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Abstract: Satellite-based forest alert systems are an important tool for ecosystem monitoring, planning
conservation, and increasing public awareness of forest cover change. Continuous monitoring in
tropical regions, such as those experiencing pronounced monsoon seasons, can be complicated by
spatially extensive and persistent cloud cover. One solution is to use Synthetic Aperture Radar (SAR)
imagery acquired by the European Space Agency’s Sentinel-1A and B satellites. The Sentinel 1A and
B satellites acquire C-band radar data that penetrates cloud cover and can be acquired during the
day or night. One challenge associated with operational use of radar imagery is that the speckle
associated with the backscatter values can complicate traditional pixel-based analysis approaches. A
potential solution is to use deep learning semantic segmentation models that can capture predictive
features that are more robust to pixel-level noise. In this analysis, we present a prototype SAR-based
forest alert system that utilizes deep learning classifiers, deployed using the Google Earth Engine
cloud computing platform, to identify forest cover change with near real-time classification over two
Cambodian wildlife sanctuaries. By leveraging a pre-existing forest cover change dataset derived
from multispectral Landsat imagery, we present a method for efficiently developing a SAR-based
semantic segmentation dataset. In practice, the proposed framework achieved good performance
comparable to an existing forest alert system while offering more flexibility and ease of development
from an operational standpoint.

Keywords: Synthetic Aperture Radar; Sentinel-1; forest disturbance; deep learning; semantic
segmentation; U-Net; forest cover change

1. Introduction

Satellite derived forest information plays a crucial role in conservation planning and
ecosystem monitoring [1–4]. Forest alert systems provide near-real-time data, strategi-
cally guiding the allocation of local forest conservation resources. They have also raised
public awareness about forest cover change (FCC), particularly in the tropics [5–7]. For in-
stance, the DETER system has notably reduced deforestation rates in the Brazilian Amazon,
while enhancing transparency in reporting data concerning the timing and location of
FCC [8]. Early forest alert systems like DETER and FORMA utilized 250 m multispectral
imagery from the Moderate Resolution Imaging Spectrometer (MODIS) sensor to detect
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FCC events [9–13]. More recent systems employ Landsat satellite imagery (30 m), en-
hancing the detection of fine-scale FCC events often linked with illicit activities [2,14].
The Global Land Analysis and Discovery (GLAD) forest alert system pioneered the use of
Landsat satellite imagery [2]. Since then, several Landsat-based forest alert frameworks
have been evaluated, including those by Vargas et al. [14] and Ye et al. [15]. The GLAD
alert system, capable of producing an observation every eight days by leveraging Landsat
7 ETM+ and Landsat 8 OLI sensors, is the most widely used due to its global coverage.
However, in regions with persistent cloud cover, monitoring FCC events can be challenging
due to long, patchy intervals between image acquisitions [1,16,17].

Synthetic Aperture Radar (SAR) serves as a powerful adjunct to multispectral satellite
imagery, enabling continuous monitoring in regions with frequent cloud cover due to its
cloud-penetration capabilities. The European Space Agency’s (ESA’s) Sentinel-1 A/B satel-
lites, which provide regular, global SAR coverage, operate using C-band radar with a 5.6 cm
wavelength. In forest ecosystems, the signal of C-band radar imagery is usually dominated
by vegetation and soil moisture [18]. The scattering of C-band SAR in these ecosystems is
typically influenced by branch structure and leaf/needle density [19,20]. Moreover, C-band
radar signals have been found to correlate with forest structure, particularly aboveground
biomass, with the relationship peaking at biomass densities of 100–200 Mg ha−1 [21]. Ow-
ing to the side-looking nature of SAR data, FCC can be identified by the shadowing effects
produced along the peripheries of harvested patches [18]. Additionally, the removal of
forest biomass instigates a shift in the underlying distribution of backscatter values due
to changes in surface material and roughness. In tropical ecosystems, SAR backscatter
time-series can exhibit cyclical patterns due to vegetation phenology and precipitation
cycles. The presence of water notably attenuates an object’s dielectric constant, which
subsequently impacts its reflectivity and conductivity in SAR backscatter [22].

SAR-based forest alert systems have proven highly effective in regions with dense
cloud cover. The inaugural SAR-based forest alert system, the JJ-FAST algorithm, was
developed by the Japanese International Cooperation Agency and the Japan Aerospace
Exploration Agency. This system utilized PALSAR-2/ScanSAR data to generate alerts
every 1.5 months, with a spatial resolution of 56 m [23]. The launch of the European Space
Agency’s (ESA) Sentinel-1A satellite in 2014, followed by Sentinel-1B in 2016, addressed
challenges such as irregular revisit periods and low spatial resolutions that had previously
impeded the development of SAR-based alert systems [24,25]. Following the deployment
of Sentinel-1, numerous SAR-based forest alert systems were developed for monitoring
FCC in tropical regions. A Sentinel-1 monitoring system implemented over French Guiana,
which experiences approximately 67% annual cloud cover, achieved an omission rate
43.5% lower than the GLAD system [26]. In the Congo Basin, a region with persistent cloud
coverage, Sentinel-1 SAR alerts successfully detected small-scale (0.5 ha) forest disturbances
caused by selective logging [1]. Additionally, SAR data have been effectively utilized in
various near-real-time monitoring applications such as fire progression mapping [27,28],
cropland monitoring [29–31], and water mapping [32]. These applications demonstrate the
versatility of SAR data in change detection monitoring.

One challenge inherent to SAR remote sensing is the design of robust predictive
features amidst the speckle-induced noise. Deep learning techniques offer a powerful
methodology for automating feature extraction [33,34]. These models can be trained using
complex input data structures, such as a time-series of multi-channel imagery, eliminating
the need for user-driven feature engineering, such as the transformation of raw inputs to
create independent variables. When identifying objects in remotely sensed imagery, deep
models yield coherent patches even in the presence of considerable pixel-level noise. Deep
learning models have been employed with time series of Sentinel-1 SAR imagery for tasks
like surface water mapping [35,36], agricultural monitoring [37,38], forest above-ground
biomass estimation [39], detection of ocean-going vessels [40–42], and fire-related mapping
and monitoring [27,43]. A key challenge for applying deep learning techniques in ecology
is the limited availability of training data. Collecting new training data tends to be costly,
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time-consuming, and necessitates trained personnel [44]. However, some studies have
shown that deep learning methodologies exhibit impressive generalization capabilities in
the face of significant signal and label noise [36,45–47]. This indicates that pre-existing FCC
labels could potentially be harnessed to construct a training dataset for a deep learning
FCC classifier in a SAR-based forest alert system.

Two wildlife sanctuaries in Cambodia, Prey Lang and Beng Per, were chosen as
test cases for the SAR-based system proposed in this study. Deforestation in Cambodia
in the 21st century has been driven by expansive Economic Land Concessions (ELCs)
and Social Land Concessions (SLCs) for agriculture and agro-forestry, particularly the
development of rubber plantations [48,49]. Forests within ELCs have been subjected to
aggressive deforestation, with a notable spillover effect on adjacent forest patches [48]. This
issue is exacerbated by the fact that numerous large ELCs border protected forest areas.
While a moratorium on the creation of new ELCs was enacted in 2012, concessions have
been granted to existing projects, and illegal deforestation often occurs under the guise of
existing ELCs [50]. A SAR-based forest alert system could enhance the timeliness of forest
alert issuance, given the region’s frequent cloud coverage, and potentially contribute to a
reduction in the local deforestation rate.

We propose a framework for developing a forest alert system that uses SAR-based FCC
semantic segmentation algorithm. It is possible to derive accurate annual forest change
maps using multispectral imagery and temporal and phenological statistics derived from
Landsat satellite imagery [51,52]. However, such annual labels often lack information on
the intra-annual timing of FCC events. The inputs to the models used in our forest alert
system are time series of 4 Sentinel-1 SAR subsets, with the last image being the most recent.
The goal of the network is to identify areas of change that occurred between the 3 older
SAR acquisitions and the most recent one. We tested a strategy for generating synthetic
forest alert training examples using the annual Landsat-derived FCC maps as a target. SAR
imagery was drawn from the years both prior to and following the date of the Landsat FCC
maps. The structure of these examples emulates the same structure that would be obtained
when the model is deployed in a near-real-time modeling context. Using a large number
of these “synthetic” alert examples, we trained and deployed deep learning models on an
extensive set of training examples across Cambodia and evaluated the performance of the
models over two wildlife sanctuaries. We assess the effectiveness of the proposed forest
alert system during both Cambodia’s wet and dry seasons.

Our specific objectives are to:

1. Construct a training dataset for the semantic segmentation models that will classify
FCC using an existing multispectral-based FCC dataset.

2. Develop and validate a real-time forest alert system using deep learning classifiers for
semantic segmentation of FCC.

3. Evaluate the spatial and temporal mapping of forest alerts.

2. Materials and Methods
2.1. Alert System Framework Overview

The framework for developing and deploying a SAR-based deforestation model con-
sisted of constructing a semantic segmentation reference dataset, development of deep
learning FCC classifiers, statistical validation of the classifiers’ accuracy, and the deploy-
ment of the forest alert system for monitoring (Figure 1). Sentinel-1 SAR imagery was
aggregated and pre-processed using Google Earth Engine (GEE) [53,54]. Then, feature-label
pairs were exported from GEE as TensorFlow TFRecords [55], similar to the workflow
described by [56,57] to produce a modeling dataset. Next, two deep learning semantic
segmentation models were trained, one using SAR scenes acquired during the descending
orbits and the other using data from ascending orbits, to detect FCC. Finally, the ascend-
ing and descending SAR classifiers were deployed on the Google AI platform to detect
near-real time FCC. The accuracy of the FCC detection models was assessed using a photo
interpretation dataset developed using Collect Earth Online (CEO) [58].
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Figure 1. The proposed framework uses Google Earth Engine (GEE) to pre-process the SAR imagery
and build the deep learning training datasets. The training datasets are exported from GEE and
are used to train models on the Google AI Platform. The final models were then hosted on the AI
Platform and accessed in GEE to classify forest cover change in new SAR acquisitions as they appear
in the GEE Sentinel-1 cloud storage buckets. A validation dataset was developed using the Collect
Earth Online photo interpretation tool.

2.2. Study Area

Our study area focuses on Cambodia’s Prey Lang and Beng Per wildlife sanctuaries
(Figure 2). The Prey Lang wildlife sanctuary was established in 2016 and has an area of
431,000 ha. The Beng Per wildlife sanctuary was established in 1993 and encompasses
249,408 ha. Twenty ELCs exist along the northwestern to southwestern portions of the Prey
Lang wildlife sanctuary, and 13 ELCs exist within/within the Beng Per wildlife sanctuary.
A biodiversity assessment conducted within Prey Lang identified 198 tree species, 87 shrub
species, and eight different forest types [59]. Using the Global Forest Change (2000–2021)
30 m FCC layer [51], we estimated the average (and 95% confidence intervals) annual area
of FCC in Prey Lang as 3258 (±3488) ha yr−1 and in Beng Per as 5764 (±5173) ha yr−1.
In the past 5 years (2017–2021), FCC in Prey Lang has increased to 7577 (±2463) ha yr−1.
The rate of FCC in Beng Per has declined with 5090 (±564) ha yr−1 of FCC occurring
from 2017–2021. The wildlife sanctuaries receive annual rainfall of 1600–2200 mm [60].
The wildlife sanctuaries, and Cambodia broadly, experience extensive cloud coverage
(Figure 2B). In 2020, for example, over the majority of wildlife sanctuaries, 35–45% of pixel
observations in the Landsat Collection 2 Tier 1 Surface Reflectance dataset were occluded
by cloud cover as indicated by the FMask quality assurance band included with the surface
reflectance imagery [61].
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Figure 2. The study area of this analysis two wildlife sanctuaries. Prey Lang and Beng Per (A).
However, to aggregate sufficient training data, all of Cambodia was considered (black outline).
The region experiences significant cloud cover during the monsoon season. The % of Landsat 7 ETM+
and Landsat 8 OLI observations that were flagged as occluded in 2020 (B).

2.3. Sentinel-1 Satellite Imagery

The ESA’s Sentinel-1A and 1B satellites carry a C-band (5.6 cm) SAR sensor that
captures dual polarized (VV and VH) imagery. Sentinel-1 Level 1 Ground Range Detected
(GRD) data that intersected Cambodia and were acquired between 2018 and 2021 were
aggregated for analysis in GEE. Sentinel-1 IW GRD are acquired with a spatial resolution
of approximately 20 m × 22 m and are distributed with a uniform pixel size of 10 m [1,62].
The Sentinel-1 GRD dataset corrects for sensor position, border noise, and thermal noise,
performs radiometric calibration, and converts the values to ground range distance [54]. We
applied a Lee-sigma speckle filter [63] and the Angular-Based Radiometric slope correction
to each scene to improve scene-to-scene coherence [64].

2.4. Multispectral Forest Loss Dataset

An annual forest loss dataset for 2018–2020 was developed by applying the methodol-
ogy outlined by Potapov et al. [65] to more recent dates. Landsat Collection 1 Tier 1 satellite
imagery (2018–2020) that intersected Cambodia’s boarder was aggregated for processing.
During this time period, satellite imagery was acquired by Landsat 7’s Enhanced Thematic
Mapper plus and Landsat 8’s Operational Land Imager sensors. The Landsat scenes were
processed from digital number values to top-of-atmosphere values and then converted
to normalized reflectance values using the MODIS 44C surface reflectance dataset [66,67].
The normalized imagery was then temporally aggregated to form a time series of 16-day
composites covering the Lower Mekong. The time-series of images was denoised using
outputs from the CFMask algorithm [61] and an ensemble of bagged decision trees trained
to identify cloud, cloud shadows, haze, and water [68]. The 16-day composites were
used to derive metrics quantifying intra-annual variations in spectral reflectance and were
used to develop a model to map annual change loss using an ensemble of bagged regres-
sion trees [65]. This set of annual forest loss layers, hereafter referred to as the Mekong
forest loss dataset, was used as a semantic segmentation target when developing deep
learning models.

2.5. Synthetic Forest Alert Dataset

To parameterize the FCC detection models used in the alert system, we developed
a large training dataset which combined annual Landsat-derived maps of forest loss and
Sentinel-1 SAR data. Sample locations were selected by taking a stratified random sample
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of locations in Cambodia that had experienced FCC in the years 2017, 2018, and 2019.
A random date was assigned to each location (e.g., 1 June 2019). Three SAR images were
randomly selected 1 to 1.5 years prior to the randomly selected date (e.g., 1 January–31 May
2018). The final SAR image of the input features was selected 1 year after the randomly
chosen date (e.g., 10 June 2020). Each input to the FCC models is a 8 × 128 × 128 (channels,
width, height) tensors composed of four Sentinel-1 SAR images (each of which individually
possess a VV and VH bands). The label associated with each input was a 128 × 128 (height,
width) binary maps of FCC (resampled from 30 m to 10 m to match the Sentinel-1 GRD
data). By randomly sampling throughout the year, the goal is to produce a classifier that is
robust to variations in backscatter values caused by vegetation phenology. This sampling
strategy also ensures that any FCC events occur in a similar manner to the what network
would observe during monitoring (i.e., change events should manifest between the three
previous acquisitions and the most recent acquisition). When the SAR deep learning
classifiers are deployed for near-real time monitoring, each model was instead given three
images acquired in the proceeding 1–3 weeks and then the most recent SAR acquisition.

We aggregated two different forest alert datasets, one consisting of scenes obtained
during ascending orbits and another obtained during descending orbits. In preliminary
experiments, we found that developing a single model which used inputs consisting of both
ascending and descending Sentinel-1 SAR scenes were difficult to train (e.g., poor test-set
performance, visually distorted outputs). We developed a two-network forest alert system
where one model trained on scenes acquired during the ascending orbits and the other was
trained on scenes acquired during descending orbits. An 80–20% randomized split was
used to partition the ascending and descending examples into a training group and a testing
group. We did not withhold an additional subset to assess the model’s generalization error.
Instead, the model’s accuracy was characterized using an independent photo interpretation
dataset (described below).

The modeling dataset consisted of 74,545 examples. These were partitioned into a
training and a testing set (80–20% split). We synthetically increase the volume of train-
ing data by using geometric data augmentation during training. These transformations
consisted of: horizontal and vertical flips, and rotations by 90, 180, and 270. The choice
of transformation for each patch was governed by a uniform random variable, ensuring
diversity within the dataset. In our study, approximately 60% of the patches underwent
one or more of these transformations.

2.6. Neural Network Architecture

The underlying neural network architecture for performing semantic segmentation
was the U-Net architecture [69]. U-Net is a fully convolutional neural network with an
encoder-decoder structure. The encoder portion of the network is a Convolutional Neural
Network (CNN) that captures a set of hierarchical representations that characterize the
input feature space. The decoder portion of the model uses the hierarchical of feature data
to construct a map of predicted forest cover change. The U-Net architecture significantly
improves the performance of standard encoder-decoder architectures by incorporating
skip-connections that allow features generated in the encoder portion of the network to be
reused in the decoder portion of the network (as well as introducing additional paths for
gradient flow during optimization). We modify the simple encoder structure of the original
UNet architecture to use the MobileNetV3-Large CNN (here after MobileNetV3) [70] an
encoder. The decoder network was similar to the original UNet decoder as both consist
of up-sampling operations and two convolution blocks (consisting of a convolution layer,
batch normalization [71], and a ReLU activation layer [72]). While the original UNet
architecture used transposed convolutions to upsample the imagery, we utilized nearest
neighbor upsampling. Some work suggests that transposed convolutions can result in
checkerboard artifacts in the output prediction maps [73]. Additionally, this reduces the
number of learnable parameters in the network. We refer to this architecture MobileNetV3-
UNet (Figure 3).
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Figure 3. The MobileNetV3-UNet model used to map forest cover change events in this analysis.

2.6.1. MobileNetV3-Large Encoder Network

The MobileNetV3-Large (here after MobileNetV3) architecture was designed to reduce
the number of computational operations required by the neural network during inference
while retaining performance comparable to larger, more computationally intensive archi-
tectures [74]. The network consists of a sequence of network blocks (i.e., a combination of
convolutional layers, activation functions, and aggregation operations). Generally, each
network block consists of a 1 × 1 expansion convolution (i.e., a convolution that increases
the number of feature maps), a depth-wise separable convolution, and a squeeze-and-
excite block. Depth-wise separable convolutions are more computationally efficient than
traditional 2D convolutions as they require fewer multiply and addition operations [74].
A depth-wise separable convolution consist of a depth-wise convolution followed by a 1× 1
point-wise convolution. Squeeze-and-excite blocks are designed to selectively emphasize or
de-emphasise features [75]. If the inputs and outputs of each network block in MobileNetV3
contain the same number of feature maps, a residual connection was used combine the
input feature maps with the output feature maps [70,76]. The encoder contained both the
ReLU activation function and the hard-swish activation function [72,77].

2.6.2. Network Training

The ascending and descending MobileNetV3 models were each trained for a maximum
of 25 epochs. Early stopping, which monitors the loss curve for a plateau, was used
to prevent overfitting. The dice loss function was used during model optimization [78].
The networks were optimized using mini-batch stochastic gradient descent with the ADAM
optimizer [79]. Due to limited cloud computing resources, several short, preliminary runs
were used to identify a viable hyperparameter combination using the training set alone.
A batch size of 16 and a learning rate of 0.001 were selected based on the tests and prior
results in the region [35]. Random data augmentation was applied during training by
applying a random rotation (0◦, 90◦, and 180◦) and a horizontal flip of the imagery and
label to diversify the training dataset [80,81].

Four performance indicators were tracked during model training: accuracy, precision,
recall, and F1-score (Table 1). Accuracy describes the fraction of all FCC events, in the
128 × 128 reference label, that were correctly classified. Recall (also know as producer’s
accuracy) characterizes the proportion of FCC in the reference that was correctly classified.
Precision (also known as user’s accuracy) characterizes the proportion of all FCC events
were correctly predicted by the classifier. F1-score is the harmonic mean of precision and
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recall and useful for interpreting a classifier’s accuracy given the class imbalance (change
vs. no-change events) in most segmentation labels in the training or testing sets.

Table 1. Accuracy metrics that were tracked during model training. TP stands for true positive. TN
stands for true negative. FP stands for false positive. FN stands for false negative.

Metric Formulation

Accuracy TN+TP
TP+FP+TN+FN

Recall TP
TP+FN

Precision TP
TP+FP

F1-score 2∗(Recall∗Precision)
(Recall+Precision)

2.7. Alert System Deployment

The deep learning models were deployed in GEE. The Sentinel-1 scenes were uploaded
into cloud computing storage buckets within 1–2 days of appearing at the ESA’s Sentinel-1
datahub [82]. Using the GEE Python API, we developed a program that continuously
monitors the GEE Sentinel-1 SAR repository and, upon seeing a new acquisition in our
study area, will feed the new acquisition through the appropriate MobileNetV3 classifier.
The final layer of the MobileNetV3 classifier produces a map of logit values (ranging from
0–1) produced by the sigmoid output layer. Forest alerts for the ascending and descending
classifier are issued for the first instance of FCC, in the current year, detected by the alert.
FCC events are issued for the combined classifier only if the ascending and descending
classifier independently detect a FCC event within 32-days of each other.

2.8. Alert System Validation

A photo interpretation dataset was created to validate the accuracy of the SAR-based
alert system (Figure 4). The interpretation database was developed using the Collect
Earth Online (CEO) photointrepretation tool [58]. High resolution (5 m), bi-annual Planet-
Lab’s satellite imagery, made available through NICFI (Norway’s International Climate and
Forests Initiative) program, was used by the interpreters to classify FCC events. Interpreters
used bi-annual PlanetLab’s satellite imagery to determine if a FCC event had occurred.
If a disturbance was observed, the interpreters recorded if the disturbance occurred in the
dry season (1 January–30 June) or the wet season (1 July–31 December). The interpretation
dataset developed for this analysis was used to validate the spatial extent of the distur-
bances being produced by the alert system and to assess the general accuracy of the timing
of disturbance events.

The location of photointrepretation “plots” was determined using a stratified sam-
pling approach. To ensure the points were well-distributed throughout the dry and wet
season, we created 7 map strata using information from the SAR-based forest alert system,
the GLAD forest alert system, and the Mekong reference layer. We included samples from
locations where the GLAD and SAR systems produced spatially coincident forest alerts
and locations where one system independently identified a FCC event. Finally, points were
distributed in locations where the Mekong reference FCC layer indicated there was FCC
but neither forest alert system produced an alert. To reduce false-positives, a minimum
mapping unit of 0.5 ha was applied to each of the forest alert datasets. In 2018, 1134 plots
were collected overall and found to contain 501 dry season disturbances, 489 wet season dis-
turbances, and 243 undisturbed plots. In 2019, 1194 plots were collected overall and found
to contain 300 dry season disturbances, 360 wet season disturbances, and 537 undisturbed
plots. A different sampling strategy was used in 2020 that emphasised points in the wet sea-
son when more imagery from the NICFI became available. In 2020, 921 plots were collected
overall and found to contain 333 dry season disturbances, 345 wet season disturbances,
and 141 undisturbed plots. In total, the data set contained 3249 photointrepretation plots.
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Similar to techniques like logistic regression, the deep neural networks output a contin-
uous value between 0 and 1 that reflects the probability of a FCC event occurring. The user
must determine the threshold of probability at that change is considered likely. In the
context of a forest alert system, an optimal threshold is the value at which classification
accuracy is maximized and the classifier has a greater omission error rate (i.e., a greater
number of false negatives) than commission error rate (i.e., the number of false positives) [2].
Given that forest management teams will potentially be deployed to investigate FCC events
within the sanctuary, the cost of erroneously deploying a team is much greater than the
cost of missing a FCC event, and the two outcomes should not be treated equally. There-
fore, we use two criteria to select the final thresholds used for the ascending, descending,
and combined classifiers: (1) the total area of FCC mapped by the SAR classifier cannot
exceed the area of FCC mapped in the reference product and (2) the F1-score is maximized
given the first constraint.

Figure 4. The point locations indicate plots where photointerpreters visually assessed the timing of
SAR-based forest alert system. Locations were selected using a stratified random sampling approach
in 2018, 2019, and 2020. The forest/non-forest layer base map was derived from the Global Forest
Watch dataset [51].
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3. Results
3.1. Classifier Training and Deployment

Both the ascending and descending classifiers achieved good performance on the deep
learning validation sets Table 2. Both models converged with F1-scores ≥ 0.9. Both the
ascending and descending classifiers achieved good performance on the deep learning
validation sets. Both models converged with F1-scores exceeding 0.9. The descending clas-
sifier outperformed the ascending classifier with marginally better accuracy (improvement
of 0.1%) and F1-score (improvement of 0.01). Despite the similar convergence statistics,
the two classifiers did map disturbances in a similar manner (Figure 5). The ascending
classifier generally mapped FCC at a much greater rate relative to the descending classifier
with the area of mapped disturbance only comparable with low threshold values (0.05 or
0.1). While each classifier would often agree on the spatial location of a FCC event, these
predictions were often not sufficiently temporally coincident for the combined classifier to
indicate that a FCC event had occurred. This resulted in the combined classifier issuing
fewer alerts than either the ascending or descending classifiers.

Varying the inclusion threshold between 0.1 and 0.45, in increments of 0.05, pro-
duced a large variation in the rate of mapped cover change events (Figure 5). Each year,
from 2018–2020, both the Mekong FCC product and the SAR alert systems indicated pro-
gressively more deforestation within the wildlife sanctuaries. In 2020, varying the inclusion
threshold for the ascending classifier produced between 18,837,998 and 2,010,035 alerts,
using thresholds of 0.1 and 0.45 respectively. The descending SAR classifier issued fewer
alerts, issuing between between 18,096,955 and 558,234 forest alerts as the inclusion thresh-
old was varied. Lastly, the combined SAR classifier system produced considerably the least
alerts. The combined system issued between 210,360 and 24,648,393 alerts in 2020 as the
inclusion threshold was varied from 0.45 to 0.1.

Often, the value that maximized the overall accuracy of the classifier did not corre-
spond with the final thresholds selected (Figure 6). The forest alert systems generally had
low recall scores (0.2–0.4) and a wide-range of precision scores (0.2–0.9). This indicates
with respect to the photointrepretation dataset that the classifiers were quite conservative
in issuing forest alerts (as indicated by the lower recall scores) but whose issued alerts
had a high degree of accuracy (as indicated by the higher precision scores). However, we
note that the photointrepretation dataset possessed a greater number of FCC observations
than it did non-loss observations. As such, using accuracy alone to guide our choice of
threshold would produce classifiers biased towards a lower threshold that issues too many
disturbances. By constraining our selection of a threshold to one that restricted the area of
the issued alerts to be less than the reference product, we achieve a more balanced error
rate. This balancing of the errors is reflected in the fact that, generally, the selected inclusion
threshold is the threshold that maximizes the F1-score. A threshold of 0.4 was chosen for
the ascending model; a threshold of 0.3 for the descending model, and a threshold of 0.15
for the combined model.

Table 2. The test set error statistics for the ascending and descending for the MobileNetV3-UNet
forest cover change classifier after training the models for 25 epochs.

Accuracy F1 CE Loss Precision Recall

Ascending Orbit 0.92 0.91 0.051 0.89 0.92
Descending Orbit 0.90 0.90 0.056 0.88 0.92
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Figure 5. The cumulative distribution of forest alerts issued by the ascending, descending, and com-
bined alert systems over the course of 2018, 2019, and 2020. Darker colors indicate a lower inclusion
threshold that results in a greater rate of mapped disturbance. The red horizontal line indicates the
count of pixels in the reference FCC product (at a 10 m scale to match the SAR systems) that was used
to create the neural network training dataset.

3.2. Alert System Performance

Using the optimal inclusion thresholds, we summarized the ascending, descending,
and combined SAR alert systems’ performance with respect to the photointrepretation
reference dataset (Table 3). In 2018, the descending classifier achieving the best performance
with regards to all metrics evaluated. The descending classifier correctly classified (within
the appropriate window of time) 64% of all labels in the reference dataset. The descend-
ing system’s accuracy achieved a overall accuracy of 70.15% with an F1-score of 0.68 in
the dry season. The classifier’s accuracy declined in the wet season with 61.9% of FCC
events being captured. The ascending classifier performed notably poorly in the 2018 wet
season (F1-score of 0.5; accuracy 46.1%) which produced a corresponding decline in the
performance of the combined classifier.
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Figure 6. The accuracy of the SAR classifiers plotted against the classifier’s precision and recall scores.
The red vertical line indicates the threshold selected for each classifier.
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In 2019, the most accurate SAR classifier was the combined classification approach.
In the 2019 dry season, the combined alert system correctly classified 59.3% of the reference
dataset. In the dry season, all classifiers performed well with the combined classifier
achieved notably high accuracy from the combined alert system (accuracy 71.2%; F1-score
0.7). However, in the wet season, the ascending classifier’s performance again declined
markedly (F1-score of 0.5, accuracy of 46.1% combined classifier’s F1-score declined by
0.12 to 0.5), which resulted in a corresponding decline in the combined systems’ accuracy.
The descending classifier achieving the highest performance in the wet season (accuracy
61.9%; F1-score 0.63).

The descending classifier was the most accurate alert system in 2020. The descending
system possessed an overall accuracy of 50.5% with an F-1 score of 0.32. The progression of
alerts from year-to-year also nicely reflects the overall patterns of cover change within our
study region (Figure 7). Classification scores in general were lower in 2020 than in 2018
or 2019 due to the greater proportion of FCC events, in the more challenging wet-season,
in the interpretation dataset. Similar to 2018, the performance of the combined classifier
was negatively impacted by performance of the ascending classifier.

Figure 7. Three 2.5 km-by-2.5 km subsets within the Prey Lang wildlife sanctuary (bold black outline)
displaying the forest alerts issued by the descending SAR deep learning classifier for 2018, 2019,
and 2020. The forest alerts are rendered over a false-color Sentinel-2 image.

3.3. Comparison with GLAD Alerts

We compared the most performant SAR-based classifier, the descending classifier,
against the GLAD forest alert system. In 2018, the GLAD alert system achieved an overall
accuracy of 64.3% and achieved better accuracy than the descending SAR system in both
the wet and the dry seasons (Table 4). In 2019, the descending-classifier was the most
performant classifier by a small margin according to all accuracy metrics. In the 2019 dry
season, the descending system correctly captured 71.2% of FCC events and achieved and
F1-score of 0.7. In the wet season, the descending classifier’s accuracy declined below that
of the GLAD alert system. Overall, the descending classifier captured 58.3% of all FCC
events while the GLAD system captured 61.5% of FCC events in 2018 and 2019 according to
the independent validation set. The descending alert system exhibited superior dry season
performance compared to the GLAD system (69.5% vs. 66.73%) but reduced performance
in the wet season (53.8% vs 63.9%). The GLAD alert system was parameterized to provide
conservative estimates of FCC thus minimizing the risk of false positives. By adjusting
the inclusion threshold of the descending classifier, we were able to produce a forest alert
system whose area of issued alerts was closer to the area of FCC estimated by the reference
FCC product (Figure 8). However, in 2019 and 2020, both systems underestimated the
total area of FCC. The two systems show notably similar patterns in alert issuance in 2019
and 2020.
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Table 3. A comparison of the accuracy of each SAR forest alert system using the optimal inclusion
threshold. The accuracy assessment is conducted with respect to the photointrepretation dataset.
Bolded values indicate the best performing model for each season.

Year Alert System Season
Sample Size Accuracy Metrics

Loss No Loss All Accuracy Precision Recall F1-Score
Ascending 62.23 0.52 0.77 0.62
Descending 70.14 0.6 0.78 0.68
Combined

Dry 167 111 278
67.63 0.58 0.72 0.64

Ascending 51.66 0.53 0.77 0.62
Descending 63.98 0.63 0.78 0.7
Combined

Wet 100 111 211
51.18 0.53 0.72 0.61

Ascending 52.12 0.35 0.77 0.48
Descending 64.29 0.44 0.78 0.56

2018

Combined
All 267 111 378

57.14 0.38 0.72 0.5
Ascending 64.39 0.56 0.7 0.62
Descending 63.31 0.54 0.8 0.64
Combined

Dry 163 115 278
71.22 0.61 0.82 0.7

Ascending 45.96 0.47 0.7 0.56
Descending 63.83 0.6 0.8 0.68
Combined

Wet 120 115 235
56.17 0.53 0.82 0.65

Ascending 52.01 0.34 0.7 0.46
Descending 58.79 0.39 0.8 0.53

2019

Combined
All 283 115 398

59.3 0.4 0.82 0.54
Ascending 46.88 0.32 0.38 0.35
Descending 46.88 0.39 0.77 0.51
Combined

Dry 81 47 128
57.03 0.45 0.72 0.55

Ascending 41.15 0.15 0.38 0.21
Descending 57.96 0.3 0.77 0.43
Combined

Wet 179 47 226
47.35 0.24 0.72 0.36

Ascending 43.97 0.11 0.38 0.17
Descending 50.49 0.2 0.77 0.32

2020

Combined
All 260 47 307

47.56 0.19 0.72 0.3
Ascending 49.77 0.29 0.67 0.4
Descending 58.36 0.35 0.79 0.49Overall
Combined

All 810 273 1083
55.22 0.33 0.76 0.46

Figure 8. The total number of alerts issued by the descending SAR classifier using an inclusion
threshold of 0.25 and the GLAD alert system. Each GLAD alert was counted 9 times as the GLAD
alert system maps FCC at a 30 m spatial resolution while the SAR-based system maps FCC at a
10 m resolution.
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Table 4. A comparison of the accuracy of the best performing SAR-Alert system and the GLAD
Alert system. The accuracy assessment is conducted relative to the photointrepretation dataset. The
accuracy statistics for the best performing model in each season are bolded.

Year Alert System Season
Sample Size Accuracy Metrics

Loss No Loss All Accuracy Precision Recall F1-Score
Descending 67.63 0.58 0.72 0.64

GLAD
Dry 167 111 278

70.14 0.6 0.78 0.68
Descending 51.18 0.53 0.72 0.61

GLAD
Wet 100 111 211

63.98 0.63 0.78 0.7
Descending 57.14 0.38 0.72 0.5

2018

GLAD
All 267 111 378

64.29 0.44 0.78 0.56
Descending 71.22 0.61 0.82 0.7

GLAD
Dry 163 115 278

63.31 0.54 0.8 0.64
Descending 56.17 0.53 0.82 0.65

GLAD
Wet 120 115 235

63.83 0.6 0.8 0.68
Descending 59.3 0.4 0.82 0.54

2019

GLAD
All 283 115 398

58.79 0.39 0.8 0.53
Descending 69.42 0.6 0.77 0.67

GLAD
Dry 330 226 556

66.73 0.56 0.79 0.66
Descending 53.81 0.53 0.77 0.63

GLAD
Wet 220 226 446

63.9 0.61 0.79 0.69
Descending 58.25 0.39 0.77 0.52

Overall

GLAD
All 550 226 776

61.47 0.42 0.79 0.54

4. Discussion
4.1. Alert System Framework Evaluation

A central benefit of the proposed framework is that it significantly simplifies the
logistics of operationalizing a forest alert system. Traditionally, deploying such a system
would necessitate configuring a server to (1) continuously monitor an external database
hosting new satellite image acquisitions, (2) download and preprocess these new images,
(3) apply the FCC classifier to issue new alerts, and (4) push the classified imagery to a
publicly accessible repository. By positioning Google Earth Engine (GEE) at the core of
our framework, these tasks are made more accessible and can be performed without any
specialized computing hardware.

A key finding of this analysis was that it was possible to train a radar-based forest
alert system using pre-existing FCC data products derived from multispectral sensors.
A primary challenge in implementing deep learning models in an ecological context is the
scarcity of high-quality reference data, which are often expensive and time-consuming to
collect. As demonstrated in this analysis, it is feasible to construct a potentially large dataset
using spatial sampling and pre-existing FCC products. Notably, the models developed in
this analysis were trained using an annual forest loss layer, devoid of information about
the actual timing of the event. Yet, the deep classifiers, when provided with a sufficient
quantity of examples, were able to generalize and identify new FCC events. Near real-
time classification poses numerous additional problems for standard FCC classification.
Specifically, the classifier must be robust to noise associated with seasonal variations that
produce cyclical patterns in the input SAR signals. Remarkably, our classifiers achieved
performance comparable to an existing, purpose-built forest alert system, despite utilizing
such a naive sampling strategy and labels without information on FCC timing.

4.2. Suggestions for Future Analyses

While our approach yielded a SAR-based classifier that was comparable to existing
forest alert systems, previous results in the literature suggest additional gains in perfor-
mance could be achieved. Reich et al. [1] developed a near-real time forest alert system over
the Congo Basin using Sentinel-1 SAR imagery. Their forest alert system first detrended the
SAR time-series using a harmonic model and then employed iterative Bayesian updates
as described in Reich et al. [25]. Ballère et al. [26] developed a SAR forest alert system
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over French Guiana, which achieved a user’s accuracy of 96.2% (user’s accuracy is the
complement of the omission error) and a user’s accuracy of 81.5% (user’s accuracy is the
complement of the commission error). This system provided a significant improvement
in the commission error rate compared with the GLAD forest alert system. The system
employed by Ballère et al. [26] used a simple algorithm proposed by Bouvet et al. [18] which
computes the relative change of the most recent SAR acquisition to a running average of
prior SAR acquisitions, identifying FCC events.

We observed a discrepancy between the accuracy statistics derived from the deep
learning test set and those from the photo interpretation dataset. On the SAR test set,
the classifiers exhibited an F1-score ≥ 0.9 (0.91 for ascending and 0.9 for descending
MobileNet-V3UNet models). However, the independent photo-interpretation dataset
showed an overall F1-score of 0.4 and 0.49 for the ascending and descending MobileNetV3-
UNet models, respectively. We attribute this to the spatial overlap of examples in the
training and testing sets used to develop the MobileNetV3-UNet models. Deep learning
algorithms possess a large number of model parameters, enabling them to memorize
patterns. For instance, CNNs could achieve zero training error on the ImageNet ILSVRC
2012 dataset [83] with randomized labels after extensive training [84]. Given that some
examples in the training set overlap with the testing set, we would expect an optimistic
estimate of error. This aligns with the results of [85], which advocate spatial cross-validation
to assess the generalization error of ecological models.

Additionally, utilizing transfer learning, a technique wherein training is initiated using
pre-existing weights instead of randomly initialized weights, is a common practice used
to decrease model training time [86,87]. Previously, transfer learning was challenging
as many datasets were developed using datasets such as the ImageNet ILSVRC 2012
dataset (a dataset that consists of labeled RGB images). The domain transfer to remote
sensing imagery and tasks could make transfer learning, in practice, difficult. However,
A third option would be to generate a pre-training reference dataset using continuous
change detection algorithms (e.g., the Continuous Change Detection and Classification
algorithm [88]). Continuous change detection algorithms provide information on the intra-
annual timing of FCC events. Higher accuracy FCC labels with timing information would
allow for training examples to be constructed in a manner that more closely aligns with
the final inputs to the model, thus reducing label noise. In the absence of cloud cover, FCC
labels with timing information could be automatically constructed using change detection
methods such as the CCDC algorithm.

5. Conclusions

This study marks the initial step toward a sophisticated SAR-based forest alert sys-
tem, demonstrating promising potential despite the challenges presented by limited data
resources. The proposed framework utilizes pre-existing annual FCC maps, derived from
moderate-resolution, multispectral imagery, to construct a SAR-based semantic segmenta-
tion dataset. Our analysis indicates that deep learning models are capable of generalizing
despite substantial amounts of label noise. The ubiquity of FCC products developed using
moderate-resolution multispectral sensors (e.g., Landsat, Sentinel-2) suggests that integrat-
ing SAR and deep learning can be used to effectively map forest cover change in other
forest ecosystems. Despite the coarse temporal (annual) resolution of the forest change
cover labels used in this analysis, our SAR-based change detection approach achieved an
F1-score similar to the GLAD forest alert system (F1-scores of 0.52 and 0.54, respectively).
The capacity to streamline SAR dataset development, data aggregation, and model deploy-
ment within the Google Earth Engine cloud environment greatly simplifies the logistics
of deploying the alert system, obviating the need for specialized computing hardware.
The encouraging performance of our prototype, even with these constraints, underscores its
potential. However, we anticipate that the ongoing collection of field data will substantially
refine our training dataset, leading to enhanced model accuracy and the ability to more
effectively generalize across diverse forest ecosystems.
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