
Citation: He, R.; Li, W.; Mei, S.;

Dai, Y.; He, M. EFP-Net: A Novel

Building Change Detection Method

Based on Efficient Feature Fusion and

Foreground Perception. Remote Sens.

2023, 15, 5268. https://doi.org/

10.3390/rs15225268

Academic Editor: Wen Liu

Received: 3 October 2023

Revised: 30 October 2023

Accepted: 2 November 2023

Published: 7 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

EFP-Net: A Novel Building Change Detection Method Based on
Efficient Feature Fusion and Foreground Perception
Renjie He 1,2* , Wenyao Li 1, Shaohui Mei 1 , Yuchao Dai 1,2 and Mingyi He 1,2

1 Shaanxi Provincial Key Laboratory of Information Acquisition and Processing, Northwestern Polytechnical
University, Xi’an 710072, China; wyli@mail.nwpu.edu.cn (W.L.); meish@nwpu.edu.cn (S.M.);
daiyuchao@nwpu.edu.cn (Y.D.); myhe@nwpu.edu.cn (M.H.)

2 Key Laboratory of Archaeological Exploration and Cultural Heritage Conservation Technology
(Northwestern Polytechnical University), Ministry of Education, Xi’an 710072, China

* Correspondence: davidhrj@nwpu.edu.cn

Abstract: Over the past decade, deep learning techniques have significantly advanced the field
of building change detection in remote sensing imagery. However, existing deep learning-based
approaches often encounter limitations in complex remote sensing scenarios, resulting in false
detections and detail loss. This paper introduces EFP-Net, a novel building change detection approach
that resolves the mentioned issues by utilizing effective feature fusion and foreground perception.
EFP-Net comprises three main modules, the feature extraction module (FEM), the spatial–temporal
correlation module (STCM), and the residual guidance module (RGM), which jointly enhance the
fusion of bi-temporal features and hierarchical features. Specifically, the STCM utilizes the temporal
change duality prior and multi-scale perception to augment the 3D convolution modeling capability
for bi-temporal feature variations. Additionally, the RGM employs the higher-layer prediction map to
guide shallow layer features, reducing the introduction of noise during the hierarchical feature fusion
process. Furthermore, a dynamic Focal loss with foreground awareness is developed to mitigate the
class imbalance problem. Extensive experiments on the widely adopted WHU-BCD, LEVIR-CD, and
CDD datasets demonstrate that the proposed EFP-Net is capable of significantly improving accuracy
in building change detection.

Keywords: building change detection; deep learning; feature fusion; remote sensing imagery

1. Introduction

Based on satellite and airborne platforms, remote sensing offers a comprehensive view
from a macroscopic perspective and has long been an essential tool for monitoring and
managing urban development and growth [1]. Among various applications, the detection
of changes in building structures plays a significant role in land cover monitoring [2,3],
urban planning [4–6], disaster assessment [7,8], military reconnaissance [9], and environ-
mental protection [10–12] . The aim of building change detection is to generate pixel-level
representations of alterations within a specified geographical area by comparing a pair of
images acquired at different times.

Conventional change detection techniques focus on either the statistical processing
of pixel-level information [13–17] or shallow image features and manually designed fea-
tures [18–21]. Although these approaches have achieved satisfactory results in specific ap-
plications, they still have limitations in capturing essential information from high-resolution
remote sensing images, leading to issues such as missed detections, false positives, and in-
complete identification of changes within buildings.

In recent years, the deep learning technique has played a significant role in advancing
the field of computer vision, producing outstanding results in various tasks, such as
image classification [22], semantic segmentation [23], pose estimation [24], and object
detection [25]. Compared with conventional methods that rely on manually designed
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feature extractors [26–29], deep learning-based methods are capable of learning complex
and discriminative deep features automatically. Since the task of building change detection
can be viewed as a binary semantic segmentation problem, various approaches have been
developed within a learning-based pipeline, yielding impressive results.

Existing deep learning-based methods for building change detection in remote sensing
images can primarily be categorized into two groups [30]: direct detection and classification-
based detection. Direct detection methods typically leverage convolutional neural networks
(CNNs) to directly extract change features from bi-temporal images. Since direct change
detection requires simultaneous feature extraction from both temporal images, the Siamese
architecture has been widely adopted as the backbone network due to the weight-sharing
mechanism that ensures that the feature space of similar objects remains as close as possible.
Depending on the loss functions, these strategies further split into semantic loss-based
and contrast loss-based approaches. For instance, Daudt et al. [31] introduced three fully
convolutional networks for change detection: the early fusion-based (FC-EF), Siamese-
concatenation (FC-Siam-conc), and Siamese-difference (FC-Siam-diff) networks. FC-EF is
based on the U-Net model, which employs the concatenation of two patches as the network
input. On the other hand, both FC-Siam-conc and FC-Siam-diff are Siamese-based methods.
The former concatenates bi-temporal features, while the latter concatenates the difference
in bi-temporal features. However, checkerboard artifacts may be introduced during the
decoding process.

In another stride, Peng et al. [32] combined bi-temporal images within a densely
connected U-NET++. They introduced multi-scale supervision and directly generated
binary maps for building change detection. To solve the foreground–background class
imbalance, they further devised a weighted loss function by combining the Dice loss and
the cross-entropy loss. Similarly, Fang et al. [33] introduced an enhanced SNUNet by
leveraging shared-weight encoders to independently extract features from bi-temporal
images. In the final decoding stage, they incorporated an integrated channel attention
mechanism to capture contextual information between features, leading to significantly
improved accuracy in change detection. Leveraging the Euclidean distance between
features from both temporal images, they employed a Contrastive loss function to reduce
the distance between similar landcover features while increasing the distance between
dissimilar ones. Chen et al. [34] introduced a spatial–temporal self-attention module
after the feature extraction module. They also weighted the loss function based on the
proportions of changing and non-changing pixels. Furthermore, Chen et al. [35] integrated
a dual-path attention mechanism subsequent to a Siamese network. They utilized channel
attention and position attention to establish connections among local features, thereby
enhancing the global contextual information for distinguishing between changing and
non-changing regions.

On the other hand, classification-based methods for change detection typically in-
volve the use of semantic segmentation networks to generate binary building maps from
bi-temporal images. Changes can be subsequently detected using pixel-wise comparisons.
For instance, Maiya et al. [36] employed a mask R-CNN to simultaneously detect and
segment buildings in both time-phase images. They compared the detection and segmenta-
tion results between the two time phases to identify change locations and building masks.
Zhang et al. [37] utilized a U-Net model enhanced with dilated convolutions and a multi-
scale pyramid pooling module to extract multi-class land cover maps. They then conducted
pixel-wise comparisons with historical GIS maps to derive change patches. Recognizing
the potential for noise introduction from registration errors during pixel-wise comparisons
of binary maps, Ji et al. [38] took a different approach by training a binary change detection
network using simulated binary change samples. They combined the binary maps from the
two time phases, generated by a one-stage semantic segmentation network, by stacking the
channels. These combined maps were then input into the binary change detection network
to generate the final change map.
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While the aforementioned CNN-based methods primarily employ attention mecha-
nisms to capture global information, they struggle to associate long-distance information
in both spatial and temporal dimensions. To effectively model contextual information,
Chen et al. [39] proposed a bi-temporal image transformer (BIT) that combines CNN and
Transformer. The BIT efficiently captures the global semantic information and employs
semantic labels to highlight refined change areas. Based on the Transformer structure, Ban-
dara et al. [40] further proposed ChangeFormer, which establishes effective long-distance
dependencies to model the global context.

Although these deep learning-based techniques have demonstrated improved per-
formance in detection accuracy, they still impose two major challenges in terms of feature
fusion and optimization strategies.

As demonstrated in our previous studies [41,42], performance in change detection
is closely related to the feature fusion strategy of both bi-temporal feature fusion and
multi-scale feature fusion. Existing approaches commonly employ either channel concate-
nation [31–33,38,43] or algebraic calculation [43,44] for bi-temporal feature fusion. However,
channel concatenation fails to adeptly establish temporal associations across feature pairs.
Concurrently, algebraic calculations only consider correlations between individual pixel
pairs and ignore contextual information. On the other hand, existing methods typically
upscale deep-layer features directly and concatenate them with shallow features for hier-
archical feature fusion [8,45], which proves sub-optimal when handling high-resolution
remote sensing imagery enriched with complex geospatial entities.

In terms of optimization strategies, the cross-entropy loss is commonly utilized in the
task of building change detection. However, in real remote sensing imagery, the proportion
of actual changed building targets to background targets is very small, leading to a signifi-
cant class imbalance problem. While functions such as Dice loss [46], Contrastive loss [47],
and Triplet loss [48] have been introduced to address this issue, it remains a challenge in
change detection.

In this paper, we introduce EFP-Net, a novel approach for building change de-
tection that utilizes effective feature fusion and foreground perception to address the
aforementioned issues. Firstly, a spatial–temporal correlation module is designed to
efficiently integrate features from bi-temporal images and enhance the representation
capacity of change features. This module leverages the temporal change duality prior
and multi-scale perception to augment the three-dimensional convolution capability
to model spatial–temporal features in bi-temporal data. Secondly, to enhance hierar-
chical feature fusion, a residual-guided module is introduced. It optimizes shallow
features guided by deep-layer change predictions, reducing noise introduced during
the feature fusion process. Lastly, to address class imbalance, we further introduce
a foreground-aware loss function that enables the model to focus on the challenging,
sparsely distributed foreground samples.

The main contributions of the proposed EFP-Net are summarized as follows:

• We introduce a spatial–temporal correlation module (STCM) to generate discrimina-
tive change features that can provide accurate localization of changed objects.

• We introduce a residual-guided module (RGM) to enhance hierarchical feature fusion.
• We propose a dynamic Focal loss with foreground awareness to address the class

imbalance problem in building change detection.

Based on the STCM and RGM, we have developed EFP-Net, a novel building change
detection algorithm for optical remote sensing images. Experimental results demonstrate
the state-of-the-art performance of the proposed method on benchmark datasets.

The rest of the paper is organized as follows: Section 2 provides a detailed presentation
of the proposed method. Section 3 presents experimental results, along with analysis and
comparisons with state-of-the-art methods. Finally, Section 4 concludes the paper.
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2. Methodology

Figure 1 illustrates the overall framework of the proposed EFP-Net, which consists of
three main modules: the feature extraction module (FEM), the spatial–temporal correlation
module (STCM), and the residual guidance module (RGM). For a pair of bi-temporal
remote sensing images IT0, IT1, the network initially transforms the bi-temporal image
pair into five feature pairs as the front-end of the network, denoted by {F(i)

T0 , F(i)
T1 }, where

(i) ∈ {1, 2, 3, 4, 5} indicates the layer number. In our work, a Siamese VGG16 pre-trained on
ImageNet [49] without its last max-pooling layer and linear layer is employed for feature
extraction, referred to as FEM in the framework. The multi-scale bi-temporal features are
then individually sent to the STCMs to generate highly representative multi-scale change
features {F(1), F(2), F(3), F(4), F(5)}. After that, feature F(5) is directed to a lightweight head
to obtain an initial change map C(5) as the guidance for subsequent shallow change features.
To progressively restore the details of changing objects, the RGM is employed to suppress
background noise and extract structural information within shallow features. Finally,
the refined features are decoded into a final change map C(1) with a lightweight head
consisting of two CBR (Convolution–Batch Normalization–Relu) units. The construction of
each model is introduced in detail in the following subsections.

Figure 1. Framework of the proposed EFP-Net.

2.1. Feature Extraction Module

In the task of building change detection, the model takes a bi-temporal image pair as
input. Currently, commonly used feature extraction network architectures can be catego-
rized into single-input feature extraction networks and Siamese network structures. The
weight-sharing strategy of Siamese network maps inputs to a unified feature space, which
not only preserves the independence of bi-temporal features but also facilitates the learning
of change features. Therefore, we utilize a Siamese structure for the feature extraction
module. Specifically, a VGG16 pre-trained on ImageNet is adopted, with its last maximum
pooling layer and the linear layer removed, as listed in Table 1. Given a pair of bi-temporal
high-resolution RS images with size of 256× 256, the FEM can be divided into five stages
(FEM1–FEM5), where each stage extracts features of a single scale. Ultimately, five pairs of
bi-temporal features with different scales are obtained: {F(i)

T0 , F(i)
T1 }, where (i) ∈ 1, 2, 3, 4, 5

indicates the layer number.

2.2. Spatial–Temporal Correlation Module

The objective of building change detection is to acquire a binary change map from
bi-temporal remote sensing images, engaging in a pixel-wise binary classification task.
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Recognizing that both the emergence and vanishing of change are categorized as the
changed class in the change map, we introduce the temporal change duality prior as a
constraint in the change detection task. This involves ensuring that the change map derived
from temporal T0 to T1 aligns with the change map derived from temporal T1 to T0,
as shown in Figure 2.

Table 1. Structure of the FEM.

Name Layer Parameter Output
Resolution

Output
Channel

FE1 Conv (3 × 3, 64) × 2 256 × 256 64
maxpool 2 × 2, stride 2 128×128 64

FE2 Conv (3 × 3, 128) × 2 128 × 128 128
maxpool 2 × 2, stride 2 64 × 64 128

FE3 Conv (3 × 3, 256) × 2 64 × 64 256
maxpool 2 × 2, stride 2 32 × 32 256

FE4 Conv (3 × 3, 512) × 3 32 × 32 512
maxpool 2 × 2, stride 2 16 × 16 512

FE5 Conv (3 × 3, 512) × 3 16 × 16 512

Figure 2. Temporal change duality prior in building change detection.

Based on the temporal change duality prior with multi-scale feature fusion through a
multi-branch structure, we introduce a novel spatial–temporal correlation module (STCM)
to address the problems of feature concatenation and algebraic operations in establishing
temporal relationships and the learning of change features. The structure of the proposed
STCM is illustrated in Figure 3, where FT0, FT1 ∈ RC×H×W are a pair of features extracted
by the FEM, where C represents the channel number, and H and W are the height and
width, respectively.

Figure 3. The architecture of the proposed STCM.
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In order to model the dual change features, a 4D feature map F ∈ RC×3×H×W is first
generated through dimension expansion and alternative concatenation in the temporal
dimension of feature pair FT0, FT1 in each layer, expressed as follows:

F(i)
c = Cat

(
F(i)

T0 , F(i)
T1 , F(i)

T0 ; T
)

, i ∈ {1, 2, 3, 4, 5}, (1)

where Cat(∗; T) indicates concatenation in the temporal dimension, which is capable of
preserving the high-dimensional features of each time phase.

After that, the change features with temporal change duality, denoted by Ftcd, are
extracted through a 3D convolution operation as follows:

F(i)
tcd = Conv[2,k,k](F(i)

c ), (2)

where Ftcd ∈ R2C×2×H×W and Conv[2,k,k](∗) indicates a depth-separable 3D convolution
operation with kernel size of 2× k× k and stride of 1 in all directions. As the kernel moves
along the temporal dimension, dual change information is extracted, such as Ft0→t1 and
Ft1→t0 ∈ R2C× 1×H×W .

In order to enhance the perception of multi-scale changes, we construct three parallel
branches for temporal–spatial modeling, drawing inspiration from the Inception architec-
ture [50]. Specifically, the kernel sizes of the convolution in each branch are set to 2× 1× 1,
2× 3× 3, and 2× 5× 5, respectively. By such design, the STCM gains the capability of
modeling the spatial–temporal changes of bi-temporal features.

Finally, the outputs of the three branches are combined in the channel dimension and
merged through a 2× 1× 1 convolution operation to produce change feature F(i) ∈ R2×C×H×W

as follows:
F(i) = Conv[2,1,1]

(
Cat
(

F1
tcd, F3

tcd, F5
tcd; Ch

))
, (3)

where Ch represents the channel dimension.

2.3. Residual Guidance Module

As discussed in [41], shallow-level features are known to contain both structural and
textural information, along with background noise. Hence, to simultaneously address the
suppression of background noise and the extraction of change object details, we propose
the residual guidance module (RGM). The fundamental principle behind the RGM is to
eliminate irrelevant background noise and extract the details from change objects in a
guided manner. Particularly, the RGM is employed in layer 1 to layer 4 by utilizing the
higher-layer, predicted change map as the guidance map, which guides shallow-layer
features to concentrate on potential change regions. This facilitates more efficient fusion of
features across different scales.

Figure 4 demonstrates the framework of the RGM, which consists of two stages:
guidance map construction and group re-fusion. Firstly, we generate a temporary map S(5)

by applying a transposed convolution operation to up-sample predicted change map C(5)

by 2 times. Guidance map G, representing the extent of change in the current layer, can be
thus generated by normalizing S of the deeper layer, which is formulated as follows:

G(i) =
S(i+1)

1 − S(i+1)
0 + 1

2
, i ∈ {1, 2, 3, 4} (4)

where the superscript (·) denotes the layer number. S(i+1)
0 and S(i+1)

1 represent the proba-
bility of the unchanged and changed classes, respectively, which are extracted along the
channel dimension from the temporary image of deeper layer S(i+1).
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Figure 4. The structure of the proposed RGM.

After that, a group re-fusion strategy is applied to obtain a refined change feature of
the current layer (F̂(i)) by combining guidance map G(i) with the change feature of the
current layer (F(i)). Specifically, F(i) is evenly split into m groups and then concatenated
with guidance map G to model F̂(i) as follows:

F(i)
sp(1), . . . ,F(i)

sp(k), . . . , F(i)
sp(m)

= Split(Fc), k ∈ {1, 2, . . . , m}

F̂(i) = Cat
(

F(i)
sp(1), G, . . . , F(i)

sp(k), G, . . . , F(i)
sp(m)

, G
)

,
(5)

where Split and Cat denote the split and concatenate operations, respectively. The subscripts
sp and (k) indicate the split features and the index of the group, respectively. The superscript
i ∈ {1, 2, 3, 4} represents the number of the layer. With the group re-fusion strategy, dilution
of guidance information during the fusion process can be effectively mitigated.

Refined change feature F̂(i) is then input to a 3 × 3 convolutional layer and then
added to input current-layer feature F(i) to generate optimized feature F̂(i)

opt, which can be
expressed as follows:

F̂(i)
opt = F(i) + Conv[3,3](F̂(i)), (6)

where Conv[3,3](·) represents a 2D convolution operation with the size of 3× 3 and the
stride of 1.

By employing this strategy, shallow features guided by the deep prediction map are ca-
pable of effectively suppressing irrelevant background noise. This approach facilitates more
efficient integration of features across multiple levels, thereby enhancing the restoration of
detailed information specific to the changing object.

2.4. Loss Function

In change detection, Focal loss [51] is widely employed to address the class imbalance
problem between the changed foreground and the background, which can be expressed
as follows:

Lfocal(p, y) = − 1
N

 np

∑
i,yi=1

α(1− pi)
γ log(pi) +

nn

∑
j,yj=0

(1− α)pγ
j log

(
1− pj

), (7)

where p and y denote the predicted change probability map and the corresponding label
values, respectively. N = H ×W represents the total pixel number of the samples with
label y; np denotes the number of positive samples (changed foreground); and nn indicates
the number of negative samples (unchanged background).
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Given that α′ =

{
α if y = 1;
1− α otherwise

and p′i =

{
pi if y = 1;
1− pi otherwise

, Equation (7) can

be subsequently simplified as follows:

Lfocal(p, y) = − 1
N

N

∑
i=1

[
α′i
(
1− p′i

)γ log
(

p′i
)]

(8)

where α′ ∈ (0, 1) is a constant weight factor designed to augment the loss weight of positive
samples. The term

(
1− p′i

)γ serves as a dynamic weight factor, with γ functioning as the
modulation factor. The value of p′ reflects the degree of difficulty in classifying the current
sample. It is noteworthy to mention that dynamic weight term

(
1− p′i

)γ is determined by
the model’s output. As a consequence, the estimation of foreground samples would be
imprecise, since the model’s discriminative capability might remain ambiguous during the
initial training stage. Additionally, larger weights assigned to foreground samples might
also compromise the model’s convergence efficiency.

To account for this, we suggest dynamically adjusting the weights of individual
samples in the cross-entropy loss according to the training iteration. Specifically, we
incorporate an annealing function into the modulation factor for a more agile learning
paradigm. This approach enables the weights to be fine-tuned based on the changing
conditions throughout the training period, thereby enhancing the model’s ability to perceive
changes in the foreground. The proposed dynamic Focal loss is formulated as follows:

Ldf(p, y) = − 1
N

N

∑
i=1

[
Mi + ψ(t)(1−Mi) log

(
p′i
)]

, (9)

where Mi = α′i
(
1− p′i

)γ. ψ(t) ∈ [0, 1] represents the Cosine annealing function with the
number of training iterations (t) as a variable, which is defined as follows:

ψ(t) = 0.5
[

1 + cos
(

t
Tmax

)
π

]
, (10)

where t and Tmax denote the current training step and the maximum annealing step,
respectively. By leveraging dynamic weighting that adaptively adjusts with training cycles,
the model gradually focuses on the hard samples, which effectively addresses the inherent
issue of class imbalance.

Throughout the training process, predictions of changes are output at five different
levels. Therefore, the overall loss function is formulated by calculating the total loss
between the five change prediction maps and the ground-truth change map, which is
expressed as follows:

L =
5

∑
i=1

β(i)L(i)df , (11)

where L(i)d f and β(i) denote the loss of the prediction and the corresponding weight in the
i-th layer, respectively.

3. Experiments
3.1. Experimental Datasets

The proposed EFP-Net is evaluated on three public change detection datasets: LEVIR-
CD [34], WHU-BCD [4], LEVIR-CD [34], and CDD [52].

The LEVIR-CD is open-sourced by the LEVIR Lab of Beihang University and was
collected in Texas, USA, between 2002 and 2018. It consists of 637 high-resolution bi-
temporal image pairs, each with a spatial resolution of 0.5 m and a resolution of 1024× 1024.
LEVIR-CD contains various types of buildings, ranging from single-story houses and large
warehouses to upscale apartments. The buildings undergoing change in the images are
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small and densely packed. Given the considerable time span between the image acquisition
dates, achieving precise detection of building changes presents a significant challenge. In
the original work [34], each image was non-overlappingly cropped into 16 sub-images of
256 × 256. By default, the dataset was partitioned into training, validation, and test sets,
comprising 445, 64, and 128 images, respectively. For fair comparisons with other methods,
the training, validation, and test sets are created by cropping non-overlapping patches into
7120, 1024, and 2048 samples, respectively.

The WHU-BCD dataset is composed of a pair of bi-temporal remote sensing images
with size of 15,354 × 32,507 and a spatial resolution of 0.2 m. These images were collected
in the southwestern region of Queensland in 2012 and 2016, respectively. The original
images are cropped into 256× 256 sub-images with a stride of 256. The sub-images are then
randomly divided according to the ratio of 7:1:2, resulting in train/val/test sets comprising
5534, 762, and 1524 image pairs, respectively.

The CDD dataset comprises 11 image pairs, with specific resolutions ranging from
3 cm to 100 cm. Four of these pairs have a resolution of 1900 × 1000, while the remaining
pairs are 4725 × 2200. CDD contains the change information of various land cover types,
including vehicles, buildings, roads, etc. It is characterized by considerable variations in
season, climate, and weather conditions. Following the original work, the raw images were
segmented into non-overlapping sub-images of 256 × 256, yielding a total of 16,000 image
pairs. Out of these, 10,000 pairs were designated for the training set, 3000 pairs for the
validation set, and the remaining 3000 pairs for the test set.

Figure 5 and Table 2 illustrate some samples of the bi-temporal images with ground-
truth labels and summary information of the selected remote sensing image datasets for
building change detection, respectively.

Figure 5. Samples of the experimental datasets.

Table 2. Summary of selected datasets.

Dataset Original Size Resolution (m) Patch Size Total Pairs Training Validation Test

LEVIR-CD 1024 × 1024 0.5 256 × 256 10,192 7120 1024 2048
WHU-BCD 15,354 × 32,507 0.2 256 × 256 7820 5534 762 1524

CDD 256 × 256 0.03–1 256 × 256 16,000 10,000 3000 3000
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3.2. Implementation Details

We trained and tested our network on Ubuntu 18.04 with an Intel E5-2640 CPU and an
Nvidia GTX 1080Ti GPU using PyTorch 1.12.0. We employed the Adam optimizer and set
β1, β2 of the momentum to 0.5 and 0.9, respectively. The batch size was configured to 12,
and the learning rate was initially set to 1× 10−4. The model was trained for 120 epochs for
all datasets. To mitigate the risk of over-fitting and enhance the generalization capabilities,
data augmentation techniques such as random mirroring, flipping, and rotation were
employed during the training stage.

In order to fully evaluate the performance of the proposed EFP-Net both qualitatively
and quantitatively, seven SOTA approaches for building change detection were selected
for comparison, including FC-EF [31], FC-Siam-conc [31], FC-Siam-diff [31], IFNet [53],
SNUNet-CD [33], BIT [39], and ChangeFormer [40].

We summarized the main characteristics of all compared methods in terms of network
structure, change feature learning method, hierarchical feature fusion method, and the loss
functions, as listed in Table 3. In the table, Single and Siamese refer to the single-stream
feature extraction network and Siamese feature extraction network, respectively. Cat
represents the concatenate operation, and `1 stands for the `1 distance. SA denotes spatial
attention, and CA refers to channel attention. CE, WCE, and DICE are the cross-entropy
loss, the weighted cross-entropy loss, and the Dice loss, respectively.

Table 3. Characteristics of compared methods.

Method Structure Change Feature Learning Hierarchical Feature Fusion Loss

FC-EF [31] Single - Cat WCE
FC-Siam-conc [31] Siamese Cat Cat WCE
FC-Siam-diff [31] Siamese `1 Cat WCE

IFN [31] Siamese Cat SA, CA, Cat WCE, DICE
BIT [39] Siamese `1 - CE

SNUNet-CD [33] Siamese Cat Cat WCE, DICE
ChangeFormer [40] Siamese Cat Cat CE

3.3. Evaluation Metrics

In the experiments, five frequently utilized evaluation metrics were adopted: over-
all accuracy (OA), Precision, Recall, F1-score (F1), and intersection over union (IoU). The
calculations for each indicator are defined as follows:

OA =
TP + TN

TP + TN + FP + FN
, (12)

Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)

F1 =
2× Precision× Recall

Precision + Recall
, (15)

IoU =
TP

TP + FN + FP
, (16)

where TP (true positive) indicates pixels of the changed objects correctly predicted as the
‘change’ category. TN (true negative) represents pixels of the unchanged objects correctly
predicted as the ‘unchange’ category. FP (false positive) means that pixels remaining
unchanged are mistakenly predicted as the ‘change’ category. FN (false negative) indicates
that changed pixels are incorrectly predicted as the ‘unchange’ category.
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3.4. Experimental Results

Figures 6–8 illustrate the comparison results of different methods on LEVIR-CD,
WHU-BCD, and CDD, respectively. It is intuitively observed in Figure 6 that the results
of SNUNet-CD, FC-Siam-diff, FC-Siam-conc, and KC-EF contain obvious false detections
(indicated in blue and red). On the other hand, ChangeFormer, BIT, IFNet, and the proposed
EFP-Net achieve satisfying results, and our method has better performance in extracting
the interior structure of changed buildings. Overall, the results of the proposed method
align with the ground truth most closely and outperform others in detecting changed
building targets of varying scales and resisting interference from false changes. This is
due to the employment of the STCM, which captures the contextual relationship between
single-pixel values and multi-scale regions, enhancing the representation of change features
and ensuring the integrity of changed objects. In addition, the RGM optimizes shallow
features with the guidance of deep prediction maps, effectively reducing false detections
caused by background noise, thereby achieving accurate detection around the edges of
changing objects.

Figure 6. Comparisons on the LEVIR-CD dataset. (a) T0 image; (b) T1 image; (c) ground truth;
(d) proposed EFP-Net; (e) ChangeFormer [40]; (f) SNUNet-CD [33]; (g) BIT [39]; (h) IFNet [53];
(i) FC-Siam-diff [31]; (j) FC-Siam-conc [31]; (k) FC-EF [31]. Colors assigned: TP in white, TN in black,
FP in red, and FN in blue.

In Figure 7, it is observed that compared with other methods, EFP-Net significantly
reduces instances of missed and false detections while preserving the integrity of large-scale
buildings. Specifically, as observed in the first row of Figure 7, obvious false detections (FN,
indicated in blue) can be noted in the results of all the compared methods. Furthermore,
false negative detections (indicated in red) are generated by FC-Siam-diff, FC-Siam-conc,
and KC-EF. While both EFP-Net and ChangeFormer have better performance, our EFP-
Net generates fewer false detections. It is also noted that EFP-Net not only accurately
achieves multi-scale change detection results in scenes with highly similar structures but
also maintains the integrity of building interiors. As evidenced in both the first and last
rows of Figure 7, EFP-Net demonstrates remarkable resistance to false changes, with its
detection results aligning with the reference labels most closely when compared with
other methods.
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Figure 7. Comparisons on the WHU-BCD dataset. (a) T0 image; (b) T1 image; (c) ground truth;
(d) proposed EFP-Net; (e) ChangeFormer [40]; (f) SNUNet-CD [33]; (g) BIT [39]; (h) IFNet [53];
(i) FC-Siam-diff [31]; (j) FC-Siam-conc [31]; (k) FC-EF [31]. Colors assigned: TP in white, TN in black,
FP in red, and FN in blue.

Figure 8. Comparisons on the CDD dataset. (a) T0 image; (b) T1 image; (c) ground truth; (d) proposed
EFP-Net; (e) ChangeFormer [40]; (f) SNUNet-CD [33]; (g) BIT [39]; (h) IFNet [53]; (i) FC-Siam-diff [31];
(j) FC-Siam-conc [31]; (k) FC-EF [31]. Colors assigned: TP in white, TN in black, FP in red, and FN
in blue.
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Compared with the LEVIR-CD and WHU-BCD datasets, CDD not only contains
changes in buildings but also includes changes in vehicles, roads, trees, etc. As shown
in Figure 8, EFP-Net is capable of achieving detailed change detection with high-quality
change maps for both smaller areas like trees and vehicles, and complex areas like roads
and buildings.

Based on above qualitative comparisons, it is evident that the STCM is capable of es-
tablishing contextual connections between individual pixel points and multi-scale regions,
which significantly enhances the representational capacity for features depicting change,
ensuring the preservation of the integrity of buildings. Concurrently, the RGM demon-
strates its effectiveness in background noise suppression through guided optimization of
shallow features, resulting in a notable reduction in false detections. This contributes to
the precision in detecting edge pixels of changing structures and preserves the internal
integrity of buildings.

In addition to subjective comparisons, we also conducted quantitative evaluations on
the datasets LEVIR-CD, WHU-BCD, and CDD, as demonstrated in Tables 4–6, respectively.
↑ indicates that performance improves as the score increases, and the best score is marked
in bold. As illustrated in Table 4, the proposed EFP-Net consistently outperforms the other
compared methods in all evaluated metrics on the LEVIR-CD dataset, with respective
values of 99.10%, 92.18%, 90.15%, 83.74%, and 91.15%. In particular, compared with the
second-best model, ChangeFormer, our EFP-Net improves the values of overall accuracy,
Precision, Recall, IoU, and F1-score by 0.06%/0.13%/1.35%/1.26%/0.75%, respectively.
While ChangeFormer utilizes a Transformer architecture to establish global contextual
relationships, its ability to represent change features is constrained by its straightforward
feature concatenation strategy, resulting in a lower Recall score. The enhanced performance
of our method in the Recall metric is mainly attributed to the specially designed STCM,
which effectively leverages the spatial–temporal information of bi-temporal features. More-
over, the proposed RGM effectively mitigates background noise, leading to an improved
Precision score. Table 5 shows the performance evaluations on the WHU-BCD dataset.
It is noted that the proposed EFP-Net exhibits remarkable results on scenes with highly
similar structures. The EFP-Net consistently outperforms the compared models in all
the metrics. Specifically, with regard to the Recall metric, EFP-Net surpasses the second-
ranked model by 3.98%, which suggests the better capability of our method in accurately
detecting building changes and subsequently reducing missed detections. Additionally,
in the context of mitigating false detections, EFP-Net reaches a notable Precision score of
93.42%. Table 6 further gives the performance evaluations on the CDD dataset. It can be
observed that EFP-Net outperforms other methods across all metrics in diverse scenarios.
Consequently, both qualitative and quantitative comparisons demonstrate the effectiveness
and generalizability of the proposed EFP-Net.

Table 4. Performance comparison on LEVIR-CD.

Method OA↑ Precision↑ Recall↑ IoU↑ F1↑
FC-EF [31] 97.66% 83.82% 67.05% 59.37% 74.50%

FC-Siam-conc [31] 98.31% 88.30% 77.13% 69.98% 82.34%
FC-Siam-diff [31] 97.40% 90.74% 54.47% 51.60% 68.07%

IFN [31] 98.89% 89.80% 88.21% 80.18% 89.00%
BIT [39] 98.98% 90.33% 89.56% 81.72% 89.94%

SNUNet-CD [33] 98.90% 89.93% 88.41% 80.44% 89.16%
ChangeFormer [40] 99.04% 92.05% 88.80% 82.48% 90.40%

EFP-Net (ours) 99.10% 92.18% 90.15% 83.74% 91.15%
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Table 5. Performance comparison on WHU-BCD.

Method OA↑ Precision↑ Recall↑ IoU↑ F1↑
FC-EF [31] 97.80% 78.06% 74.06% 61.30% 76.01%

FC-Siam-conc [31] 95.90% 54.19% 83.16% 48.83% 65.62%
FC-Siam-diff [31] 94.23% 43.31% 73.21% 37.38% 54.42%

IFN [31] 99.04% 89.87% 89.68% 81.46% 89.78%
BIT [39] 98.59% 82.78% 88.47% 74.72% 85.53%

SNUNet-CD [33] 98.99% 92.98% 85.03% 79.90% 88.83%
ChangeFormer [40] 99.10% 93.17% 87.16% 81.93% 90.07%

EFP-Net (ours) 99.28% 93.42% 91.14% 85.65% 92.27%

Table 6. Performance comparison on CDD.

Method OA↑ Precision↑ Recall↑ IoU↑ F1↑
FC-Siam-conc [31] 92.22% 66.55% 68.42% 71.22% 67.47%

FC-EF [31] 91.46% 63.97% 63.28% 68.71% 63.62%
FC-Siam-diff [31] 93.57% 75.32% 67.73% 74.22% 71.32%

IFN [31] 97.80% 92.13% 88.94% 82.67% 90.51%
BIT [39] 98.89% 96.29% 94.69% 91.36% 95.48%

SNUNet-CD [33] 99.24% 96.85% 96.68% 93.73% 96.77%
ChangeFormer [40] 99.14% 96.60% 96.39% 93.23% 96.49%

EFP-Net (ours) 99.38% 97.75% 97.09% 94.97% 97.42%

3.5. Ablation Study

In order to verify the effectiveness of the proposed modules and the dynamic Focal
loss, we performed ablation experiments by incrementally introducing the STCM, RGM,
and dynamic Focal (DF) loss into the baseline model. The ablation experiments were carried
out on all the three datasets, as demonstrated in Tables 7–9, respectively. Specifically,
the ’baseline’ model was constructed by replacing the STCM with a standard feature
concatenate operation and removing the RGM. We also employed cross-entropy as the loss
function in the baseline model.

Table 7. Results of ablation study on LEVIR-CD.

Method OA↑ Precision↑ Recall↑ IoU↑ F1↑
baseline 98.53% 88.73% 87.10% 78.67% 87.91%
baseline + STCM 98.78% 91.31% 88.54% 82.51% 89.90%
baseline + RGM 98.92% 91.45% 89.07% 82.65% 90.24%
baseline + STCM + RGM 99.05% 91.87% 89.58% 83.00% 90.71%
baseline + STCM + RGM + DF loss 99.10% 92.18% 90.15% 83.74% 91.15%

Table 8. Results of ablation study on WHU-BCD.

Method OA↑ Precision↑ Recall↑ IoU↑ F1↑
baseline 97.12% 88.97% 87.86% 81.49% 88.41%
baseline + STCM 98.57% 91.63% 88.18% 83.35% 89.87%
baseline + RGM 98.39% 92.43% 90.96% 83.79% 91.69%
baseline + STCM + RGM 99.18% 93.05% 91.02% 85.02% 92.02%
baseline + STCM + RGM + DF loss 99.28% 93.42% 91.14% 85.65% 92.27%
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Table 9. Results of ablation study on CDD.

Method OA↑ Precision↑ Recall↑ IoU↑ F1↑
baseline 95.57% 92.05% 94.65% 90.06% 94.12%
baseline + STCM 98.13% 94.76% 95.87% 93.50% 95.31%
baseline + RGM 98.38% 94.52% 95.73% 93.63% 95.12%
baseline + STCM + RGM 99.07% 96.95% 96.17% 93.76% 96.56%
baseline + STCM + RGM + DF loss 99.38% 97.75% 97.09% 94.97% 97.42%

3.5.1. Verification of Modules

As observed in the second row of each table, with the integration of the STCM,
the model demonstrated notable advances in learning the dynamic changes between
bi-temporal features, which is evidenced by the improvements in the metric values. Specif-
ically, as illustrated in Table 7 relative the verification on LEVIR-CD, compared with the
baseline model, the values of OA, Precision, Recall, IoU, and F1 increased by 0.25%, 2.58%,
1.44%, 3.84%, and 2.00%, respectively. Improvements can also be observed in the ablation
results on WHU-BCD and CDD, as listed in Table 8 and Table 9, respectively. On the WHU-
BCD dataset, the incorporation of the STCM increases the value of OA, Precision, Recall,
IoU, and F1 by 1.45%, 2.66%, 0.32%, 1.86%, and 1.46%, respectively. Meanwhile, on the
CDD dataset, the increases are 0.62%, 1.17%, 1.22%, 3.44%, and 1.19%, respectively. This
is primarily because the STCM utilizes the temporal change duality prior and multi-scale
perception to augment the three-dimensional convolution capability, which is more robust
in obtaining discriminative change features.

As mentioned previously, the RGM leverages deep-layer change map predictions
to fine-tune shallow-layer change features, which strategically directs the model’s focus
towards areas of significant change while suppressing background noise. As observed
in the second row of each table, compared with the baseline, the integration of the RGM
increased the values of OA, Precision, Recall, IoU, and F1 by 0.39%, 2.72%, 1.97%, 3.98%,
and 2.33% on LEVIR-CD; by 1.27%, 3.46%, 3.10%, 2.30%, and 3.28% on WHU-BCD; and by
0.73%, 0.93%, 1.08%, 3.57%, and 1.00% on CDD. The performance improvement is a result
of the RGM’s effective fusion of multi-layer features, whereby it suppresses background
noise guided by the deep prediction map, ensuring that the detailed information of the
change object is accurately restored.

With both STCM and RGM added, the ’baseline + STCM + RGM’ configuration yields
further improvements in OA, Precision, Recall, IoU, and F1 by 0.52%, 3.14%, 2.48%, 4.33%,
and 2.8% on LEVIR-CD; 2.06%, 4.08%, 3.16%, 3.53%, and 3.61% on WHU-BCD; 1.64%, 3.36%,
1.52%, 3.7%, and 2.44% on CDD. Furthermore, the model shows significant improvements
under the constraint of the proposed dynamic Focal loss. Compared with the baseline
model, the proposed EFP-Net demonstrates significant enhancements in the metrics of
OA, Precision, Recall, IoU, and F1, with improvements of 0.57%, 3.45%, 3.05%, 5.07%,
and 3.24%, respectively.

We also present visualizations of the refined feature maps generated by the RGM on
LEVIR-CD. Figure 9a,b display a pair of bi-temporal RS images, while (c) and (d) are the
ground-truth label and the predicted change maps of EFP-Net, respectively. Figure 9e–h
are the feature maps derived from ‘baseline’, ‘baseline’ + STCM, ‘baseline’ + RGM, and EFP-
Net, respectively.

The comparison between Figure 9e,f demonstrates improved confidence in detecting
building changes, which proves the effectiveness of the STCM in reducing background
noise and identifying building change locations. Similarly, it is observed in the comparison
between Figure 9e,g that integrating the RGM enhances the network’s capability to recover
the fine details of changed buildings. Furthermore, Figure 9h reveals that the incorporation
of both the STCM and RGM further enhances the contrast between changed buildings
and the background. These observations collectively offer compelling evidence of the
effectiveness of the proposed STCM and RGM.
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(a) T0 image (b) T1 image (c) Ground-truth labels (d) Prediction of EFP-Net

(e) Baseline (f) Baseline + STCM (g) Baseline + RGM (h) EFP-Net (ours)

Figure 9. Comparisons of visualized feature maps.

3.5.2. Verification of Loss Function

We also verified the effectiveness of the proposed dynamic Focal (DF) loss. As observed
in the last two rows of Tables 7–9, the performance of the ‘baseline’ + STCM + RGM model
is further improved under the constraint of the DF loss. This is because the proposed
DF loss enables the model to focus on the changing foreground samples during training,
thereby mitigating the impact of class imbalance on model performance.

In addition, we also compared the effectiveness of the proposed dynamic Focal loss
with other loss functions commonly used in change detection on LEVIR-CD. In partic-
ular, cross-entropy (CE) loss, weighted cross-entropy (WCE) loss, and Focal loss were
employed for comparisons. As shown in Table 10, compared with the CE loss, the WCE
loss enhances the weights of the loss for a small number of foreground samples, resulting
in an improvement in the Recall metric. The Recall metric is further improved with the
Focal loss, as it reduces the weights assigned to easily classified samples. Relative to
other loss functions, the proposed DF loss achieves the best scores across all the metrics,
demonstrating its effectiveness.

Table 10. Results of ablation study of loss function on LEVIR-CD.

Loss OA↑ Precision↑ Recall↑ IoU↑ F1↑
CE loss 99.05 91.87 89.58 83.00 90.71

WCE loss 99.08 92.00 89.97 83.45 90.98
Focal loss 99.08 91.95 90.19 83.59 91.06

Dynamic Focal loss 99.10 92.18 90.15 83.74 91.15

3.5.3. Verification of Parameter

In the RGM, higher-layer features Fh
c are evenly split in to g groups and then con-

catenated with G to model the initial change feature, F′c . We also verified the impact of
the number of groups g in the RGM on the performance of the EFP-Net. Specifically,
experiments were carried out with g values of 1, 2, 4, 8, 16, and 32. As revealed in Table 11,
the performance of the model improves progressively as the value of g increases and peaks
when the value of g reaches eight. However, the performance of the model starts to decline
as the value of g continues to increase, implying that an excessive number of groups leads to
redundancy in F′c . Consequently, we fixed the number of groups at eight in our experiments.

Figure 9. Comparisons of visualized feature maps.

3.5.2. Verification of Loss Function

We also verified the effectiveness of the proposed dynamic Focal (DF) loss. As observed
in the last two rows of Tables 7–9, the performance of the ‘baseline’ + STCM + RGM model
is further improved under the constraint of the DF loss. This is because the proposed
DF loss enables the model to focus on the changing foreground samples during training,
thereby mitigating the impact of class imbalance on model performance.

In addition, we also compared the effectiveness of the proposed dynamic Focal loss
with other loss functions commonly used in change detection on LEVIR-CD. In partic-
ular, cross-entropy (CE) loss, weighted cross-entropy (WCE) loss, and Focal loss were
employed for comparisons. As shown in Table 10, compared with the CE loss, the WCE
loss enhances the weights of the loss for a small number of foreground samples, resulting
in an improvement in the Recall metric. The Recall metric is further improved with the
Focal loss, as it reduces the weights assigned to easily classified samples. Relative to
other loss functions, the proposed DF loss achieves the best scores across all the metrics,
demonstrating its effectiveness.

Table 10. Results of ablation study of loss function on LEVIR-CD.

Loss OA↑ Precision↑ Recall↑ IoU↑ F1↑
CE loss 99.05 91.87 89.58 83.00 90.71

WCE loss 99.08 92.00 89.97 83.45 90.98
Focal loss 99.08 91.95 90.19 83.59 91.06

Dynamic Focal loss 99.10 92.18 90.15 83.74 91.15

3.5.3. Verification of Parameter

In the RGM, higher-layer features Fh
c are evenly split in to g groups and then con-

catenated with G to model the initial change feature, F′c . We also verified the impact of
the number of groups g in the RGM on the performance of the EFP-Net. Specifically,
experiments were carried out with g values of 1, 2, 4, 8, 16, and 32. As revealed in Table 11,
the performance of the model improves progressively as the value of g increases and peaks
when the value of g reaches eight. However, the performance of the model starts to decline
as the value of g continues to increase, implying that an excessive number of groups leads to
redundancy in F′c . Consequently, we fixed the number of groups at eight in our experiments.
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Table 11. Results of ablation study of group number g on LEVIR-CD.

Number of g OA↑ Precision↑ Recall↑ IoU↑ F1↑
1 99.01 91.50 89.57 82.20 90.23
2 99.03 91.61 89.51 82.32 90.30
4 99.05 92.13 89.65 82.55 90.44
8 99.10 92.18 90.15 83.74 91.15

16 99.03 92.13 90.16 82.62 90.48
32 99.03 92.08 89.93 82.60 90.47

4. Conclusions

In this article, we introduce EFP-Net, a novel building change detection network based
on efficient feature fusion and foreground perception. We developed the spatial–temporal
correlation module (STCM) and the residual guidance module (RGM) to enhance the fu-
sion of bi-temporal and hierarchical features, respectively. The STCM utilizes temporal
change duality and multi-scale perception to refine the modeling of temporal changes in bi-
temporal features from both temporal and spatial dimensions. The RGM, on the other hand,
employs deep-layer change map predictions to optimize shallow-layer features, concen-
trating on potential change areas and reducing noise introduction during the hierarchical
feature fusion process. Additionally, we introduce foreground-aware dynamic Focal loss to
address the class imbalance problem inherent in building change detection. Comparative
experiments with other state-of-the-art deep learning-based methods demonstrate that
the proposed EFP-Net has remarkable performance in preserving the details of building
change and reducing false detections. In our study, we also found that existing methods
attain satisfactory performance when trained on abundant data; however, their efficacy
significantly declines when applied to new scenes. Given that creating datasets for each
unique scene is impractical, our future work will focus on investigating domain-adaptive
building change detection methods, which aim to utilize solely existing annotated data to
facilitate seamless adaptability to new scenes, consequently reducing the training costs.
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