An Improved Acceleration Approach by Utilizing K-Band Range Rate Observations
Abstract
:1. Introduction
2. Methodology
3. Satellite Observations and Force Models
4. Results
4.1. Spectrum Analyses
4.2. Global Mass Variation Signal
4.3. Mass Variation Signal in River Basin and Land–Ice Areas
4.4. Noise Levels over the Sahara and Karakum Deserts
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Overview of Classical Acceleration Method
Appendix A.2. Improved Acceleration Method
References
- Flury, J.; Bettadpur, S.; Tapley, B.D. Precise accelerometry onboard the GRACE gravity field satellite mission. Adv. Space Res. 2008, 42, 1414–1423. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Kornfeld, R.P.; Arnold, B.W.; Gross, M.A.; Dahya, N.T.; Klipstein, W.M.; Gath, P.F.; Bettadpur, S. GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission. J. Spacecr. Rocket. 2019, 56, 931–951. [Google Scholar] [CrossRef]
- Abich, K.; Abramovici, A.; Amparan, B.; Baatzsch, A.; Okihiro, B.B.; Barr, D.C.; Bize, M.P.; Bogan, C.; Braxmaier, C.; Burke, M.J.; et al. In-orbit performance of the GRACE Follow-on laser ranging interferometer. Phys. Rev. Lett. 2019, 123, 031101. [Google Scholar] [CrossRef] [PubMed]
- Bettadpur, S. UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0006, 1–16; Center for Space Research, The University of Texas at Austin: Austin, TX, USA, 2018. [Google Scholar]
- Yuan, D. JPL Level-2 Processing Standards Document for Level-2 Product Release 06, 1–16; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2018. [Google Scholar]
- Dahle, C.; Flechtner, F.; Murböck, M.; Michalak, G.; Neumayer, H.; Abrykosov, O.; Reinhold, A.; König, R. GFZ Level-2 Processing Standards Document for Level-2 Product Release 06; GFZ German Research Centre for Geosciences: Potsdam, Germany, 2018. [Google Scholar]
- Kvas, A.; Behzadpour, S.; Ellmer, M.; Klinger, B.; Strasser, S.; Zehentner, N.; Mayer-Gürr, T. ITSG-Grace2018: Overview and evaluation of a new GRACE-only gravity field time series. J. Geophys. Res. Solid Earth. 2019, 124, 9332–9344. [Google Scholar] [CrossRef]
- Liu, X.; Ditmar, P.; Siemes, C.; Slobbe, D.C.; Revtova, E.; Klees, R.; Riva, R.; Zhao, Q. DEOS Mass Transport model (DMT-1) based on GRACE satellite data: Methodology and validation. Geophys. J. Int. 2010, 181, 769–788. [Google Scholar] [CrossRef]
- Han, S.-C.; Shum, C.K.; Bevis, M.; Ji, C.; Kuo1, C.-Y. Crustal dilatation observed by GRACE after the 2004 Sumatra-Andaman earthquake. Science 2006, 313, 658–662. [Google Scholar] [CrossRef]
- Han, S.-C.; Sauber, J.; Riva, R.E.M. Contribution of satellite gravimetry to understanding seismic source processes of the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 2011, 38, L24312. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the earths gravity field hydrological and oceanic effects and their possible detection using grace. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Zhong, X.; Yao, T.; Qi, J.; Wang, Y.; Xue, Y. Quantifying the major drivers for the expanding lakes in the interior Tibetan Plateau. Sci. Bull. 2022, 67, 474–478. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Keim, B.D.; Konsoer, K.; Yin, Z.; Liu, M.; Zheng, W. Spatial and wavelet analysis of precipitation and river discharge during operation of the Three Gorges Dam, China. Ecol. Indic. 2023, 154, 110837. [Google Scholar] [CrossRef]
- Wal, W.V.D.; Wu, P.; Sideris, M.G.; Shum, C.K. Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America. J. Geodyn. 2008, 46, 144–154. [Google Scholar]
- Gunter, B.C.; Wittwer, T.; Stolk, W.; Klees, R.; Ditmar, P. Comparison of Regional and Global GRACE Gravity Field Models at High Latitudes. In Geodesy for Planet Earth, Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina, 31 August 31–4 September 2009; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Luthcke, S.B.; Zwally, H.J.; Abdalati, W.; Rowlands, D.D.; Ray, R.D.; Nerem, R.S.; Lemoine, F.G.; McCarthy, J.J.; Chinn, D.S. Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science 2006, 314, 1286–1289. [Google Scholar] [CrossRef] [PubMed]
- Siemes, C.; Ditmar, P.; Riva, R.E.M.; Slobbe, D.C.; Liu, X.L.; Farahani, H.H. Estimation of mass change trends in the Earth’s system on the basis of GRACE satellite data, with application to Greenland. J. Geod. 2013, 87, 69–87. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Chen, W.; Zhang, X.; Ju, X. A modified acceleration-based monthly gravity field solution from grace data. Geophys. J. Int. 2015, 202, 1190–1206. [Google Scholar] [CrossRef]
- Ditmar, P.; van Eck van der Sluijs, A.A. A technique for modeling the Earth’s gravity field on the basis of satellite accelerations. J. Geod. 2004, 78, 12–33. [Google Scholar] [CrossRef]
- Ditmar, P.; Kuznetsov, V.; van Eck van der Sluijs, A.A.; Schrama, E.; Klees, R. DEOS_CHAMP-01C_70’: A model of the Earth’s gravity field computed from accelerations of the CHAMP satellite. J. Geod. 2006, 79, 586–601. [Google Scholar] [CrossRef]
- Farahani, H.H.; Ditmar, P.; Inácio, P.; Didova, O.; Gunter, B.; Klees, R.; Guo, X.; Guo, J.; Sun, Y.; Liu, X.; et al. A high resolution model of linear trend in mass variations from DMT-2: Added value of accounting for coloured noise in GRACE data. J. Geodyn. 2017, 103, 12–25. [Google Scholar] [CrossRef]
- Mayer-Gürr, T. Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Ph.D. Thesis, University of Bonn, Bonn, Germany, 2006. [Google Scholar]
- Mayer-Gürr, T.; Eicker, A.; Ilk, K.H. ITG-Grace02s: A GRACE gravity field derived from range measurements of short arcs. In Gravity Field of the Earth, Proceedings of the 1st International Symposium of the International Gravity Field Service (IGFS), Istanbul, Turkey, 28 August–1 September; Command of Mapp: Ankara, Turkey, 2007; Volume 18, pp. 193–198. [Google Scholar]
- Mayer-Gürr, T.; Zehentner, N.; Klinger, B.; Kvas, A. ITSG-Grace2014: A new GRACE gravity field release computed in Graz. In Proceedings of the Oral Presentation at the GRACE Science Team Meeting, Potsdam, Germany, 29 September 2014. [Google Scholar]
- Chen, Q.; Shen, Y.; Zhang, X.; Chen, W.; Hsu, H. Tongji-GRACE01: A GRACE-only Static Gravity Field Model Recovered from GRACE Level-1B Data using Modified Short Arc Approach. Adv. Space Res. 2015, 56, 941–951. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Chen, W.; Francis, O.; Zhang, X.; Chen, Q.; Li, W.; Chen, T. An optimized short-arc approach: Methodology and application to develop refined time series of Tongji-grace2018 GRACE monthly solutions. J. Geophys. Res. Solid Earth 2019, 124, 6010–6038. [Google Scholar] [CrossRef]
- Jekeli, C. The determination of gravitational potential differences from satellite-to-satellite tracking. Celest. Mech. Dyn. Astron. 1999, 75, 85–101. [Google Scholar] [CrossRef]
- Han, S.C. Efficient Global Gravity Field Determination from Satellite-to-Satellite Tracking. Ph.D. Thesis, School of the Ohio State University, Columbus, OH, USA, 2003. [Google Scholar]
- Rummel, R. Gravity Parameter Estimation from Large Data Sets Using Stabilized Integral Formulas and a Numerical Integration Based on Discrete Point Data; Department of Geodetic Science and Surveying, Ohio State University: Columbus, OH, USA, 1982. [Google Scholar]
- Shen, Y.Z. Study of Recovering Gravitational Potential Model from the Ephemerides of CHAMP; The Institute of Geodesy and Geophysics, Chinese Academy of Science: Wuhan, China, 2000. (In Chinese) [Google Scholar]
- Austen, G.; Grafarend, E.W.; Reubelt, T. Analysis of the Earth’s Gravitational Field from Semi-Continuous Ephemeris of a Low Earth Orbiting GPS-Tracked Satellite of Type CHAMP, GRACE or GOCE; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Shen, Y.; Xu, H.; Wu, B. Simulation of recovery of the geopotential model based on inter-satellite acceleration data in the low-low satellite to satellite tracking gravity mission. Chin. J. Geophys. 2005, 48, B07–B11. [Google Scholar] [CrossRef]
- Ning, J.; Zhong, B.; Luo, Z.; Wang, H. Decorrelation filtering method for recovering the Earth’s gravity field based on satellite acceleration. J. Geod. Geoinf. Sci. 2010, 39, 331–337. [Google Scholar]
- Nie, Y.; Shen, Y.; Pail, R.; Chen, Q.; Xiao, Y. Revisiting Force Model Error Modeling in GRACE Gravity Field Recovery. Surv. Geophys. 2022, 43, 1169–1199. [Google Scholar] [CrossRef]
- Liu, X. Global Gravity Field Recovery from Satellite-to-Satellite Tracking Data with the Acceleration Approach. Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands, 2008. [Google Scholar]
- Ray, R.D.; Luthcke, S.B.; Boy, J.-P. Qualitative comparisons of global ocean tide models by analysis of intersatellite ranging data. J. Geophys. Res. Ocean. 2009, 114. [Google Scholar] [CrossRef]
- Allgeyer, S.; Tregoning, P.; Mcqueen, H.; McClusky, S.C.; Potter, E.-K.; Pfeffer, J.; McGirr, R.; Purcell, A.P.; Herring, T.A.; Montillet, J.-P. ANU GRACE Data Analysis: Orbit Modeling, Regularization and Inter-satellite Range Acceleration Observations. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022489. [Google Scholar] [CrossRef]
- Jørgen, B.-J.; Gutin, G. Theory, Algorithms and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Shampine, L.; Gordon, M. Computer Solution of Ordinary Differential Equations, The Initial Value Problem; W.H.Freeman and Company: San Francisco, CA, USA, 1975; Volume 14, pp. 1097–1105. [Google Scholar]
- Cowell, P.H.; Cormmelin, A.C.D. Investigation of the motion of Halley’s comert from 1759 to 1910. Appendix to Greenwich Observation for 1909. Edinburgh 1910, 18, 637–646. [Google Scholar]
- Farahani, H.H.; Ditmar, P.; Klees, R.; Liu, X.; Zhao, Q.; Guo, J. The static gravity field model DGM-1S from GRACE and GOCE data: Computation, validation and an analysis of GOCE mission’s added value. J. Geod. 2013, 87, 843–867. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, J.; Hu, Z.; Shi, C.; Liu, J.; Cai, H.; Liu, X. GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients. Adv. Space Res. 2011, 47, 1833–1850. [Google Scholar] [CrossRef]
- Beutler, G.; Jäggi, A.; Mervart, L.; Meyer, U. The celestial mechanics approach: Application to data of the GRACE mission. J. Geod. 2010, 84, 661–681. [Google Scholar] [CrossRef]
- Kvas, A.; Brockmann, J.M.; Krauss, S.; Schubert, T.; Gruber, T.; Meyer, U.; Mayer-Gürr, T.; Schuh, W.-D.; Jäggi, A.; Pail, R. GOCO06s—A satellite-only global gravity field model. Earth Syst. Sci. Data 2021, 13, 99–118. [Google Scholar] [CrossRef]
- Montenbruck, O.; Gill, E. Satellite Orbits: Models, Methods, and Applications; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Folkner, W.M.; Williams, J.G.; Boggs, D.H. The planetary and lunar ephemeris DE 421. IPN Prog. Rep. 2009, 42, 1. [Google Scholar]
- Petit, G.; Luzum, B. IERS Conventions. (No. IERS-TN-36); Bureau International Des Poids et Mesures Sevres: Sèvres, France, 2010. [Google Scholar]
- Carrere, L.; Lyard, F.; Cancet, M.; Guillot, A. FES 2014, a new tidal model on the global ocean with enhanced accuracy in shallow seas and in the Arctic region. In Proceedings of the Egu General Assembly Conference, Vienna, Austria, 12–17 April 2015. [Google Scholar]
- Rieser, D.; Mayer-Gürr, T.; Savcenko, R.; Bosch, W.; Wünsch, J.; Dahle, C.; Flechtner, F. The Ocean Tide Model EOT11a in Spherical Harmonics Representation. Technical Note. 2012. Available online: https://www.tugraz.at/fileadmin/user_upload/Institute/IFG/satgeo/pdf/TN_EOT11a.pdf (accessed on 5 June 2023).
- Desai, S.D. Observing the pole tide with satellite altimetry. J. Geophys. Res. Ocean. 2002, 107, 7-1–7-13. [Google Scholar] [CrossRef]
- Dobslaw, H.; Bergmann-Wolf, I.; Dill, R.; Poropat, L.; Thomas, M.; Dahle, C.; Esselborn, S.; König, R.; Flechtner, F. A new high-resolution model of non-tidal atmosphere and ocean mass variability for de-aliasing of satellite gravity observations: AOD1B RL06. Geophys. J. Int. 2017, 211, 263–269. [Google Scholar] [CrossRef]
- Luthcke, S.B.; Rowlands, D.D.; Lemoine, F.G.; Klosko, S.M.; Chinn DMcCarthy, J.J. Monthly spherical harmonic gravity feldsolutions determined from GRACE inter-satellite range-ratedata alone. Geophys. Res. Lett. 2006, 33, L02402. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Francis, O.; Chen, W.; Zhang, X.; Hsu, H. Tongji-Grace02s and Tongji-Grace02k: High-precision static GRACE-only global Earth’s gravity field models derived by refined data processing strategies. J. Geophys. Res. Solid Earth 2018, 123, 6111–6137. [Google Scholar] [CrossRef]
- Meyer, U.; Jäggi, A.; Jean, Y.; Beutler, G. AIUB-RL02: An improved time-series of monthly gravity fields from GRACE data. Geophys. J. Int. 2016, 205, 1196–1207. [Google Scholar] [CrossRef]
- Pie, N.; Bettadpur, S.V.; Tamisiea, M.; Krichman, B.; Save, H.; Poole, S.; Nagel, P.; Kang, Z.; Jacob, G.; Ellmer, M.; et al. Time variable Earth gravity field models from the first spaceborne laser ranging interferometer. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022392. [Google Scholar] [CrossRef]
- Jekeli, C. Alternative Methods to Smooth the Earth’s Gravity Field; Report 327; Department of Geodetic Science and Surveying, Ohio State University: Columbus, OH, USA, 1981. [Google Scholar]
- Kusche, J.; Schmidt, R.; Petrovic, S.; Rietbroek, R. Decorrelated GRACE time-variable gravity solutions by GFZ, and their validation using a hydrological model. J. Geod. 2009, 83, 903–913. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Blankenship, D.; Tapley, B.D. Accelerated Antarctic ice loss from satellite gravity measurements. Nat. Geosci. 2009, 2, 859–862. [Google Scholar] [CrossRef]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. 2008, 113, B08410. [Google Scholar] [CrossRef]
- Cheng, M.K.; Tapley, B.D. Variations in the Earth’s oblateness during the past 28 years. J. Geophys. Res. 2004, 109, B09402. [Google Scholar] [CrossRef]
- Dobslaw, H.; Bergmann-Wolf, I.; Forootan, E.; Dahle, C.; Mayer-Gürr, T.; Kusche, J.; Flechtner, F. Modeling of present-day atmosphere and ocean non-tidal de-aliasing errors for future gravity mission simulations. J. Geod. 2016, 90, 423–436. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D. Interannual variability of Greenland ice losses from satellite gravimetry. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Sang, L.; Zhu, G.; Xu, Y.; Sun, Z.; Zhang, Z.; Tong, H. Effects of Agricultural Large-And Medium-Sized Reservoirs on Hydrologic Processes in the Arid Shiyang River Basin, Northwest China. Water Resour. Res. 2023, 59, e2022WR033519. [Google Scholar] [CrossRef]
- Li, Y.; Mi, W.; Ji, L.; He, Q.; Yang, P.; Xie, S.; Bi, Y. Urbanization and agriculture intensification jointly enlarge the spatial inequality of river water quality. Sci. Total Environ. 2023, 878, 162559. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xu, J.; Liu, M.; Yin, Z.; Liu, X.; Yin, L.; Zheng, W. Remote sensing and geostatistics in urban water-resource monitoring: A review. Mar. Freshw. Res. 2023. [Google Scholar] [CrossRef]
- Mohamed, A.; Abdelrady, A.; Alarifi, S.S.; Othman, A. Geophysical and Remote Sensing Assessment of Chad’s Groundwater Resources. Remote Sens. 2023, 15, 560. [Google Scholar] [CrossRef]
- Luthcke, S.B.; Sabaka, T.J.; Loomis, B.D.; Arendt, A.A.; McCarthy, J.J.; Antarctica, J.C. Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution. J. Glaciol. 2013, 59, 613–631. [Google Scholar] [CrossRef]
- Zhong, B.; Li, X.; Chen, J.; Li, Q. WHU-GRACE-GPD01s: A series of constrained monthly gravity field solutions derived from GRACE-based geopotential differences. Earth Space Sci. 2023, 10, e2022EA002699. [Google Scholar] [CrossRef]
- Kurtenbach, E.; Mayer-Gürr, T.; Eicker, A. Deriving daily snapshots of the Earth’s gravity field from GRACE L1B data using Kalman filtering. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Chen, W.; Zhang, X.; Hsu, H. An improved GRACE monthly gravity field solution by modeling the non-conservative acceleration and attitude observation errors. J. Geod. 2016, 90, 503–523. [Google Scholar] [CrossRef]
- Wahr, J.; Swenson, S.; Zlotnicki, V.; Velicogna, I. Time-variable gravity from GRACE: First results. Geophys. Res. Lett. 2004, 31, 293–317. [Google Scholar] [CrossRef]
- Bonin, J.A.; Bettadpur, S.; Tapley, B.D. High-frequency signal and noise estimates of CSR GRACE RL04. J. Geod. 2012, 86, 1165–1177. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.; Zhang, Z.; Ni, S. Long-term groundwater variations in Northwest India from satellite gravity measurements. Glob. Planet. Change 2014, 116, 130–138. [Google Scholar] [CrossRef]
- Feng, W. GRAMAT: A comprehensive Matlab toolbox for estimating global mass variations from GRACE satellite data. Earth Sci. Inform. 2018, 12, 389–404. [Google Scholar] [CrossRef]
Force Model | Model |
---|---|
Static Earth’s gravity field | GOCO06s; static part: d/o 160 |
Solid Earth tides | IERS 2010 conventions |
Solid Earth pole tides | IERS mean pole |
Ocean tides | Fes2014b; 100 d/o |
Ocean pole tides | Desai 2002; 100 d/o |
Atmospheric and Oceanic De-aliasing | AOD1B RL06; 180 d/o |
N-body perturbations | JPL DE430 |
Relativistic corrections | IERS 2010 conventions |
Size | Area | Filtering | CSR RL06 | GFZ RL06 | JPL RL06 | Tongji-Acc RL06 |
---|---|---|---|---|---|---|
Large Scale | Amazon | 300 km + P4M6 | 22.2 | 21.9 | 22.1 | 22.1 |
500 km + P4M6 | 19.7 | 19.4 | 19.7 | 19.6 | ||
Greenland | 300 km + P4M6 | 4.0 | 3.9 | 3.9 | 4.1 | |
500 km + P4M6 | 3.5 | 3.4 | 3.4 | 3.7 | ||
Yenisey | 300 km + P4M6 | 5.6 | 5.7 | 5.6 | 5.7 | |
500 km + P4M6 | 5.3 | 5.4 | 5.3 | 5.4 | ||
Yangtze | 300 km + P4M6 | 3.9 | 3.7 | 3.9 | 3.8 | |
500 km + P4M6 | 3.5 | 3.3 | 3.5 | 3.5 | ||
Zambezi | 300 km + P4M6 | 13.4 | 13.2 | 13.3 | 13.5 | |
500 km + P4M6 | 12.2 | 12.0 | 12.1 | 12.2 | ||
Medium Scale | Gulf of Alaska | 300 km + P4M6 | 7.9 | 7.8 | 8.0 | 8.1 |
500 km + P4M6 | 6.7 | 6.9 | 7.0 | 7.1 | ||
Dniepr | 300 km + P4M6 | 7.5 | 7.2 | 7.6 | 7.3 | |
500 km + P4M6 | 7.1 | 6.9 | 7.2 | 7.0 | ||
Murray | 300 km + P4M6 | 2.3 | 2.3 | 2.2 | 2.3 | |
500 km + P4M6 | 2.0 | 2.1 | 1.9 | 2.2 | ||
Congo | 300 km + P4M6 | 11.5 | 11.5 | 11.6 | 11.6 | |
500 km + P4M6 | 9.6 | 9.6 | 9.7 | 9.7 | ||
Small Scale | Tennessee | 300 km + P4M6 | 9.1 | 9.5 | 9.4 | 9.0 |
500 km + P4M6 | 7.4 | 7.8 | 7.5 | 7.3 | ||
Fraser | 300 km + P4M6 | 10.5 | 10.4 | 10.4 | 10.5 | |
500 km + P4M6 | 8.7 | 8.6 | 8.7 | 8.7 | ||
Irrawaddy | 300 km + P4M6 | 17.0 | 16.3 | 16.8 | 17.0 | |
500 km + P4M6 | 14.5 | 14.0 | 14.4 | 14.4 |
Area | Filtering | CSR RL06 | GFZ RL06 | JPL RL06 | Tongji-Acc RL06 |
---|---|---|---|---|---|
Greenland | 300 km + P4M6 | −6.9 ± 0.3 | −6.7 ± 0.3 | −6.9 ± 0.3 | −6.8 ± 0.3 |
500 km + P4M6 | −6.1 ± 0.2 | −5.9 ± 0.2 | −6.1 ± 0.2 | −6.0 ± 0.2 | |
Gulf of Alaska | 300 km + P4M6 | −2.9 ± 0.3 | −2.7 ± 0.3 | −2.8 ± 0.3 | −2.9 ± 0.2 |
500 km + P4M6 | −2.2 ± 0.2 | −2.1 ± 0.2 | −2.2 ± 0.2 | −2.2 ± 0.2 |
Area | Filtering | CSR RL06 | GFZ RL06 | JPL RL06 | Tongji Acc RL06 |
---|---|---|---|---|---|
Sahara | 0 km + P4M6 | 93.4 cm | 93.0 cm | 103.7 cm | 59.2 cm |
100 km + P4M6 | 53.3 cm | 55.1 cm | 63.2 cm | 36.2 cm | |
200 km + P4M6 | 14.8 cm | 15.4 cm | 16.2 cm | 9.8 cm | |
300 km + P4M6 | 3.3 cm | 3.3 cm | 3.4 cm | 3.1 cm | |
400 km + P4M6 | 1.9 cm | 1.9 cm | 1.9 cm | 1.9 cm | |
500 km + P4M6 | 1.5 cm | 1.5 cm | 1.5 cm | 1.5 cm | |
Karakum | 0 km + P4M6 | 77.5 cm | 78.5 cm | 89.0 cm | 48.0 cm |
100 km + P4M6 | 41.2 cm | 41.5 cm | 46.9 cm | 36.1 cm | |
200 km + P4M6 | 8.2 cm | 8.2 cm | 9.1 cm | 6.2 cm | |
300 km + P4M6 | 2.8 cm | 2.7 cm | 2.9 cm | 2.7 cm | |
400 km + P4M6 | 2.4 cm | 2.3 cm | 2.4 cm | 2.2 cm | |
500 km + P4M6 | 2.3 cm | 2.2 cm | 2.3 cm | 2.0 cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Chen, Q.; Shen, Y. An Improved Acceleration Approach by Utilizing K-Band Range Rate Observations. Remote Sens. 2023, 15, 5260. https://doi.org/10.3390/rs15215260
Shen Z, Chen Q, Shen Y. An Improved Acceleration Approach by Utilizing K-Band Range Rate Observations. Remote Sensing. 2023; 15(21):5260. https://doi.org/10.3390/rs15215260
Chicago/Turabian StyleShen, Zhanglin, Qiujie Chen, and Yunzhong Shen. 2023. "An Improved Acceleration Approach by Utilizing K-Band Range Rate Observations" Remote Sensing 15, no. 21: 5260. https://doi.org/10.3390/rs15215260
APA StyleShen, Z., Chen, Q., & Shen, Y. (2023). An Improved Acceleration Approach by Utilizing K-Band Range Rate Observations. Remote Sensing, 15(21), 5260. https://doi.org/10.3390/rs15215260