shanghai, and Guangzhou created
using data from Google Earth and OpenStreetMap (OSM).

In this study, all the available image pairs for each experimental region from 2013 to
2022 were collected (with as many as possible) to satisfy the extended input and validation
of the experiments using the following process. (1) Cloud-free Landsat images of the
study areas were screened based on cloud cover and quality bands. (2) MODIS images
corresponding to cloud-free Landsat images were collected to form pairs. (3) Image pairs
with large areas of missing pixels were filtered out.

Among the three experimental regions, Beijing used completely missing pixel-free
samples for fusion because of the abundance of such samples. The percentage of missing
pixels in the Shanghai and Guangzhou MODIS samples was maintained below 10% as far
as possible to ensure the quality of filled and fused data. The final data filtered for input
into the LOTSFM model are summarized in Table 2, with 29, 29, and 21 groups in Beijing,
Shanghai, and Guangzhou, respectively, for a total of 79 image pairs of data.

In Table 2, L, MOD and MYD are Landsat 8/9, MOD11A1, and MYD11A1, respectively.
MOD-L/MYD-L are image pairs. Landsat 9 is generally regarded as a replicated version
of Landsat 8, with essentially the same sensor conditions and observation times, so the
two data are considered homologous in this study and are mixed to increase the length
of the time series. Although MOD11A1 and MYD11A1 are both MODIS LST data, they
are respectively generated by the Terra and Aqua satellites. We specifically utilized their
daytime land surface temperature products for our study. However, compared to Landsat
8 and 9, there are differences in the timing of daytime overpasses for MOD and MYD.
Therefore, we did not mix their data in our research but instead used them separately. A
reference table of approximate satellite crossing times for each data in this study can be
seen in the Supplementary Materials.
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Table 2. Summary of experimental data dates by regions.

Beijing Shanghai Guangzhou

Image ID Date Image ID Date Image ID Date

MOD1-L1 2014.09.04 MOD1-L1 2013.05.25 MYD1-L1 2013.11.29
MOD2-L2 2014.10.06 MOD2-L2 2013.07.12 MYD2-L2 2013.12.31
MOD3-L3 2015.04.16 MOD3-L3 2013.08.13 MYD3-L3 2014.01.16
MOD4-L4 2015.05.18 MOD4-L4 2013.11.17 MYD4-L4 2014.10.15
MOD5-L5 2017.05.07 MOD5-L5 2013.12.03 MYD5-L5 2014.11.16
MOD6-L6 2017.07.10 MOD6-L6 2014.11.04 MYD6-L6 2015.01.03
MOD7-L7 2017.09.12 MOD7-L7 2015.03.12 MYD7-L7 2015.01.19
MOD8-L8 2017.09.28 MOD8-L8 2015.08.03 MYD8-L8 2015.10.18
MOD9-L9 2017.10.30 MOD9-L9 2016.01.26 MYD9-L9 2016.02.07

MOD10-L10 2018.04.08 MOD10-L10 2017.02.13 MYD10-L10 2016.12.07
MOD11-L11 2018.10.01 MOD11-L11 2017.04.02 MYD11-L11 2017.10.23
MOD12-L12 2018.10.17 MOD12-L12 2017.08.24 MYD12-L12 2019.09.27
MOD13-L13 2019.05.29 MOD13-L13 2018.03.04 MYD13-L13 2019.10.29
MOD14-L14 2019.06.14 MOD14-L14 2018.05.23 MYD14-L14 2019.11.14
MOD15-L15 2019.09.02 MOD15-L15 2018.12.17 MYD15-L15 2020.02.18
MOD16-L16 2019.09.18 MOD16-L16 2019.01.18 MYD16-L16 2021.01.19
MOD17-L17 2020.04.13 MOD17-L17 2019.07.29 MYD17-L17 2021.02.04
MOD18-L18 2020.08.03 MOD18-L18 2019.12.04 MYD18-L18 2021.02.20
MOD19-L19 2020.09.20 MOD19-L19 2020.01.21 MYD19-L19 2021.12.05
MOD20-L20 2021.05.02 MOD20-L20 2020.02.22 MYD20-L20 2022.09.03
MOD21-L21 2021.06.03 MOD21-L21 2020.05.12 MYD21-L21 2022.10.21
MOD22-L22 2021.06.19 MOD22-L22 2020.08.16
MOD23-L23 2021.09.07 MOD23-L23 2021.04.29
MOD24-L24 2022.01.29 MOD24-L24 2022.01.02
MOD25-L25 2022.03.02 MOD25-L25 2022.02.27
MOD26-L26 2022.03.26 MOD26-L26 2022.03.15
MOD27-L27 2022.04.19 MOD27-L27 2022.03.23
MOD28-L28 2022.05.13 MOD28-L28 2022.04.08
MOD29-L29 2022.05.21 MOD29-L29 2022.09.07

2.3. Fusion Model Structure

LOTSFM is structured with reference to Fit-FC, a spatiotemporal fusion model that
explicitly decomposes the structure into regression model fitting (RM), spatial filtering (SF),
and residual compensation (RC) [66]. Many spatiotemporal fusion models can identify
components similar to those of Fit-FC [67–69]. Additionally, the structure of the LOTSFM
was adjusted to address the problem of long-time-series fusion for LST. Sensor difference
term estimation (SDE) replaces the RC to reduce errors due to significant spatial and
temporal variations in the difference term. An additional missing pixel-filling (MPF)
component was added to ensure that as many time series as possible were considered for
fusion, as shown in Figure 3.

The fusion process of LOTSFM is divided into two stages: training and prediction.
The training stage was performed only once to obtain a time-series generic mapping
relationship between the coarse and fine image pairs. The prediction stage generated fine
images on each prediction date based on the mapping relationship. This is similar to the
neural network working process; however, LOTSFM is based on the traditional principle
that the training stage constructs mapping relations mainly through regression, which is
expected to be faster. LOTSFM is based on time-series generic parameters obtained in the
training stage, which are used in the fusion prediction for each date without the need for
repeated calculations, thereby improving the efficiency of fusion.
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2.4. Long Time-Series Regression Model

For the LST model, it is assumed that there is a high correlation between neighboring
fine pixels in the time series. This was based on two considerations. (1) For fine pixels
that are sufficiently adjacent, their values should correlate according to the first law of
geography [70]. (2) Although abrupt changes such as land cover may occur over time
and distance, the LST can still be strongly correlated in the time series due to the heat
transfer between adjacent objects and similar conditions of solar thermal radiation. Based
on this assumption, it is reasonable to establish the equation between any fine pixels in the
neighborhood using coarse pixels as the neighborhood range, which can be described as

F(xik, t) = a
(
xik, xij

)
F
(
xij, t

)
+ b
(
xik, xij

)
+ r
(
xik, xij, t

)
(3)

where, F(xik, t) and F
(
xij, t

)
are the LST values of any two fine pixels in the coarse pixel

xi at date t, respectively. a
(
xik, xij

)
and b

(
xik, xij

)
are coefficients that do not vary with t,

r
(

xik, xij, t
)
, which is the residual.
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According to the pixel-temperature mixing principle [71], the value of the coarse pixel
xi, C(xi, t), is equal to the average of the fine pixel values F(xik, t) in it plus the ξ term,
which can be expressed as:

C(xi, t) =
1
m

m

∑
k=1

F(xik, t) + ξ(xi, t) (4)

where ξ is the bias caused by the observation of different sensors and is referred to as the
sensor difference term. Considering that ξ of LST may be significantly different across
times and coarse pixel locations, it is set to ξ(xi, t). m is the number of fine pixels within a
coarse pixel. From Equations (1) and (2), the pixel relationship between the different scales
can be expressed as

C(xi, t) = F
(

xij, t
)
· 1
m

m

∑
k=1

a
(
xik, xij

)
+

1
m

m

∑
k=1

b
(
xik, xij

)
+

1
m

m

∑
k=1

r
(
xik, xij, t

)
+ ξ(xi, t). (5)

Similar to Equation (3), the relationship between the pixels at different scales exhibits
linearity. The difference is that the sensor difference term ξ in Equation (5) causes the
correlation between pixels at different scales to weaken compared to those of the fine pixels
at the same scale. We expect to exclude the effect of the difference term ξ to retain a stronger
correlation. Therefore, we set:

CF(xi, t) = C(xi, t)− ξ(xi, t) (6)

where, CF(xi, t) is the coarse pixel value for the ideal case in which no observed difference
exists between the sensors.

Based on Equations (5) and (6), the relationship between the ideal coarse pixel xi and
the contained fine pixel xij at any date t can be expressed as

F
(
xij, t

)
= αF

(
xij
)
CF(xi, t) + βF

(
xij
)
+ rCF

(
xij, t

)
(7)

where, α
(

xij
)

and β
(
xij
)

can be estimated using the ordinary least squares method
(OLS) [72–74]. The residual r

(
xik, xij, t

)
between fine pixels, is assumed to be an unpre-

dictable fraction caused by abrupt spatial and temporal variations in land cover that cannot
be reduced by a more macroscopic-scale least-squares fit between coarse and fine pixels.
Thus, transforming Equation (5), rCF

(
xij, t

)
for the predicted residuals is expressed as:

rCF
(
xij, t

)
= −

[
m

∑
k=1

a
(
xik, xij

)]−1

·
m

∑
k=1

r
(

xik, xij, t
)

(8)

Because a
(

xik, xij
)

floats around 1, rCF
(
xij, t

)
is approximated as the regional average

of r
(

xik, xij, t
)
. Thus, the ideal coarse pixel value CF constructed would have a high correla-

tion with F close to that between the fine pixels and, on average, make the correlation more
stable. Therefore, a well-regressed relationship between CF and F is expected.

In contrast to previous temporally dependent spatiotemporal fusion principles [24],
LOTSFM generalizes this dependence principle for different locations and long time series
according to Equation (5). Specifically, previous temporal dependence principles generally
exist between the reference and predicted dates at the same location, and fusion parameters
are derived from linear sections of the temporal profile, such as Fit-FC and ESTARFM.
The LOTSFM generalizes the linear form applicable to multiple dates (long time series) at
different locations. In Section 3.1, the principle is validated based on the fact that pixels at
different scales exhibit strong correlations over a long time series.
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2.5. Sensor Difference Term Estimation

The sensor difference term is generally regarded as a constant in surface reflectance
spatiotemporal fusion models, including classical models such as STARFM and FSDAF.
However, the effect of the sensor difference term on the LST fusion problem was significant
across time and location, possibly because of data differences. For example, the significant
variation of ξ with time and location for the Beijing region is shown in Figure 4. Therefore,
the sensor difference term is defined as Equation (9), which varies with the time and
location of coarse pixel acquisition, was considered in this study.
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C(xi, t) and J(t) are two variables available for estimating the difference term of the
sensor. According to earlier studies [42,75], the introduction of temporal variables has
the potential to improve spatiotemporal fusion. J(t) is the transformation of the date
represented by t into a Julian day, with the year discarded to facilitate its introduction into
the estimation of the sensor difference term. It can also be regarded as the day of the year
(DOY). For example, if t represents 1 August 2017, the corresponding Julian date is 213. We
provide the following fit model that can be used for the sensor difference term estimation:

ξ̂(xi, t) = αξ(xi)C(xi, t) + βξ(xi) + γξ(xi)sin
(

2π

365.25
J(t) + θξ(xi)

)
(9)

where, αξ , βξ , γξ and θξ are fitting parameters that vary for the location xi of the coarse
pixel C(xi, t).

The form of the Equation (9) fit is explained as follows: (1) The larger the coarse pixel
value C, the more likely it is that a larger ξ appears, showing a certain linear correlation.
(2) Jules Day J(t) as a date variable: The sinusoidal function is more often used to express
periodicity [76]. Furthermore, since the period of the Julian day is fixed, the frequency
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of the sinusoidal function is known to be 2π/365.25. In Figure 4, estimated values ξ̂
tend to be within the interquartile range (Q3–Q1), demonstrating alignment with the
observed variations.

2.6. Missing Pixel Filling

The missing pixel problem limits the use of spatiotemporal fusion models and reduces
the spatiotemporal continuity of fused data. Based on the assumptions considered in
Section 2.4 for pixel correlation, there should also be a time-series correlation between
neighboring coarse pixels. Therefore, a solution to the problem of a limited number of
missing pixels occurring in coarse-resolution images on the predicted date can be provided
in view of pixel correlation. It is assumed that the level of correlation between coarse pixels
is sufficient to fulfill the need for a suitable window range. The correlation between the
coarse pixels is described in Section 3.1. The equation for filling any coarse pixels within
the search window can be established as follows:

ĈMPF
(

xu, tp
)
= α(xu)C

(
xv, tp

)
+ β(xu), (10)

xv = arg max
x 6=xu

corrcoe f (c(x), c(xu)). (11)

In Equation (10), ĈMPF
(
xu, tp

)
is the regression estimate of the missing pixels C

(
xu, tp

)
,

and the coefficients α(xu) and β(xu) can be solved by OLS. Equation (11) indicates that
C(xv, t), which is used to establish the regression relationship with C(xu, t), is the coarse
pixel with the highest time-series correlation.

2.7. Spatial Filtering

The primary cause of blocky artifacts in spatiotemporal fusion is the inconsistency
in spatial resolution [67,77]. The raster boundaries of coarse-resolution images are not
real land cover boundaries, although they are fused into spatial textures at fine resolution,
which causes artifacts [78,79]. Spatial filtering by calculating the spectral differences to
find similar pixels is a classic solution to artifact problems [19]. However, the efficiency of
the pixel-level search approach is relatively low [24,80], and pure pixels and classification
principles may not be suitable for continuous LST data [63].

Inspired by the All-around Performance Assessment (APA) framework [81], a fused
image is considered to contain spectral and spatial information. The coarse-resolution image
on the predicted date provides overall spectral information, whereas the fine-resolution
image on the reference date provides detailed spatial information that is not provided
by the coarse image. Therefore, we consider spatial filtering of coarse images to weaken
the coarse spatial resolution spatial information as much as possible so that more fine-
resolution image spatial information is inherited to suppress the appearance of artifacts.
Specifically, the coarse resolution image is sampled to fine resolution based on nearest
neighbor interpolation. The blocky texture caused by the coarse raster is removed based on
mean filtering and then fed to the fuser as a normal coarse image.

3. Experiments and Results
3.1. Time-Series Correlation Levels between Pixels

Correlation statistics for the study regions can corroborate the principal assump-
tion [82] and help anticipate the fusion performance of the LOTSFM. Correlations among
coarse pixels, ideal coarse pixels, and fine pixels were assumed to construct LOTSFM.
Therefore, we verified the variations in these three types of correlations using the Euclidean
distance from the center of the pixel. In each region, 20,000 samples were taken for each
type of correlation, and the distances were discretized to form Figure 5.
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The average correlation for all types in the regions was greater than 0.95, which
is in line with the principal assumption of high correlations between adjacent pixels.
The correlations between coarse pixels (CC) were largely stable with distance over the
experimental region range; therefore, the search window for missing pixel filling was set
to be region global. The correlation between the ideal coarse pixels and fine pixels (CF)
and between fine pixels (FF) decreases with distance similarly, which conforms to the
expectation of ideal coarse pixels in principle, i.e., to retain the stronger correlation by
excluding the difference term ξ.

3.2. Regional Replicability Assessment of LOTSFM

The LOTSFM fusion accuracy experiments were conducted in Beijing, Shanghai,
and Guangzhou, China. Due to the small dataset size of the fusion, leave-one-out cross-
validation (LOOCV) was considered appropriate, enabling as many rounds of validation as
possible. LOOCV avoids randomness in the division of training and validation samples so
that the accuracy estimates for a given dataset are constant and objective [83]. LOOCV was
performed by removing one image pair at a time for validation and feeding the remaining
data into the training set.

Accuracy is assessed with reference to the all-round performance assessment (APA) [81],
which provides a comprehensive and standard model assessment framework adopted by
new spatiotemporal fusion models, such as variation-based spatiotemporal data fusion
(VSDF) [69] and the comprehensive flexible spatiotemporal data fusion (CFSDAF) [63].
Specifically, the APA proposes using metrics including the average difference (AD), root-
mean-square error (RMSE), Robert’s edge (EDGE), and local binary patterns (LBP) as
evaluation criteria for assessing the performance of spatiotemporal fusion algorithms.

Based on the data in Table 2, Beijing, Shanghai, and Guangzhou conducted 29, 29, and
21 rounds of validation, respectively. The results of each round are shown in Tables S1–S3
in the Supplementary Materials, and the statistics are summarized in Table 3.
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Table 3. Summary statistics of LOOCV results for each region of LOTSFM (AD and RMSE unit: ◦C).

City Statistic AD RMSE EDGE LBP

Beijing Average value 0.006038 1.603804 −0.206396 −0.000472
Standard deviation 1.090600 0.599686 0.044764 0.002536

Shanghai Average value 0.052643 2.169908 −0.151468 −0.000344
Standard deviation 2.104711 1.207505 0.033107 0.004028

Guangzhou Average value −0.129306 1.715259 −0.093829 −0.001072
Standard deviation 1.687730 1.058368 0.020060 0.001607

In the three-region experiment, the lowest absolute average AD value is 0.006 ◦C in
Beijing, and the highest is about 0.13 ◦C in Guangzhou. The small average AD results
for the three regions suggest that LOTSFM provides an approximately unbiased estimate
for overall long time-series samples. The minimum RMSE is in Beijing, 1.60 ◦C, and the
maximum is in Shanghai, 2.17 ◦C.

3.3. SDE Component Validity Assessment of LOTSFM

To verify the validity of the introduction of the Julian day for the estimation of the
sensor difference term, we also conducted LOOCV for each region of LOTSFM without the
Julian day input. The results of each round are shown in Tables S4–S6, and the statistics are
summarized in Table S7 in the Supplementary Materials.

To provide a more visual representation of the optimization in each round, Figure 6
shows the results based on paired box plots. The AD of each region showed a decrease in
variance; the values were more concentrated at approximately 0. The RMSE exhibited a
significant decrease in the average value (p < 0.05). The introduction of Julian days does
not include additional spatial information; therefore, the EDGE and LBP indicators, which
are related to spatial detail, did not show significant changes.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 27 
 

 

 
Figure 6. Plots depicting the changes in APA metrics for each round of validation before and after 
the introduction of Julian Day. Connected lines show the accuracy results before and after the 
changes in the same round. 

The three-city fusion images obtained from the cross-validation experiments are 
shown in Figure 7. Despite the significant difference in resolution between MODIS (1 km) 
and Landsat (30 m), the LOTSFM algorithm can produce fused images with spatial details 
similar to those of Landsat using MODIS data from the predicted data. Although Figure 
7 displays only thumbnail images, the thermal environment textures within the city, such 
as rivers, are visible in the Landsat and LOTSFM fusion images. In contrast, MODIS pro-
vides coarse information on the distribution of urban temperatures. This highlights the 
critical need to obtain high-resolution temperature data through spatiotemporal fusion 
for investigating urban thermal environments. 

 

Figure 6. Plots depicting the changes in APA metrics for each round of validation before and after the
introduction of Julian Day. Connected lines show the accuracy results before and after the changes in
the same round.



Remote Sens. 2023, 15, 5211 13 of 25

The three-city fusion images obtained from the cross-validation experiments are shown
in Figure 7. Despite the significant difference in resolution between MODIS (1 km) and
Landsat (30 m), the LOTSFM algorithm can produce fused images with spatial details
similar to those of Landsat using MODIS data from the predicted data. Although Figure 7
displays only thumbnail images, the thermal environment textures within the city, such
as rivers, are visible in the Landsat and LOTSFM fusion images. In contrast, MODIS
provides coarse information on the distribution of urban temperatures. This highlights the
critical need to obtain high-resolution temperature data through spatiotemporal fusion for
investigating urban thermal environments.
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The images correspond to three different dates and locations: Beijing on 7 May 2017, Shanghai on 29
April 2021, and Guangzhou on 15 October 2014. The precise temperature values represented by color
bar ranges for each region are shown in Table S8 of Supplementary Materials.

3.4. Fusion Accuracy Comparison with Other Models

To assess the LOTSFM fusion capability, STARFM, ESTARFM, FSDAF, and GAN-
STFM were selected for comparison experiments, all of which are classical and easily
accessible from open sources. STARFM, the earliest and most widely used spatiotem-
poral fusion model, is often used as a standard model for comparison [41,44,84]. ES-
TARFM is an enhanced version of STARFM, which has been used in many LST fusion
studies [40,85]. FSDAF, as a hybrid fusion model, combines the strengths of weight function-
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based and unmixing-based methods and has achieved relatively good results in some fusion
comparison experiments [86,87]. GAN-STFM [56] is a deep-learning fusion method that
uses a classical generative adversarial network (GAN). GAN-STFM has a fusion process
similar to that of LOTSFM, which involves training and prediction and is therefore used
for comparison experiments.

A comparative experiment based on the Beijing region was conducted using four
randomly selected image pairs for independent validation. The dates selected were 7 May
2017, 8 April 2018, 2 September 2019, and 29 January 2022. Based on the principle of the
nearest date input and the respective model input requirements, STARFM and FSDAF use
the nearest one-date image pair, whereas ESTARFM uses the nearest two-date image pairs
as the fusion input. The GAN-STFM model allows as many image pairs as possible to be
used for training; therefore, LOTSFM uses the rest of the 25 dates image pair as input.

The experimental accuracy results are visualized using the APA diagrams in Figure 8,
and the results of the accuracy parameters are listed in Table 4. In the APA diagram, the
closer to the center of the semicircle, the better the RMSE accuracy, and the closer to the
central axis, the better the spatial detail, using different colors to indicate the AD. The APA
delineated green areas of good and grey areas of fairness based on the input to visually
evaluate the fusion performance. The fair area indicates that the fused image is better than
the input image in one of the spectral or spatial accuracy aspects, and a good area is better
in both aspects. In Figure 8, ESTARFM and LOTSFM are categorized as good in (b) and (c).
The contemporaneous optimal accuracy values are listed in Table 4, with 10 optimal values
for LOTSFM, 6 for ESTARFM, and 1 for FSDAF. ESTARFM and LOTSFM were outstanding
in the experiments; however, LOTSFM was more robust. In (d), the ESTARFM error is large,
and LOTSFM is still able to maintain stable accuracy.
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Table 4. Accuracy assessment of five spatiotemporal fusion models based on APA. The optimal
values are indicated by asterisks (*) in each column.

Image Date 2017/5/7 2018/4/8

Metric AD RMSE EDGE LBP AD RMSE EDGE LBP

STARFM −0.1530 2.8298 −0.2935 0.0018 −2.9707 3.3658 −0.3530 −0.0166
ESTARFM −0.1428 2.5451 −0.2182 * −0.0022 −1.7855 2.5301 −0.2278 −0.0113

FSDAF 0.3246 2.8239 −0.2580 −0.0084 −2.8314 3.3243 −0.4500 −0.0376
GAN-STFM 1.0141 3.0614 −0.4539 −0.0040 −1.7510 2.2203 −0.4331 0.0060

LOTSFM −0.0547 * 1.7850 * −0.2580 −0.0017 * −0.7164 * 1.5016 * −0.2211 * −0.0050 *

Image Date 2019/9/2 2022/1/29

Metric AD RMSE EDGE LBP AD RMSE EDGE LBP

STARFM −2.5883 2.8231 −0.2486 −0.0039 1.9178 2.1979 −0.3586 0.0069
ESTARFM −0.1020 * 0.9795 * −0.0856 * −0.0014 * 3.0526 3.6576 −0.1013 * 0.0005

FSDAF −2.3037 2.5587 −0.1911 −0.0074 2.0815 2.3886 −0.2895 0.0004 *
GAN-STFM −0.7339 1.3711 −0.2766 0.0051 0.5294 1.3492 −0.5593 −0.0020

LOTSFM −0.6541 1.1527 −0.1162 0.0014 * 0.2087 * 1.3394 * −0.2971 0.0040

3.5. Fusion Time Comparison with Other Models

The fusion time consumption records for each model are listed in Table 5. The three
models, STARFM, ESTARFM, and FSDAF, undergo a complete fusion process each time,
and the process parameters are not time-series generic. For comparison purposes, the
total time consumption was noted as the prediction process consumption. Contrastingly,
the GAN-STFM and LOTSFM are divided into two stages: training and prediction. The
GAN-STFM time-series generic parameters are mainly neuron weights, and the LOTSFM
are regression parameters.

Table 5. Time consumption statistics for each model in the independent validation experiments.
“-” indicates that the process is not undergone.

Image Date 2017.05.07 2018.04.08 2019.09.02 2022.01.29

Fusion Stage Train Predict Train Predict Train Predict Train Predict

STARFM - 141 s - 142 s - 142 s - 146 s
ESTARFM - 1336 s - 1455 s - 1421 s - 1958 s

FSDAF - 873 s - 885 s - 918 s - 915 s
GAN-STFM 50,220 s 0.70 s - 0.71 s - 0.70 s - 0.70 s

LOTSFM 247 s 0.05 s - 0.05 s - 0.05 s - 0.05 s

The experimental workstation was configured with an Intel(R) Xeon(R) Silver 4110
CPU, NVIDIA Quadro P4000 GPU, and Linux system environment. STARFM, ESTARFM,
FSDAF, and LOTSFM use the CPU for fusion calculations. Additionally, based on the
features of LOTSFM, in which each pixel can be processed independently, multiple pro-
cesses can be used to improve the fusion efficiency in the training stage. Depending on
CPU performance, we used 12 processes for the experiments. The GAN-STFM model was
trained for 500 iterations on a GPU, as described in a previous study [56]. According to
the results in Table 5, STARFM is the least time-consuming model, 141 s, if the fusion is
only performed for a certain date. LOTSFM requires a training process and is second only
to STARFM in terms of time consumption, which is 248 s. When conducting multi-date
experiments, LOTSFM and GAN-STFM only performed the prediction process based on
the first training parameters, consuming less than 1 s.

3.6. Spatial Details Comparison with Other Models

A representative LST fusion experimental zone in Beijing was selected to compare the
spatial details of each model, as shown in Figure 9. Summer Palace was a royal garden of
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the Qing Dynasty. The lake area in the Summer Palace is divided into three small lakes
by an embankment: Kunming Hu 1, Kunming Hu 2, and Tuancheng Hu. Each of the
three water surfaces comprised an island in the center of the lake, which appeared as an
approximately circular normal-temperature region. The complex landscape and distinct
temperature distribution in this area were used as contrasts for spatial details.
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In Figure 9, image noise was observed in the FSDAF image, which is consistent
with that in earlier studies that used FSDAF for LST fusion [63]. The GAN-STFM images
exhibited excessive smoothness, which may be due to LST data differences, despite the use
of multiscale structural similarity (MS-SSIM) to ensure visual performance. LOTSFM is
intuitively the closest to Landsat, particularly in terms of the distribution of water LST in
the Kunming Hu 2.

The spatial distribution of hot and cold urban areas is of concern for guiding the
mitigation of thermal risks [88,89]. Therefore, representative areas with cooling effects,
such as water bodies and green spaces, are selected in Figure 10 to reflect the detailed
performance of each model in hot and cold areas.

Figure 10 Area 1 provides a detailed spatial representation of the lake area near the
Summer Palace. Among the models, the LOTSFM low-temperature area demonstrates a
better fit to the lake boundary. Moreover, the Tuancheng Hu Lake in the upper left stands
out due to its relatively smaller area, resulting in a weaker cooling effect. As a result, the
surface temperature of this lake does not exhibit the same deep blue hue as the other lake
areas. Figure 10 Area 2 depicts a slanted square-shaped water body with a small land
patch at its center. However, the models other than LOTSFM do not display the surface
temperature of the central land area. Figure 10 Area 3 showcases the Forbidden City, where
LOTSFM performs clearly in representing the cold area within the square-shaped moat.
Figure 10 Area 4 represents the Temple of Heaven, which is predominantly covered in
greenery, with two bare circular building areas clearly depicted in the LST of LOTSFM.
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3.7. Error Distribution of Different Input Models

Because images with close dates have minimal land cover changes, they are generally
used as reference image pairs for input; this principle was used for the experiments in
Section 3.5. However, large differences in the values of the images with the closest dates
among those that can be collected may also exist. The green and grey areas in the APA
diagram reflect the reference image pair information. The large difference between the
grey and green areas in Figure 8d is due to the excessive difference between the values of
the reference pair and the predicted image, even though the reference and predicted dates
were closest to each other in the sample dataset.

The extended input is intended to allow the model to synthesize the input data by
feeding sufficient pairs of images to avoid artificial selection. Furthermore, more data
input increases the upper limit of what can be achieved through fusion. Both STARFM
and FSDAF achieved similar results when using a single image-pair input, as shown
in Figure 11. ESTARFM, GAN-STFM, and LOTSFM expand the inputs. However, the
expansion of ESTARFM is limited. Although it achieves good results in Figure 11 on
2019.09.02, the result on 2022.01.29 is unsatisfactory, indicating that its robustness still
needs improvement. GAN-STFM showed ideal absolute difference distribution results
for the two fusions on 2019.09.02 and 2022.01.29 in Figure 11, while LOTSFM performed
relatively ideal on all dates.

Having a sufficient sample input is advantageous for learning-based methods; how-
ever, the fused reference image pairs that can currently be prepared for deep learning
methods are still small datasets. The black-box approach used for small datasets can lead
to high uncertainty in the fusion results. For instance, in Figure 11, the GAN-STFM shows
concentrated image prediction errors in the middle of the region on 2017.05.07, while the
other models have fused image errors that are low in the middle and high around the region.
Furthermore, a small block artifact is visible in the upper left corner of the GAN-STFM
result for 2022.01.29, while the other date images show no significant artifacts.
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4. Discussion
4.1. Usage and Data Flexibility

In the experiments, the 36 km by 36 km area used was able to cover the main regions
of the megacity. LOTSFM performs fusion in coarse pixels such that the fusion of larger or
tiny areas is also easily achieved while allowing parallel computing to be easily applied to
increase the speed of fusion. Based on the training and prediction processes, this allows
potentially repetitive parameter calculation processes to be combined, with each subsequent
fusion requiring only short prediction processes. This reduces the average computational
time for multi-date fusion, enabling batch spatiotemporal fusion. The high spatial and
temporal continuous LST remote sensing data generated have the potential to study urban
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thermal environment dynamics. For example, in industrial areas, it can be used to judge
the intensity of work and monitor industrial thermal anomalies and pollution that may
occur on any date. MODIS data do not accurately capture factory buildings, and Landsat
data may suffer from a lack of key data. Based on the fused data available in the batch, the
fine monitoring of industrial heat at a daily frequency can be achieved.

Additionally, the LOTSFM can accommodate the LST from different sensor sources.
This is because (1) in Section 2.1, the coarse-resolution data used MOD11A1 and MYD11A1
from two different satellites, Terra and Aqua, respectively. Therefore, it is reasonable
to believe that LOTSFM supports the fusion of other satellite LST data, such as FY-3C,
ASTER, and Sentinel3. (2) In Section 3.1, even for the longest distance tested (40–50 km),
a high correlation between ideal coarse pixels and fine pixels was observed (average
PCCs > 0.95). Although MODIS and Landsat have coarse and fine resolutions of 1 km and
30 m, respectively, fusion with higher resolution ratios is still possible with the support of
high correlation.

4.2. Fusion Performance Predictability

Based on the correlation results between the coarse and fine pixels during training,
LOTSFM can predict the fused performance at different locations to reduce uncertainties.
Figure 12a shows the spatial distribution of ideal correlations between the coarse and fine
pixels during the training process, with high correlations in the middle of the region and
low correlations around it. This is consistent with the absolute difference distribution of
LOTSFM in Figure 11, particularly the results for 7 May 2017. Furthermore, based on the as-
sumption of LOTSFM, heat transfer helps maintain stable temperature correlations between
ground objects by promoting a temperature balance towards homogeneous conditions.
However, the temperature of objects with high specific heat capacity is less affected by
heat transfer, inhibiting its enhancement effect on the temperature correlation. Figure 12b
shows a 10 m resolution land cover image of Beijing in 2017 derived from the FROM-GLC10
dataset [90]. Based on the heat transfer hypothesis of the LOTSFM, it is possible to explain
the reason why the impermeable water areas with a low specific heat capacity in Figure 12b
are more likely to have a high correlation and low absolute difference than the water areas.
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Figure 12. Images (a) showing the spatial distribution of the Pearson correlation coefficients of ideal
coarse and fine pixels in the Beijing fusion using the same color band for comparison with the absolute
difference images, and the (b) distribution of land cover in the Beijing region.

Based on the 29 image pairs prepared for this study in Beijing, Figure 13 provides a
time-series analysis of the potential influences of land cover. Figure 13a shows the time-
series variations of LST for each land cover class. Distinct temperature differences exist
among different land cover classes. The temperature ranks from high to low as follows:
impervious surface, grassland, cropland, forest, and water bodies. While the average
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absolute difference (AAD) for different land cover types in Figure 13b is not highly stable
along the time series, a more distinct observation can be performed by examining the box
plot in Figure 13c, revealing that water bodies exhibit significantly higher AAD values and
greater dispersion compared to impervious surfaces. This observation is consistent with
the spatial patterns shown in Figure 12, indicating that LOTSFM has different absolute
differences in fusion for different land cover classes. Based on this characteristic, it can be
anticipated that LOTSFM is well-suited for monitoring thermal dynamics in urban areas
characterized by the aggregation of impervious surfaces.

Remote Sens. 2023, 15, x FOR PEER REVIEW 21 of 27 
 

 

Furthermore, in Figure 13a, the lowest LST is observed on 2022.01.29, and the fusion 
AAD still exhibits favorable performance. This indicates that even under extreme temper-
ature conditions, LOTSFM is capable of achieving stable predictions based on expanded 
inputs. However, in Figure 13b, a relatively large AAD is observed on 2022.05.13, which 
cannot be explained by land cover or correlations. Sensor differences may be the dominant 
factor contributing to this observation. 

It should be recognized that spatial and temporal distribution of absolute differences 
did not completely correspond to the correlation distribution or land cover, and it was 
necessary to focus on the deviations caused by sensor differences. Earlier studies consid-
ered sensor differences, including bandwidth and solar geometry factors, to be constant 
[19,35]. In reflectance fusion, such considerations may already be justified because reflec-
tance is relatively constant throughout the day. However, LST varies significantly 
throughout the day, and sensor observations may not be taken simultaneously, even on 
the same day. Treating the sensor difference term as a constant can lead to large devia-
tions, which the LOTSFM considers. This is a potential reason for the performance drop 
in classical reflectance models when temperature–data fusion is conducted. 

 
(a) (b) 

Figure 12. Images (a) showing the spatial distribution of the Pearson correlation coefficients of ideal 
coarse and fine pixels in the Beijing fusion using the same color band for comparison with the abso-
lute difference images, and the (b) distribution of land cover in the Beijing region. 

 
Figure 13. Time-series variations of land surface temperature (LST) and average absolute difference
(AAD) for different land surface cover classes over the period 2013–2022 are shown. Each land cover
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Furthermore, in Figure 13a, the lowest LST is observed on 2022.01.29, and the fusion
AAD still exhibits favorable performance. This indicates that even under extreme temper-
ature conditions, LOTSFM is capable of achieving stable predictions based on expanded
inputs. However, in Figure 13b, a relatively large AAD is observed on 2022.05.13, which
cannot be explained by land cover or correlations. Sensor differences may be the dominant
factor contributing to this observation.

It should be recognized that spatial and temporal distribution of absolute differences
did not completely correspond to the correlation distribution or land cover, and it was
necessary to focus on the deviations caused by sensor differences. Earlier studies considered
sensor differences, including bandwidth and solar geometry factors, to be constant [19,35].
In reflectance fusion, such considerations may already be justified because reflectance is
relatively constant throughout the day. However, LST varies significantly throughout
the day, and sensor observations may not be taken simultaneously, even on the same
day. Treating the sensor difference term as a constant can lead to large deviations, which
the LOTSFM considers. This is a potential reason for the performance drop in classical
reflectance models when temperature–data fusion is conducted.

4.3. Limitations

LOTSFM is built upon the correlation of pixel time series. Insufficient input samples
or poor correlation conditions can limit the performance of LOTSFM. In this case, the mini-
mum input model may be the better choice. Therefore, the integration of minimum input
models to form hybrid complementarities is prospected. Additionally, some minimum
input models sensible to changes in ground cover are ideal for integration to address the
difficulties in capturing land-cover changes.
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Missing pixel filling in LOTSFM only serves to make the image meet the input integrity
requirements. It is not discussed and validated in as much detail as a dedicated cloud miss-
ing reconstruction algorithm. Moreover, as with most temporal reconstruction algorithms,
cloud filling in LOTSFM can only provide assumed LST values based on cloud-free condi-
tions. Recent studies, such as the research conducted by Gong et al. [91], have proposed a
reconstruction method using a nonlocality-reinforced network (NRN), examined various
combinations of multimodal datasets, and evaluated them, which provides a useful refer-
ence for enhancing the missing pixel filling component of LOTSFM. Moreover, microwave
data (e.g., FY-3D MWRI) is expected as input for LOTSFM to reconstruct missing pixel
values closer to the real cloud conditions in the future.

The expansion of inputs in LOTSFM remains limited. We believe that a more compre-
hensive form of input expansion should encompass not only an increase in time series but
also the incorporation of data from multiple sources. Currently, most spatiotemporal fusion
models predominantly focus on space-based satellite data. Aerial data holds significant
potential for integration into spatiotemporal fusion methods, especially given the rapid
development of aerial unmanned drone technology. The fusion of aerial and satellite data
can lead to the generation of higher-resolution and more accurate data, which has already
been used for monitoring soil, crops, and forests [92–94]. However, while the integration of
aerial data into surface temperature fusion is not yet widespread, it does not detract from
recognizing it as one of the promising research directions.

5. Conclusions

High spatiotemporal resolution LST data are crucial for urban thermal environment
studies; however, they are not always readily available or generated. Spatiotemporal
fusion presents a potential solution; however, practical production applications face several
challenges, including difficulties in sample selection, handling cloud cover, and fusion
speed. Based on the above issues, a spatiotemporal fusion model, LOTSFM, based on long
time-series data was proposed. The main contents and model features are summarized
as follows:

1. LOTSFM is a model with extended inputs, requiring only the necessary number of
input samples to avoid sample selection and improve the robustness of the results.

2. LOTSFM consists of two stages, training and prediction, and employs multi-process
parallel computing to rapidly generate spatiotemporal fusion data in batches.

3. LOTSFM utilized Julian days to estimate the sensor difference term, which was
experimentally shown to significantly improve numerical accuracy.

Based on Landsat 8/9 and MODIS LST data, 79 image pairs were collected from three
cities. The cross-validation results show that the average RMSE values are 1.60 ◦C, 2.17 ◦C,
and 1.72 ◦C for Beijing, Shanghai, and Guangzhou, respectively. This capability enables
effective monitoring of dynamic changes in urban heat island intensity, industrial heat
emissions, and residential heat exposure. Particularly in the current global climate instabil-
ity context, LOTSFM holds great potential in offering valuable guidance for proactively
addressing and mitigating the detrimental impacts associated with extreme heat.

Nevertheless, it is important to acknowledge that further enhancements are required
for LOTSFM. For instance, the fusion accuracy in areas with low correlation may be rela-
tively diminished. To address this limitation, future research could explore the integration
of alternative spatiotemporal fusion models to establish a complementary relationship,
thereby enhancing the fusion accuracy in such areas. Conclusively, more than just the
fusion of data, the complementary fusion of models will potentially be an important trend
in the development of spatiotemporal fusion.
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