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Abstract: LiDAR odometry is a fundamental task for high-precision map construction and real-time
and accurate localization in autonomous driving. However, point clouds in urban road scenes
acquired by vehicle-borne lasers are of large amounts, “near dense and far sparse” density, and
contain different dynamic objects, leading to low efficiency and low accuracy of existing LiDAR
odometry methods. To address the above issues, a simulation-based self-supervised line extraction in
urban road scene is proposed, as a pre-processing for LiDAR odometry to reduce the amount of input
and the interference from dynamic objects. A simulated dataset is first constructed according to the
characteristics of point clouds in urban road scenes; and then, an EdgeConv-based network, named
LO-LineNet, is used for pre-training; finally, a model transferring strategy is adopted to transfer
the pre-trained model from a simulated dataset to real-world scenes without ground-truth labels.
Experimental results on the KITTI Odometry Dataset and the Apollo SouthBay Dataset indicate that
the proposed method can accurately extract reliable lines in urban road scenes in a self-supervised
way, and the use of the extracted reliable lines as input for odometry can significantly improve its
accuracy and efficiency in urban road scenes.

Keywords: urban road scene; LiDAR odometry; line extraction; model transferring

1. Introduction

As one of the crucial steps of Simultaneous Localization and Mapping (SLAM) tech-
nology, odometry, also named registration, estimates relative transformations between
consecutive images or point clouds [1], which is vital to cultural heritage protection [2,3],
autonomous driving [4–6], and mobile robots [7]. However, images captured by visual
cameras is easily effected by lighting conditions and weather constraints. Compared with
visual cameras, LiDAR can efficiently capture precise 3D geometric details of surroundings
within a 360° field of view and can be minimally affected by lighting conditions and weather
constraints [8], which is often equipped as an important sensor for odometry tasks [9].

However, urban road scenes are complex and of a wide range, and directly using
vehicle-borne laser point clouds for odometry has several challenges: (1) the amount of the
original point cloud is large, resulting that directly processing on points being inefficient. To
improve the odometry efficiency, researchers attempted to convert point clouds into images,
such as LO-Net [10], Delora [7], and EfficientLO-Net [9]. However, these projection-based
methods inevitably result in the loss of original 3D information [11]; (2) the density of the
original point cloud is “near dense and far sparse”, causing local features of points in two
consecutive frames to be inconsistent, making it difficult to find accurate correspondences
for point correspondence-based networks, such as DCP [12], DGR [13] and PointDSC [14].
To handle this issue, virtual correspondence-based networks, such as DeepVCP [6], LPD-
Net [5], and RegTR [15], have been proposed, however, taking all points into consideration
is time consuming, and keypoint-based methods require high repeatability [16]; (3) motions

Remote Sens. 2023, 15, 5322. https://doi.org/10.3390/rs15225322 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15225322
https://doi.org/10.3390/rs15225322
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7952-0521
https://orcid.org/0000-0002-8320-4230
https://orcid.org/0000-0002-3162-0566
https://doi.org/10.3390/rs15225322
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15225322?type=check_update&version=3


Remote Sens. 2023, 15, 5322 2 of 18

of some dynamic objects, such as vehicles, pedestrians, and tree leaves, are uncertain, and
are not consistent with the motion of the vehicle-borne laser [11]. These points should not
participate in the relative pose solving, and ought to be filtered out as early as possible in
the processing chain. In a word, the above challenges lead to the inability of existing point-
based odometry algorithms to meet the requirements of accurate and efficient simultaneous
localization and mapping.

Compared with points, lines have obvious advantages in the odometry task. On
the one hand, lines can provide position, direction, and length information, with higher
descriptiveness, repetitiveness, and robustness [17,18]. PlückerNet [18] represents un-
ordered lines as Plücker coordinates, and PointNet is first employed to learn line-wise
features; then, the Sinkhorn solver is used to obtain the correspondencess; finally, the
transformation matrix is estimated using the RANSAC algorithm. Experiments on both
indoor and outdoor datasets show superiority of efficiency and accuracy. Xu et al. [19] first
extracted lines by the method of Lu et al. [20] and classified them into three types according
to their direction, and then constructed 2-line congruent sets (2LCS) with the RANSAC
algorithm to achieve optimal transformation. It is more robust, with repetitive components,
symmetrical structures, and limited overlap. On the other hand, for LiDAR odometry in
urban road scenes, by extracting lines, dynamic objects, such as vehicles and pedestrians,
even tree leaves, can be effectively filtered, avoiding their participation in the relative pose
solving. In addition, the use of lines as input for odometry can effectively decrease the
amount of input, consequently enhancing efficiency. However, existing traditional line
extraction methods are not specific to certain line types, and tend to mistakenly extract
the virtual lines caused by scanning lines; thus, they are not suitable to extract reliable
lines defined in urban road scenes. Moreover, there is currently no labeled dataset of
line extraction in urban road scenes for deep learning-based methods. Although we can
utilize the existing semantic segmentation dataset to construct a line classification dataset,
obtaining high-resolution intersection lines of building planes in semantic segmentation
results requires a very fine level of granularity. Superline3D [21] pioneered a line extraction
method based on a small synthetic dataset, which can effectively extract lines without the
need for real annotated datasets.

To address the above issues, inspired by Superline3D [21], this paper proposes a
simulation-based self-supervised line extraction for LiDAR odometry in urban road scenes.
As shown in Figure 1, considering that there is no labeled dataset and the manual labeling is
time-consuming, a simulated dataset with ground-truth labels is first constructed based on
the characteristics of vehicle-borne laser point clouds in urban road scenes; secondly, local
scale-invariant features are computed to eliminate the scale factor between the simulated
dataset and the real scene, and a proposed LO-LineNet is trained on the simulated dataset
with local scale-invariant features for pre-training; finally, a model transferring strategy
is adopted to transfer the model from the simulated dataset to the real scenes to obtain
accurate labels, with a RANSAC-based line fitting to filter noise. Our contributions are
summarized below:

(1) a heuristic simulated dataset construction strategy is proposed, with characteristics
that are very similar to those of the real scenes;

(2) a model transferring strategy is adopted to transfer the model from the simulated
dataset to real scans;

(3) experiments on the KITTI Odometry Dataset and the Apollo SouthBay show that this
method can effectively extract reliable lines in road scenes by model transferring on
few simulated data;

(4) experiments show that using the extracted lines as input for LiDAR odometry in urban
road scenes can greatly improve its accuracy and efficiency, especially cimbined with
deep learning-based networks.
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Figure 1. Workflow of the simulation-based self-supervised line extraction. The simulation-based
self-supervision is achieved by model transferring, including three flows: pre-training flow, test flow
and fine-tune flow, which is explained in Section 3.5 in detail.

2. Related Works
2.1. LiDAR Odometry

Due to the mentioned challenges of vehicle-borne laser point clouds in urban road
scenes, traditional local feature descriptor-based methods and ICP-based [22] methods often
perform poorly in both accuracy and efficiency. Recently, deep learning-based odometry
networks have demonstrated promising performance on publicly available datasets. These
networks can be classified into two distinct categories: 2D projection-based pose regression
networks and point correspondence-based networks. The former inevitably loses the
original 3D information [11]. The following mainly introduces point correspondence-
based networks.

Lu et al. [6] proposed the first virtual correspondences-based registration network
named DeepVCP. It used PointNet++ [23] to learn pointwise local features, selected key-
points through a point weighting layer, and finally generated virtual correspondences
through a point generation layer. Similarly, Wei et al. [5] proposed a registration network
named LPD-Registration. It enhanced structural information and correlation informa-
tion through self-attention and cross-attention mechanisms, and generated K best cor-
respondences through a virtual corresponding point generation module. These virtual
correspondence-based methods directly estimate the virtual correspondences of keypoints
without eliminating incorrect correspondences, achieving comparable registration accuracy
and efficiency. DGR [13] first used FCGF [24] to learn pointwise features, and then evalu-
ated confidences of matching relationships using a 6D convolutional neural network, finally
estimating the pose parameters using a differentiable weighted Procrustes algorithm [25].
It is of high accuracy and strong adaptability. PREDATOR [26] can detect inliers/outliers
of two point clouds and solve the relative transformation simultaneously. This method
can still achieve high registration accuracy in low-overlap scenarios. To deal with the
situations with insufficient overlap, or the presence of dynamic objects, Fischer et al. [27]
proposed a network that operates directly on sparse keypoints. First, the keypoints are
subject to different levels of feature extraction through a Pillar Encoder and a Positional
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Encoder. Then, multiple multi-head self-attention and cross-attention modules are used
to integrate contextual information. Finally, a refinement transfer layer is employed to
obtain the keypoint matching relationships. This method exhibits strong robustness even
in high-speed scenes and when frames are lost. GeoTransformer [28] codes pair-wise
distances and triplet-wise angles to learn geometric feature for robust superpoint matching,
making it robust in low-overlap cases and invariant to rigid transformation. Wang et al. [1]
proposed an oriented descriptors and local rotations-based registration framework. By
incorporating the two elements into the entire registration process, it significantly improved
the registration reliability and efficiency. To address the challenges posed by the significant
dimensional differences, semantic gaps, and mutual interference caused by mixed features,
Wang et al. [29] proposed a registration network called MFGNet that utilizes spatial coor-
dinates and local features to guide the search for matching points. Unlike methods that
directly use mixed features, MFGNet consists of two different matching matrix computa-
tions: coordinate matching matrix computation and feature matching matrix computation.
These two branches independently learn to assign correct correspondences, and then their
respective matching matrices are fused to obtain the final matching matrix. The rigid trans-
formation parameters are subsequently solved using a differentiable SVD algorithm. This
network achieves high registration accuracy while maintaining computational efficiency.

In general, point correspondence-based networks are robust to initial positions and can
achieve high precision when the data quality is good. However, they mostly use points as
the basic unit, which is of a large amount, and do not consider the interference of dynamic
objects in urban road scenes, leading to low efficiency and accuracy.

2.2. Line Extraction

Current line extraction methods from point clouds can be mainly categorized into
two types: (1) converting point clouds into images [20,30]; (2) analyzing the geometric
or radiative features of point clouds to extract lines [31], such as curvature, normal and
intensity. The following text introduces the two types.

Projection-Based Methods: Zhu and Hyyppä [30] used statistical analysis based on
geometric information to extract power lines; the analysis is automated and computationally
effective. Wang et al. [31] and Zhou et al. [32] first projected the point clouds of power
transmission into 2D images, and then, 2D Hough transformation was used to extract power
lines. This method can ensure the continuity of line segments to some extent. Lu et al. [20]
proposed a fast line extraction method based on planes. Normal-based segmentation was
first adopted to initially obtain the planes, and region growing was used to refine extracted
planes; then, a 3D–2D projection was applied to ectract lines on 2D binary images via
Least Square Fitting; finally, a 2D–3D projection was used to obtain the corresponding
3D line segments. However, these projection-based methods highly relied on projection
transformation [33], inevitably leading to the missing of the lines that are perpendicular to
the projection.

3D Line Extraction Methods: Fang et al. [34] separated road markings from road
surface by an intensity-based k-means clustering, and then refined the results by nor-
malized cuts with geometric features and spatial distributions. However, this method
cannot handle partial solid line misextraction and missed extraction due to sparse density.
Zhang et al. [35] came up with a multi-conditional GAN to extracted contours for outdoor
scenes. Specifically, a parametric space-based framework and a guided learning frame-
work were, respectively, used to reduce the point space and acquire the target distribution.
However, this required a labeled dataset, and it was not end-to-end. Hu et al. [36] pro-
posed a geometric feature enhanced line extraction method. Planes were first extracted by
normal and curvature-based region growing and merging, and then line candidates were
extracted by a 3D–2D projection, pretrained DexiNed [37] and MCMLSD [38] algorithm;
finally, candidate lines were optimized by the hierarchical topology between contours and
lines. It can filter out major miscellaneous and broken lines. Liu et al. [17] proposed a
supervoxel segmentation based on Euclidean distance and normal vectors to extract feature
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lines. This method can simultaneously extract lines of three types with high accuracy.
Zhao et al. [21] proposed the first self-supervised line segmentation named Superline3D. A
synthetic dataset was first generated, and then a geometric adaptation strategy was adopted
for automatic line labeling. However, the generated simulated dataset was significantly
different from the real road scene dataset, and iterations were required for high accuracy.
Jiang et al. [33] came up with a general 3D structural line extraction method from point
clouds with a single building as input. Corner points were first extracted by an associative
learning module, and then a graph neural network (GNN) was adopted to learn the curve
connections. Experiments on outdoor building, indoor scene, and furniture point clouds
verified the strength and efficacy. However, semantic segmentation is required to obtain
instance-level buildings from raw point clouds.

To sum up, existing traditional line extraction methods can achieve high accuracy in
some specific scenarios according to the geometric or radiative features. However, that
makes it difficult to manually tune parameters for the complicated large-scale point clouds,
and lines in specific types cannot be selectively detected. Moreover, for deep learning-based
methods, there is no labeled dataset, and manual labeling is time-consuming.

3. Methodology
3.1. Simulated Dataset Construction

Generally speaking, lines in urban road scenes acquired by vehicle-borne laser can
be divided into three categories [21]: (1) standalone pole objects, such as street lamps;
(2) intersections of planes, such as intersections between buildings and the ground, and
intersections between different faces of buildings; (3) virtual lines, formed by edge points
across the scanning rings. Among them, lines of the first two types are relatively reliable in
LiDAR odometry, so this paper aims to extract lines of the two types, which are defined as
reliable lines.

In order to simulate these three types of lines in urban road scenes, as shown in
Figure 2, four graphic primitives are used: (1) multiple circular rings to simulate the
ground; (2) a vertical line to simulate a standalone pole object; (3) a plane to simulate a
building facade; and (4) two perpendicular planes to simulate two perpendicular building
facades. Then, since lines in different types are of different features, we label reliable lines
into two categories: simulated independent pole objects are labeled as Category 1 (colored
in green), simulated intersections between planes are labeled as Category 2 (colored in red),
and the rests are labeled as Category 0 (colored in black).

(a) (b) (c) (d)

Figure 2. Four graphic primitives. (a) multiple circular rings simulate the ground; (b) a vertical line
simulates an independent pole object; (c) a plane simulates an intersection between a building and
the ground; (d) two perpendicular planes simulate intersections between building planes.

To make the point cloud of the simulated ground closer to the real road scenes, each
circular ring of the simulated ground is uniformly sampled with a fixed number, with the
distance between each circular ring gradually increasing from inside to outside, so that
the density is “near dense and far sparse”. Then, the point cloud of the simulated ground
is clipped, and only points with an absolute value of the y coordinate less than 3 m are
retained, forming a simulated road. As for the other three graphic primitives, they are
first uniformly sampled according to a fixed density to generate simulated point clouds.
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To simulate the incomplete objects caused by occlusion in real scenes, 10% of the points
are clipped for the three graphic primitives. Finally, the processed point clouds of three
graphic primitives are placed on both sides of the simulated road.

Considering the noise in the real point cloud, all simulated points are effected by
Gaussian noise with a mean of zero and a standard deviation of 0.01 mr on each axis. In
addition, as shown in Figure 3, a portion of vegetation and vehicles from real scanning
data, totaling 2000 points, are randomly cropped and combined to form the final simulated
data. The final simulated dataset includes 1300 point clouds, 1000 for training and 300 for
testing, with an approximate count of 13,000 points per point cloud.

Figure 3. A simulated point cloud with groundtruth labels. Points of simulated independent pole
objects are labeled as Category 1, colored in green; points of simulated intersections between planes
are labeled as Category 2, colored in red; and the rest are labeled as Category 0 (colored in black).

3.2. Scale-Invariant Feature Computation

The main challenge of this method is the scale difference between real LiDAR point
clouds and the simulated dataset. Similar to Superline3D [21], a scale-invariance feature fi
is computed:

fi =
p− pi
‖p− pi‖

, i = 1, 2, . . . , k. (1)

In Equation (1), k nearest points {p1, p2, . . . , pk} of point p are searched, and the scale-
invariant local feature fi is calculated as a unit vector between p and its neighboring
point pi.

3.3. Network Architecture

We consider the reliable line extraction as a classification problem, and propose a
network named LO-LineNet. As shown in Figure 4, the input of LO-LineNet is point clouds
with scale-invariant features, and the LO-LineNet is composed of two modules: a feature
encoder and a classification decoder.

Feature Encoder: in the first module, two EdgeConv [39] layers are first adopted to
extract features of the k-nearest neighbors for each point. The EdgeConv is proficient in cap-
turing neighborhood features, and we use the coordinate of point clouds as the nodes of the
graph, and the scale-invariant features are as edges; then, two multi-head self-attention [40]
layers are applied for information communication between their neighborhoods, so that
attention can be focused on important points in their neighborhoods, reducing the effect of
redundant points; finally, the original neighborhood features and self-attention features are
aggregated and input into the third EdgeConv [39] layers to obtain pointwise local features
sized N × 1024 (N is the amount of points) after a Maxpool layer.

Classification Decoder: in the decoder module, three basic convolution layers are
adopted to compress the obtained feature vectors sized N × 1024 to a tensor sized N × 3.
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And then, through a Softmax layer, the probability of each point belonging to three cat-
egories is obtained (the sum of the probabilities of the three categories is 1). Finally, an
Argmax layer is applied, the index with the highest probability are regarded as the category
of the point. We use ReLU for activation, InstanceNorm for normalization.
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Figure 4. Diagram of LO-LineNet.

3.4. Loss Function

The loss function L is a standard cross-entropy loss, expressed as follows:

L = −∑c−1
i=0 yilog(pi), (2)

where p = [p0, p1, . . . , pc−1] is a probability distribution, and pi denotes the probability
associated with the point belonging to the ith class; y = [y0, y1, . . . , yc−1] is a one-hot
encoding representation of the point label, and if the point belongs to the ith category, yi = 1;
otherwise, yi = 0. c is the number of labels.

3.5. Model Transferring

Although the constructed simulated dataset has a huge gap compared with the com-
plicated real road scenes, the features of lines in the two scenes have certain commonalities.
Thus, a model transferring strategy is used to transfer the model from the simulated dataset
to the real scenes.

As shown in Figure 1, the model transferring process includes three flows: pre-training
flow, test flow and fine-tuning flow.

Pre-training Flow: for the predefined simulated dataset, scale-invariant features are
first computed, and then, point clouds with scale-invariant features are input into the
LO-LineNet to pre-train a scale-invariant classification model;

Test Flow: scale-invariant features of the real-world dataset are first computed, and
then the real-world dataset with scale-invariant features are input into the the LO-LineNet
trained on simulated dataset to directly predict the labels of the real-world dataset. Since
LO-LineNet predicts the label of each point, labels may be discrete and misclassified.
Finally, a distance and normal-based region growing algorithm and a RANSAC-based line
fitting algorithm are used to filter discrete and misclassified labels (as shown in Figure 5).
The point cloud of the remaining labels of each cluster is regarded as reliable lines.

Fine-tuning Flow: in this flow, the reliable lines of real-world dataset obtained from
the test flow are taken as the groundtruth, and then the pre-trained Lo-LineNet is retrained
on real-world dataset guided by groundtruth, which is named a fine-tuning flow. After
that, a model suitable for real-world scenarios is obtained. It is worth noting that we only
adopt the fine tuning one time to automatically generate labels with high accuracy.
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Figure 5. Clustering and fitting results. Original predicted reliable lines are colored in black, while
clustering and fitting lines are colored in red.

4. LiDAR Odometry

The method aims to extract reliable lines in urban road scenes for accurate and efficient
LiDAR odometry, as it can reduce the amount of points and the interference of dynamic
objects. Most notably, our method can finally output two representations of reliable lines:
one is the original reliable lines represented as points, and the other is the fitted line
segments represented as vectors; we only use the first representations in the following
experiments, as the existing odometry methods or networks, such as ICP [22], GICP [41],
GeoTransformer [28] and RegTR [15], only support input in the form of points.

The diagram of using extracted reliable lines as input for LiDAR odometry is shown
in Figure 6. The original point clouds of the source and the target are first preprocessed by
our LO-LineNet to extract reliable lines in urban road scenes; then, odometry methods or
networks are applied to obtain the relative pose between the source and the target; finally,
the sources are aligned to the target with the relative pose.

Odometry 
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-L
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e
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e
t

Source Point Cloud

Target Point Cloud

Source Reliable Lines

Target Reliable Lines

Registered Reliable Lines Registered Original Point Clouds

Figure 6. Diagram of using extracted reliable lines as input for LiDAR odometry, where odometry
can be achieved by traditional methods or deep learning-based networks.

5. Dataset, Experimental Setting, and Metrics

Dataset: the KITTI Odometry Dataset [42] and the Apollo SouthBay Dataset [43]
are used for experiments, which are acquired by vehicles driven at varying speeds (from
30 km/h to 100 km/h) in varying environments (highway, urban, country, and the com-
baination of urban and country). It is noteworthy that the driving distances of the Apollo
SouthBay Dataset are much longer than those of the KITTI Odometry Dataset. Details of
the two datasets are listed in Table 1 and Table 2, respectively.
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Table 1. Details of the KITTI Odometry Dataset.

Sequence 00 01 02 03 04 05 06 07 08 09 10

Distances 3714 4268 5075 563 397 2223 1239 695 3225 1717 919
Frame 4541 1101 4661 801 271 2761 1101 1101 4071 1591 1201
Max speed 46 96 49 31 56 48 51 39 43 52 51
Environment Urban Highway Mixed Country Country Urban Urban Urban Mixed Mixed Mixed

“Frame” means the the number of point cloud frames in each sequence. “Mixed” means a combination of urban
and country. The unit of “Distance” and “Max speed” are, respectively, meter and kilometer/hour.

Table 2. Details of the Apollo SouthBay Dataset.

Route Baylands to Seafood Mathilda AVE Columbia Park San Jose Downtown Highway 237
Sequence 00 01 02 03 04 05 06 07 08 09 10

Distance 4435 6254 9990 9741 8825 14,675 3420 6285 3204 9695 12,175
Frame 6443 7538 10,903 11,846 14,014 20,801 9765 16,596 9868 4701 5677
Max speed 74 68 67 74 44 48 37 45 37 105 100
Environment Highway Highway Highway Highway Urban Urban Urban Urban Urban Highway Highway

“Frame” means the the number of point cloud frames in each sequence. The unit of “Distance” and “Max speed”
are, respectively, meter and kilometer/hour.

Experimental Setting: for model pre-training, LO-LineNet is initially trained on the
simulated dataset for 50 epochs; then, the pre-trained LO-LineNet is trained on the KITTI
Odometry Dataset for other 50 epochs for model finetuning. Sequences 00–05 in the KITTI
Odometry Dataset are used for training, and sequences 06–07 are used for validation. Each
point cloud is sampled with a 0.3 m voxel size, with approximately 20,000 points. All
sequences of the Apollo SouthBay Dataset are used for testing to verify the generalization
of the proposed method.

Training Details: the whole network is implemented in pytorch with an Adam opti-
mizer. For both model pre-training and model transferring processes, the initial learning
rate is configured as 0.001 and decreased by 50% every 10 epochs. The batchsize of the
pre-training process it set to four, and the batchsize of model transferring process is set to
onr. The whole network is trained on a NVIDIA TITAN RTX GPU.

6. Experimental Results
6.1. Results of Reliable Line Extraction

For a real dataset, as it lacks ground truth of reliable lines, only qualitative evaluations
are conducted in this section. To facilitate a visual comparison, randomly selected results in
the KITTI Odometry dataset of 3dLineDetection [20], Superline3D [21] and our LO-LineNet
are presented in Figure 7. Results of dLineDetection [20] and Superline3D [21] are obtained
by the execution of the authors’ published codes.

From Figure 7, it is obvious that (1) 3dLineDetection missed all pole-like objects. This is
because 3dLineDetection is a projection-based method. Pole-like objects are perpendicular
to the projection direction. After vertical projection, pole-like objects become a point on a
projection plane. Additionally, 3dLineDetection tended to detect virtual lines formed by the
scanning rings as reliable lines. This is because after projection, the scan lines approximate
straight lines at the edge of the scenes; (2) Superline3D [21] mistakenly detects the points
near intersections as well, especially the intersection of planes, resulting in extracted lines
having a certain width. This is due to the fact that it categorizes the intersection of planes
and rod-shaped objects as one type to extraction. The pole-like object has a certain width
and the network learns this feature through training, leading to the detection of nearby
points when detecting plane intersections. After iteration, the extracted plane intersection
lines become wider and wider. On the other hand, it often suffers from more severe
detection deficiencies, especially when it comes to standalone pole objects in the edge of
the scene. This is due to the fact that during the model transferring process, the learned
features are lines with a certain width, while the density of pole-like objects at the scene
edges is relatively sparse, resulting in missing data; (3) our LO-LineNet can accurately
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extract intersection of planes and mostly all pole-like objects in the scene, owing to the
novel simulation strategy considering common line categories in real scenes and dividing
them into different categories based on their characteristics and the model transferring
strategy.

(a) (b) (c)

Figure 7. Line extraction results of the KITTI Odometry Dataset. In 3dLineDetection [20] (a) and
Superline3D [21] (b), all lines are colored in red; in our LO-LineNet (c), intersections of planes are
colored in red, while pole-like objects are colored in green.

6.2. Effect of Model Transferring

Model transferring is the core component of the method, supposed to transfer the
model from the simulated dataset to real scenes, as the features of lines in the two scenes
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have certain commonalities. To verify the feasibility of this strategy transferring from a
small simulated dataset to complicated real scenes, we record reliable line extraction results
before model transferring and after model transferring.

As shown in Figure 8, direct usage of the model learned from the simulated dataset to
predict the real dataset can only extract some lines whose characteristics are very similar to
those of the simulated data, especially pole-like objects. This is because the standalone pole-
like objects defined in the simulation dataset are too idealized, simulated by only a straight
line perpendicular to the ground. When it comes to tree trunks with some noise around
or streetlights in the scene edge, the extraction often fails without transferring. However,
after model transferring, more standalone pole-like objects, such as streetlights, billboards,
especially tree trunks, are detected. This is because, through model transferring, the features
learned on the simulated dataset are fine tuned to better align with the characteristics of
the real scenes, which shows the feasibillity of the strategy of transferring the model from a
small simulated dataset to real scenes.

(a) Before model transferring. (b) After model transferring.

Figure 8. Extraction results before and after model transferring.

6.3. Generalization on Unseen Dataset

To test the generalization of the proposed method on the unseen dataset, we use
the model transferred on the KITTI Odometry Dataset to directly predict the labels of
the Apollo SouthBay Dataset without any fine-tuning. Similar to the pre-processing of
the KITTI Odometry Dataset, each point cloud in the Apollo SouthBay Dataset is down-
sampled with a 0.3 m voxel size, with approximately 20,000 points. It worth noting that all
sequences of the Apollo SouthBay Dataset are used for testing to verify the generalization
of the proposed method.

Figure 9 depicts the reliable line extraction results of the Apollo SouthBay Dataset. It
worth noting that the Apollo SouthBay Dataset is more complex, and there are more pole-
like objects icompared to the KITTI Odometry Dataset, and the intersectioin of planes is
quite different from that of the KITTI Odometry Dataset in the training process. This brings
a big challenge for our methods. However, it is obvious in Figure 9 that reliable lines in the
Apollo SouthBay Dataset, regardless of whether the intersections are of planes or pole-like
objects, still can be accurately extracted without any model finetuning. This is owing to the
model transferring strategy. Through model transferring, the common characteristics of
reliable lines between the simulated dataset and the real datasets are strengthened, such
as the intersections of planes and independent features of pole-like objects. Although the
Apollo SouthBay Dataset and the KITTI Odometry Dataset are different, the characteristics
of the reliable lines in the two datasets are very similar. In addition, the scale-invariant
features can eliminate the influence of inconsistent scales between the two datasets. Thus,
good performances on the Apollo SouthBay Dataset can be obtained, which shows our
method has good generalization.
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Figure 9. Line extraction results of the Apollo SouthBay Dataset. Intersections of planes are colored
in red, while pole-like objects are colored in green.

6.4. Accuracy of LiDAR Odometry

Since only qualitative evaluations are conducted on reliable line extraction, in this
section, we indirectly reflect the quality of line extraction results by evaluating the accuracy
of LiDAR odometery using our LO-LineNet as a preprocessing to assess the feasibility and
superiority of our LO-LineNet for subsequent LiDAR odometry. A series of experiments
are conducted on the KITTI Odometry Dataset and the Apollo SouthBay Dataset. Offi-
cial metrics trel , rrel computed by the odometer evaluation toolkit officially provided by
KITTI [42] are adopted to evaluate the accuracy of rotation and translation in LiDAR odom-
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etry. Traditional methods like ICP [22], GICP [41] and LOAM [44], and deep learning-based
methods like GeoTransformer [28] and RegTR [15] are used for comparison.

6.4.1. Accuracy of the KITTI Odometry Dataset

Table 3 lists the odometry accuracy of typical traditional methods and deep learning
networks in the KITTI Odometry Dataset. It is noteworthy that for the deep learning
methods, we use sequences 00–06 in the KITTI Odometry Dataset as training sets and
sequences 07–10 as testing sets.

Table 3. The LiDAR odometry accuracy on the KITTI Odometry Dataset.

Method Metrics 00 01 02 03 04 05 06 07 08 09 10 Average

Full LOAM [44] trel 0.78 1.43 0.92 0.86 0.71 0.57 0.65 0.63 1.12 0.77 0.79 0.84
rrel 0.53 0.55 0.55 0.65 0.50 0.38 0.39 0.50 0.44 0.48 0.57 0.50

Full A-LOAM trel 0.76 1.97 4.53 0.93 0.62 0.48 0.61 0.43 1.06 0.73 1.02 1.19
rrel 0.31 0.50 1.45 0.49 0.39 0.25 0.28 0.26 0.32 0.31 0.40 0.45

A-LOAM † trel 4.08 3.31 7.33 4.31 1.60 4.09 1.03 2.89 4.82 5.76 3.61 3.89
rrel 1.69 0.92 2.51 2.11 1.13 1.68 0.52 1.80 2.08 1.85 1.76 1.64

CLS [45] trel 2.11 4.22 2.29 1.63 1.59 1.98 0.92 1.04 2.14 1.95 3.46 2.12
rrel 0.95 1.05 0.86 1.09 0.71 0.92 0.46 0.73 1.05 0.92 1.28 0.91

Velas et al. [46] trel 3.02 4.44 3.42 4.94 1.77 2.35 1.88 1.77 2.89 4.94 3.27 3.15
rrel NA NA NA NA NA NA NA NA NA NA NA NA

LO-Net [6] trel 1.47 1.36 1.52 1.03 0.51 1.04 0.71 1.70 2.12 1.37 1.80 1.33
rrel 0.72 0.47 0.71 0.66 0.65 0.69 0.50 0.89 0.77 0.58 0.93 0.69

ICP-po2pl [47] trel 3.80 13.53 9.00 2.72 2.96 2.29 1.77 1.55 4.42 3.95 6.13 4.74
rrel 1.73 2.58 2.74 1.63 2.58 1.08 1.00 1.42 2.14 1.71 2.60 1.93

ICP-po2po [22] trel 6.88 11.21 8.21 11.07 6.64 3.97 1.95 5.17 10.04 6.92 8.91 7.36
rrel 2.99 2.58 3.39 5.05 4.02 1.93 1.59 3.35 4.93 2.89 4.74 3.41

ICP-po2po * [22] trel 6.27 31.16 8.83 4.73 7.28 3.98 5.44 5.09 9.31 6.32 8.38 8.80
rrel 2.76 3.18 3.15 4.26 4.88 1.83 1.97 2.27 3.07 2.30 3.64 3.03

GICP [41] trel 1.29 4.39 2.53 1.68 3.76 1.02 0.92 0.64 1.58 1.97 1.31 1.92
rrel 0.64 0.91 0.77 1.08 1.07 0.54 0.46 0.45 0.75 0.77 0.62 0.73

GICP * [41] trel 2.96 19.77 3.59 2.80 3.59 2.23 2.31 1.82 3.33 4.25 2.88 4.50
rrel 1.61 2.16 2.07 1.86 2.07 0.92 1.32 1.24 1.46 1.52 1.89 1.65

GeoTransformer [28] trel 2.20 3.23 7.42 4.99 3.30 2.11 3.00 2.52 2.52 3.58 3.29 3.47
rrel 0.80 0.90 1.62 1.46 0.48 0.88 1.21 2.32 0.96 1.24 1.39 1.21

GeoTransformer * [28] trel 2.55 2.85 2.99 1.96 1.58 2.71 1.16 2.15 3.94 5.74 4.18 2.89
rrel 1.42 2.29 1.26 0.98 0.94 1.46 0.71 1.40 1.83 5.23 1.77 1.76

RegTR [15] trel 2.23 5.03 3.19 1.92 2.40 3.24 1.51 11.33 5.13 7.42 5.55 4.45
rrel 1.10 1.40 1.21 0.82 0.88 1.42 0.79 2.06 3.78 3.00 2.93 1.76

RegTR * [15] trel 1.46 2.29 1.55 1.31 0.48 0.99 1.03 1.13 2.04 2.36 1.86 1.50
rrel 0.77 0.61 0.65 0.73 0.39 0.51 0.50 0.95 0.94 0.92 0.88 0.71

“†” means method without mapping, “*” means using extracted lines as input. ICP-po2po * [22] and GICP * [41]
are executed through open3d. Results of GeoTransformer [28] and RegTR [15] were obtained by the execution of
the authors’ published code. Other results are cited from [9]. Best results displayed in bold.

It is obvious that, for ICP [22] and GeoTransformer [28], using extracted reliable
lines as input for LiDAR odometry can significantly improve accuracy in some sequences,
while for RegTR [15], using extracted lines as input achieves higher accuracy in all se-
quences compared to using all points as input. This is because RegTR [15] is a virtual
correspondence-based network, which can handle the problem of correspondences in two
consecutive frames to be inconsistent due to irregular point cloud density, while ICP [22]
and GeoTransformer [28] both highly rely on the accurate correspondences. It notewor-
thy that in Sequence 04, RegTR [15] with extracted reliable lines as input, achieves the
highest accuracy in both rotation and translation, even compared to Full LOAM [44] and
Full A-LOAM, showing the superiority of virtual correspondence-based network with the
extracted reliable lines as input. However, for GICP * [41], using reliable lines as input did
not improve the accuracy of the odometery; it decreased in most sequences because of the
global optimization. Furthermore, for traditional methods, like ICP * [22] and GICP * [41],
using reliable lines as odometry input results in poor performances in highway scenes, as
there are few reliable lines after extraction, such as Sequence 01. Surprisingly, for deep
learning-based methods, like GeoTransformer * [28] and RegTR * [15], using reliable lines
as odometry input still results in higher accuracy in Sequence 01 such as with highway
scenes than when using all points as input, which demonstrates an enormous potential of
deep learning-based methods.
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6.4.2. Accuracy of the Apollo SouthBay Dataset

Table 4 presents the odometry accuracy of typical traditional methods and deep
learning networks applied to the Apollo SouthBay Dataset. It is noteworthy that, for deep
learning-based methods, like GeoTransformer [28] and RegTR [15], we directly employed
the odomoetry models trained on the KITTI Odometry Dataset to directly predict the poses
of the Apollo SouthBay Dataset without any fine tuning.

Table 4. The LiDAR odometry accuracy on the Apollo SouthBay Dataset.

Method Metrics Baylands
ToSeafood MathildaAVE ColumbiaPark SanJose

Downtown Highway237 Average

ICP-po2pl [47] trel NA NA NA NA NA 7.75
rrel NA NA NA NA NA 1.20

NDT-P2D [48] trel NA NA NA NA NA 52.70
rrel NA NA NA NA NA 9.40

Full LOAM [44] trel NA NA NA NA NA 5.93
rrel NA NA NA NA NA 0.26

Xu et al. [49] † trel NA NA NA NA NA 6.42
rrel NA NA NA NA NA 1.65

Xu et al. [49] trel NA NA NA NA NA 2.25
rrel NA NA NA NA NA 0.25

RSLO † [50] trel NA NA NA NA NA 5.99
rrel NA NA NA NA NA 1.58

RSLO [50] trel NA NA NA NA NA 2.17
rrel NA NA NA NA NA 0.24

ICP-po2po [22] trel NA NA NA NA NA 22.80
rrel NA NA NA NA NA 2.35

ICP-po2po * [22] trel 35.27 15.30 5.31 7.89 28.50 18.45 (6.60)
rrel 4.63 5.45 1.59 2.62 6.80 4.21 (2.10)

GICP [41] trel NA NA NA NA NA 4.55
rrel NA NA NA NA NA 0.76

GICP * [41] trel 16.96 12.16 5.63 5.91 12.02 10.53 (5.77)
rrel 3.29 3.37 2.08 2.53 1.98 2.65 (2.30)

GeoTransformer [28] trel 26.83 16.78 4.82 8.44 9.65 13.30
rrel 19.45 3.18 1.77 1.51 1.79 5.54

GeoTransformer * [28] trel 25.21 12.00 3.76 4.59 35.06 16.12 (4.17)
rrel 15.49 4.74 1.53 1.62 18.87 8.45 (1.57)

RegTR [15] trel 63.07 61.52 31.56 75.21 71.26 60.52
rrel 16.89 17.63 11.46 25.43 11.93 16.66

RegTR * [15] trel 14.11 3.86 2.44 2.59 12.06 7.01 (2.51)
rrel 3.03 1.06 0.90 0.89 1.55 1.48 (0.89)

“†” means methods without mapping, “*” means using extracted lines as input. ICP * [22] and GICP * [41] are
executed through open3d. Results of GeoTransformer [28] and RegTR [15] were obtained by the execution of the
authors’ published code. Other results are cited from [50]. Best results displayed in bold. The average accuracy of
the ColumbiaPark and the SanJoseDowntown is listed inside the brackets.

It is clear that the accuracy of all methods, regardless of whether the methods are
traditional or deep learning-based, are much lower than the accuracy of the the KITTI
Odometry Dataset, which is due to the complexity and long distances of the Apollo South-
Bay Dataset. Additionally, for ICP [22] and GeoTransformer [28], especially RegTR [15],
the accuracy of using extracted reliable lines as odometry input can exceed that of using
all points as input on urban sequences (such as ColumbiaPark and SanJoseDowntown),
while using lines as odometry input tends to fail on highway scenarios with few reliable
lines (such as BaylandsToSeafood and Highway237). Similarly, using reliable lines as input
for GICP * [41] does not work. On the other hand, RegTR [15] with all points as input
has bad generalization, fails in all sequences, even in urban scenes, while RegTR [15] with
extracted lines as input still shows good performance. These results indicate that the use of
the extracted lines as odometry input can significantly improve the generalization of the
virtual point correspondence-based methods.

6.5. Running Memory and Efficiency of LiDAR Odometry

To evaluate the superiority of using extracted lines as inputs for odometry in terms of
running memory and efficiency, we collected statistics on the number of points, the average
GPU running memory in the training, and the average runtime per frame in the testing
before and after extraction.
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Running Memory: Table 5 lists a comparison of the number of points and the running
memory before extraction and after extraction. Although the number of points after
extraction varies with different scenes, generally, it can significantly decrease points by more
than 90%, from 20,000 to 1000. This can effectively reduce most of the interference points in
the scenes. The decrease in the number of inputs directly results in a substantial decrease
in the GPU running memory by approximately 90% in the training, from 20,000 MiB to
2000 MiB, which allows the conduct of the odometry training process on GPUs with smaller
memory capacity.

Table 5. Comparison of the number of points and the running memory.

Number of Points Running Memory
before extraction 20,000 20,000 MiB
after extraction 1000 2000 MiB

Efficiency: Figure 10 illustrates the efficiency comparison among four methods,
ICP [22], GICP [41], GeoTransformer [28] and RegTR [15]. It shows that (1) when us-
ing all points as input, deep learning methods (like GeoTransformer [28] and RegTR [15])
exhibit a considerable advantage over traditional methods (such as ICP [22] and GICP [41])
in efficiency, about 100 times, showing the great potential of deep learning menthods;
(2) for the same method, using extracted reliable lines as input can significantly improve
odometry efficiency, about 1000 times for traditional methods, and about 2∼3 times for
deep learning-based methods. It worth noting that the processing time of the four methods
with using extracted reliable lines as input includes the extraction time.

Figure 10. Comparison of processing time for four methods.

7. Conclusions

To handle the issue of point clouds in urban road scenes presenting in large amounts,
irregular density, and different dynamic objects, leading to low odometry efficiency and
accuracy, this paper proposes a simulation-based self-supervised line extraction for LiDAR
odometry to reduce the amount of input and interference from dynamic objects. Exper-
iments demonstrate that the proposed method yields substantial advancements in both
accuracy and efficiency of odometry. However, currently, the extracted lines are only being
input as points into the odometry networks. On the other hand, the proposed method
may fail in scenes with fewer reliable lines, such as highway scenarios. In the future, we
will explore direct inputting of the lines as a vector into a network to effectively solve
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the problem of near density and far sparsity of lines, and research feasible solutions for
high-speed scenarios.
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