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Abstract: Based on Microwave Radiometer (MWR) observations in Wuhan over the course of
21 months, we compared the temperature and water vapor levels with those from radiosonde
(RS) sounding data at 00:00 and 12:00 UTC, and then analyzed the seasonal and diurnal changes
of temperature and water vapor levels from the MWR data. The MWR and RS mean temperatures
and dew points are roughly consistent with each other below 2 km, whereas above 2 km, the MWR
temperature is slightly lower than the RS temperature. The difference in their water vapor densities
decreases quickly with height, and the bias of their relative humidities is generally in the range of
−15% to 20%. The MWR observations show that in autumn, the surface temperature is 6.8 K lower
during precipitation events than during non-precipitation events, indicating that precipitation in
autumn is mainly caused by cold air from the north. The relative humidity during precipitation
events exceeds 90% from the ground to 5 km, which is obviously larger than during non-precipitation
events. During non-precipitation events, the seasonal mean water vapor density at 0–1.0 km shows
an approximately linear increase with the mean temperature; however, their diurnal changes are
opposite due to the effect of the boundary layer. At 4.5–5.5 km and 8.5–9.5 km, the mean temperature
shows a synchronized diurnal evolution, with the maximum value prior to that at 0–1.0 km, indicating
the strong influence of the air–land interaction on the temperature near the ground. Hence, this study
is helpful for deepening our understanding of temperature and humidity variabilities over Wuhan.

Keywords: microwave radiometer; air temperature; atmospheric humidity; seasonal and diurnal variation

1. Introduction

Temperature is a key parameter of the atmosphere that represents the thermodynamic
state of the atmosphere [1]. The large-scale movement of the atmosphere depends on the
temperature gradient, and the phase transition of water vapor is closely related to temperature
changes; thus, the temperature is both an essential basis and an important component of the
weather forecast. As a main greenhouse gas, water vapor plays a crucial role not only in the
energy budget of the local atmosphere, by absorbing solar and surface radiation, releasing
latent heat during phase transition, and reflecting radiation indirectly through cloud formation,
but also in the energy balance of the global atmospheric system, through its horizontal and
vertical transport [2,3]. Water vapor is the core constituent of weather changes, such as clouds,
fog, rain, snow, frost, dew, etc., and an important factor of climate change [4]. There is a
complex interplay between the air temperature and water vapor content. The temperature can
regulate the water vapor content and distribution by controlling surface evapotranspiration,
saturation vapor pressure, and the horizontal and vertical motion of air, while water vapor
can impact the temperature variation through its effect on the energy budget and its global
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transport by the circulation of the atmosphere [5–8]. Hence, it is of significance to investigate
the variations of temperature and water vapor and their relationship.

The radiosonde (RS) device is an effective means to measure air temperature and
humidity, and a large number of RS devices around the world are released to obtain
meteorological data at 00:00 and 12:00 UTC (Coordinated Universal Time). As the balloon
rises, sensors on board precisely sense the temperature and humidity from the surface to
the lower stratosphere with fine vertical resolution. There are some inherent measurement
errors in the RS measurements due to daytime solar radiation, the time lag of the thermistor
and hygristor, and the effect of real-time wind on the sounding balloon [9–12].

Satellite observations have good spatial coverage; these observations are suitable
for studying the global distribution and large-scale evolution of temperature and water
vapor [13–15]. It has been proposed that the uncertainties in temperature and specific
humidity measurements using satellite infrared and microwave sounding techniques
depend on the surface and cloud properties in the footprints [16,17]. In spite of their own
advantages, the low time resolution of RS and satellite data, due to only one or two samples
a day over one site, constrains the investigation of the diurnal evolution of temperature
and water vapor, and even the daily and monthly average values.

As a typical ground-based passive remote sensing device, the Microwave Radiometer
(MWR) was developed to obtain the profiles of temperature and water vapor from the
surface to about 10 km with a high temporal resolution of about 1–5 min; thus, the MWR
has the ability to continuously monitor the temperature and humidity of the atmosphere
with relative high accuracy [18–20]. The MWR measures the brightness temperature at
multiple microwave channels to retrieve the profiles of the air temperature, water vapor,
and liquid water. The retrieval techniques generally include the linear and nonlinear
regression algorithms and artificial neural networks [21–23]. The artificial neural network
algorithm is extensively applied to derive temperature and humidity measurements due
to its high accuracy [24,25]. Many works have examined the observed profiles from the
MWR in comparison with those from RS devices [26–29]. In the lower atmosphere, the
annual mean temperature from the MWR is largely consistent with that from RS devices,
whereas, except at the layer near the ground, the MWR mean temperature is usually lower
than the RS average, and their bias generally increases with height, and may attain 3–6 K at
10 km [30–32]. The comparison between the relative humidities measured by the MWR
and RS devices indicated that their bias is generally in the range of −25–25% at different
sites. Meanwhile, the bias magnitudes may be closely related to long-term drifts, MWR site
terrains, and weather conditions [30,33–36]; nevertheless, some studies have showed that
MWR can perform well with sufficient accuracy during rainfall, snowfall, and in cloudy
conditions [19,31,37,38]. The MWR may benefit further from improving the retrieval model
and training retrieval coefficients in complex terrains and various weather conditions by
minimizing the uncertainty in simulated brightness temperatures.

MWR observations have been widely used to study thermodynamic structures and
weather processes. By combining MWR, ceilometer, and lidar measurements, the heights of
the convective boundary layer during the daytime and the stable boundary layer during the
nighttime were calculated and compared with each other [39–41], and the spatial and tem-
poral variabilities of air temperature and humidity at different sites were discussed [42–47].
MWR data were helpful in diagnosing the macrophysical and microphysical properties of
clouds and precipitation and estimating the rainfall rate [19,20,30,48,49], and forecasting
convective activity [50,51]. Owing to the high temporal resolution, the observations of the
MWR and wind profile radar were applied to the investigation of fog, which improved
the understanding of atmospheric conditions for the formation, development, and dis-
sipation of fog [32,52,53]. In addition, some studies adopted the MWR to estimate and
calibrate other equipment measurements [18,54,55]. In light of the effect of water vapor on
atmospheric transmittance in near real time derived from the MWR absolute humidity and
temperature profiles, the ceilometer signal below 1 km was found to be overestimated up
to 9% [18].
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In this paper, we use the MWR observations at a mid-latitude site to investigate
the seasonal and diurnal evolutions of air temperature and humidity and discuss their
relevancy, which is helpful for improving our understanding of temperature and water
vapor environments in the mid-latitude inland monsoon region. In Section 2, the MWR
and the data used are briefly described. Section 3 presents a comparison of air temperature
and humidity between the MWR and RS observations in order to evaluate the MWR
measurements. In Section 4, we roughly estimate the temperature and water vapor levels
during precipitation events from the MWR measurements and analyze in detail the seasonal
and diurnal variations of temperature and humidity over Wuhan. Section 5 provides
a summary.

2. Instruments, Data and Method

An MWR MP-3000A is placed at the Atmospheric Remote Sensing Observatory (ARSO)
in Wuhan University (30.5◦N, 114.4◦E, 50 m above sea level), and is installed on the roof
of the ARSO, as shown in Figure 1. As an inland megacity in central China, Wuhan is
located on the eastern edge of the Jianghan Plain, or the transition zone from the Plain to the
hills, and is dominated by the subtropical monsoon climate, with abundant precipitation,
sufficient heat, and four distinct seasons. With an area of 3.5 km2, Wuhan University is
adjacent to East Lake that covers 31.8 km2 of water, which may contribute to the humid air
over the campus, especially in the hot summer.
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Figure 1. Topographic map of Hubei and microwave radiometer site in Wuhan University.

2.1. MWR MP-3000A

The MWR MP-3000A, built by Radiometrics Inc., Boulder, USA, obtains air tempera-
ture and water vapor information by automatically scanning at two operating frequency
bands. The MWR can sequentially observe the atmospheric radiation intensity or bright-
ness temperature using 14 oxygen channels in the V-band (51–59 GHz) along the side of
the oxygen feature at 60 GHz. The emission at any altitude is proportional to the local
temperature and oxygen density, and air temperature (T) from the surface to 10 km can
be retrieved by solving the microwave radiation transfer equation based on the backward
propagation neural network algorithm [56]. In this study, the backward propagation neural
network algorithm was trained by using a 5-year historical RS data set from the same
location in the period of 2015–2019. The MWR measures the intensity and shape of the
emission spectrum from pressure-broadened water vapor lines near 22 GHz sampled by
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21 channels in the K-band (22–30 GHz). The intensity of the emission spectrum is propor-
tional to the water vapor density (VD) and temperature; thus, the water vapor profile can be
obtained by scanning the spectral profile and then mathematically inverting the observed
data. Air temperature and water vapor are recorded every two minutes at 58 levels, with
50 m steps to 0.5 km, 100 m steps to 2 km, and 250 m steps to 10 km. By measuring the
contribution of cloud liquid water to atmospheric spectral features of varying opacity, cloud
liquid information in the K-band and V-band is used to obtain the liquid profile. To obtain
reliable data, the MWR at the ARSO was calibrated every three months by using cold liquid
nitrogen and tipping-curve calibration methods [57]. In the case of snow conditions, the
snow tends to freeze and is not easily blown away by the blower system, and we generally
carried out the manual removal of snow that froze on the top of the radome in winter,
although this rarely took place in Wuhan.

The MWR began collecting the data on 7 December 2020; nevertheless, valid observa-
tions are missing between December 2021 and August 2022 due to maintenance difficulties
during the pandemic. Thus, we investigate the seasonal and diurnal variations of tempera-
ture and water vapor over Wuhan based on the MWR observation from 7 December 2020
to 31 May 2023 when data are available.

2.2. Radiosonde Data

RS devices can obtain data for many meteorological parameters, such as temperature,
pressure, water vapor mixing ratio, relative humidity, dew point, and wind speed and
direction, which are generally accepted as reliable observations for comparison with those of
other instruments. Here, the profiles of temperature, water vapor density, relative humidity,
and dew point from the RS observations at the Wuhan station are utilized to compare with
those from the MWR observations. RS devices are launched twice a day at 00:00 and 12:00
UTC, corresponding to 8:00 and 20:00 LT (Local Time) in Wuhan, and all data are analyzed
in LT in the following investigation. The RS data can be downloaded from the University
of Wyoming at the website of http://weather.uwyo.edu/upperair/sounding.html. The
Wuhan RS station (30.6◦N, 114.1◦E, 23 m above sea level) is located in the northwest
suburbs of Wuhan City, with an open and flat terrain, whereas Wuhan University is in
the east of Wuhan City; thus, the two sites are about 50 km apart. RS data are generally
presented from an altitude of nearly 200 m above sea level (ASL); thus, when we take the
50-m altitude of the MWR as the starting height, the comparative analysis starts with the
height of 150 m.

The RS data in Wuhan from 2015 to 2019 are used to train the neural network. Figure 2
shows the mean values and standard deviations of the RS temperature, vapor density,
and relative humidity at 8:00 and 20:00 in Wuhan from 2015 to 2019, which represents
the climatic conditions over Wuhan. The mean temperature, vapor density, and relative
humidity exhibit a decreasing trend with height, and there are relatively large standard
deviations in the water vapor density at low levels, especially in the relative humidity,
indicating their large variability in the different seasons.

http://weather.uwyo.edu/upperair/sounding.html
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2.3. Method

Statistical parameters, such as the mean value, standard deviation, bias, and correlation
coefficient, are used to quantitatively characterize the consistency between the MWR and RS
observations. The mean value and standard deviation in the MWR data from 7 December
2020 to 31 May 2023 are compared with those in the RS data. The mean value and standard
deviation (SD) of the MWR measurements are derived from the expressions as follows:

Mean(z) =
1
N

N

∑
i=1

[MWRi(z)] (1)

SD(z) =
1
N

N

∑
i=1

[
MWRi(z)− MWRi(z)

]2
(2)

where MWR(z) denotes the atmospheric parameters at the height z observed by the MWR,
N is the total number of observations, and the overbar denotes the mean value. A similar
calculation is carried out for the RS observation.

In addition, if we take the RS observations as the true values, the mean bias and correla-
tion coefficient between the two observations are used to evaluate the MWR measurements,
which are calculated from the expressions [58] as follows:

Bias(z) =
1
N

N

∑
i=1

[MWRi(z)− RSi(z)] (3)

R(z) =
∑N

i=1

[
MWRi(z)− MWR(z)

]
·
[

RSi(z)− RS(z)
]

√
∑N

i=1

[
MWRi(z)− MWR(z)

]2
∑N

i=1

[
RSi(z)− RS(z)

]2
(4)
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where MWR(z) and RS(z) denote the atmospheric parameters at the height z observed
simultaneously by the MWR and RS device, respectively. Thus, the mean bias shows
the intensity of the deviation from the RS observations, while the correlation coefficient
represents the similarity of their changing trends.

3. Comparison between MWR and RS Observations

Considering that it takes about 30 min for the RS balloon to reach 10 km, we calculate
the 30-min mean values of temperature, water vapor density, and relative humidity in the
MWR measurements from 8:00 (20:00) to 8:30 (20:30) for comparison. Figure 3 shows their
mean values and standard deviations in the MWR and RS observations at 8:00 and 20:00
during non-precipitation events between December 2020 and May 2023, and the RS mean
values are calculated from the height of 0.15 km. For both the RS and MWR observations,
the differences of temperature, water vapor, and relative humidity above 0. 5 km between
8:00 and 20:00 are within 1 K, 0.3 gm−3 and 5%, respectively; thus, their profiles at 8:00 and
20:00 are very similar to each other.
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Figure 3. Mean values and standard deviations of (a,d) temperature, (b,e) vapor density, (c,f) rel-
ative humidity observed with (red) MWR and (blue) RS at (a–c) 8:00 and (d–f) 20:00 during non-
precipitation events throughout 21 months.

At 8:00, the mean temperature at 0.15 km is 291.6 K in the MWR data, which is slightly
larger than 289.8 K in the RS data, while at 20:00, the MWR temperature of 291.7 K at
0.15 km is 0.7 K lower than the RS temperature of 292.4 K. From 2 km to 10 km, the MWR
temperature is about 1.6–2.6 and 2.4–3.4 K lower than the RS temperature at 8:00 and 20:00,
respectively.

At 0.15 km, the mean water vapor density is 12.16 gm−3 in the MWR data and
10.86 gm−3 in the RS data at 8:00, and 12.17 gm−3 in the MWR data and 10.65 gm−3 in the
RS data at 20:00. The differences within 1.5 gm−3 near the ground are in accordance with
those within 2 gm−3 at a tropical station (13.5◦N, 79.2◦E) in previous reports [59]. Below
1 km, both the mean value and standard deviation are larger in the MWR observations
relative to those in the RS observations, while from 2 km to 4 km, the MWR water vapor
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density has a slightly lower standard deviation. Above 4 km, their means and deviations
are roughly consistent with each other, respectively.

In the RS observation, the relative humidity near the ground is larger at 8:00 (71% at
0.15 km) than at 20:00 (59% at 0.15 km), whereas the difference between the two terms is
considerably smaller in the MWR data. At both 8:00 and 20:00, the relative humidity below
6.5 km is generally higher in the MWR observation compared with that in the RS measurement,
with the differences within 20%, and on the contrary, the MWR observation has a lower relative
humidity above 6.5 km. Early comparisons also reported that with increases in height, the
humidity in the MWR data is changed from higher to lower [31,60–62].

The Clausius –Clapeyron equation shows the relationship between the saturated vapor
pressure and temperature, which can be used to estimate the dew temperature. According
to the Clausius–Clapeyron equation [63], the saturated vapor pressure es is derived from

es(T) = es(T0)× exp[
L
R

(
1
T0

− 1
T

)
], (5)

where T is the temperature in units of K; es(T0) = 6.11 hPa is the saturation vapor pressure
at a reference temperature T0 = 273.15 K; and L and R are the latent heat of vaporization
and gas constant, respectively. Hence, we can calculate the dew point temperature from
the temperature and relative humidity observed by the MWR. Figure 4 depicts the mean
values and standard deviations of the dew point temperature from the MWR and RS
data at 8:00 and 20:00. Below 2 km, the two mean dew point temperatures are nearly
equal, with the difference less than 1 K. Compared with the RS observations, the MWR
measurements have a smaller deviation of dew point temperature above 2 km, and a
slightly larger dew point temperature from about 2 km to 5 km, but a slightly lower
dew point temperature at higher levels, which are associated with the differences of their
temperatures and relative humidities.
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Figure 4. Mean values and standard deviations of dew point temperature from (red) MWR and (blue)
RS data at (a) 8:00 and (b) 20:00 during non-precipitation events throughout 21 months.

Next, we analyzed the differences between the MWR and RS observations in the dif-
ferent seasons. Routinely, winter covers December, January, and February. The correlation
coefficient and mean bias are two evaluation indicators utilized for the seasonal analysis
to assess the MWR-retrieved atmospheric profiles. Figure 5 depicts the statistical profiles
of temperature, water vapor density, and relative humidity from the MWR and RS data
during non-precipitation events throughout the four seasons. On the whole, the correlation
coefficient between the MWR and RS temperatures is larger than 0.9 below 2 km except in
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summer and shows a decreasing trend with height. The correlation is higher in autumn
and spring than in summer and winter. The correlation coefficient is in excess of 0.8 at
4–7 km in autumn, but there is a local minimum of around 5 km in the other seasons. The
temperature bias is small near the ground in each season, and generally increases to about
−3 K at 2 km. Then, the bias of −2 K to −3.5 K is maintained up to 10 km, except at 9–10 km
in winter. This indicates that except for the lowest layer of 1 km, the MWR temperature is
about 2–3.5 K lower than the RS temperature, similar to the results presented in Figure 3.
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Figure 5. (a–c) Correlation coefficients and (d–f) biases of (a,d) temperature, (b,e) water vapor
density, and (c,f) relative humidity between MWR and RS observations at 8:00 and 20:00 during
non-precipitation events throughout 21 months. The green, red, orange, and blue lines represent the
results in spring, summer, autumn and winter, respectively.

The bias in the water vapor density has the maximum value of 4.39 (1.53) gm−3 near
the ground in summer (spring) and decreases to 0.2 gm−3 at 3.0 km (1.8 km). The peak
bias of water vapor density is 1.0 gm−3 and −0.36 gm−3 at 2.75 km in autumn and winter,
respectively. The correlation coefficient between the MWR and RS water vapor densities
shows the minimal values of 0.58 at 0.8 km and 0.54 at 1.4 km in summer and spring,
respectively. In winter, the correlation is high with the coefficient larger than 0.8 below
5.25 km and then is weakened with height, whereas in autumn, the correlation coefficient
is 0.7–0.8 at most observational levels.

As for the relative humidity, their correlation coefficient is mainly in the range of
0.6–0.9 and tends to decrease slowly with height. The bias profile indicates that the relative
humidity below 6 km is higher in the MWR measurements than in the RS observations. In
spring, the bias is within about 12% from the ground to 6 km, and then rapidly approaches
zero, whereas in summer, the bias is within about 20% up to 3 km, and subsequently,
reduces generally to −5.4% at 9.5 km. In autumn, the bias of relative humidity has the
local peaks of 23% at 2.5 km and −16% at 8.25 km. The bias profile in winter is different
from that in the other seasons since its values are larger than 20% at 4–6 km, which
may be attributed to an artificial neural network error in the retrieved relative humidity
measurement. Nevertheless, except at these heights, the bias is small in winter. There
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is an uncertainty of about 5–10% in the RS relative humidity measurement, which may
contribute partly to the difference between the two observations.

Because of the height- and time-dependent coefficients trained in the neural network
algorithm, the statistical results of temperature and water vapor show that the differences
between the MWR and RS observations vary with height and season, which is consistent
with results obtained in previous reports [64,65]. Besides the different sensing methods
and retrieval algorithms, other factors, such as the two-station distance, balloon drift, and
the lake, terrain, and high building near the MWR site, may bring about the discrepancy of
air temperature and water vapor between the two sites. These factors may also affect the
radiation transmission at the MWR site, which can also cause the differences between the
two measurements.

4. Characteristics of Temperature and Water Vapor in MWR Observations

We performed a comparative analysis of the MWR and RS measurements at 8:00 and
20:00. Here, based on continuous observations from the MWR, we roughly estimate the
precipitation environment in Wuhan by comparatively analyzing the temperature and
water vapor in precipitation and non-precipitation conditions, and discuss the seasonal
and diurnal variation in temperature and water vapor in non-precipitation conditions. The
Clausius–Clapeyron Equation (5) indicates that the saturation water vapor pressure has
a complex relationship with temperature, whereas we attempt to explore the quantita-
tive relationship between the mean water vapor content and temperature in the realistic
atmosphere over Wuhan from the MWR observations.

4.1. Precipitation and Non-Precipitation Conditions

In order to estimate the precipitation environment, we present two cases to examine
the MWR measurements. It rained during 20:00–20:30 on 1 July 2021 and snowed during
8:00–8:30 on 29 December 2020; thus, we show the Emagram (T-lnP) of the MWR and
radiosonde data during the two periods in Figure 6. During the two precipitation events,
the dew point temperature equals or approaches to the temperature below 700 hpa (~3 km)
in the two data. Compared with the MWR, the radiosonde device has a finer ability to
capture the thermal inversion layer and rapid changes of temperature. Even so, Figure 6
demonstrates an acceptable accuracy of the MWR measurements during the precipitation
events, which are similar to the qualitative results in early reports [19,37,38].
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Figure 6. Emagram of MWR and radiosonde data in conditions of (a) rain at 20:00 on 1 July 2021
and (b) snow at 8:00 on 29 December 2020. The thick red lines correspond to the MWR (right)
temperature and (left) dew point temperature, and the thick blue lines correspond to the radiosonde
(right) temperature and (left) dew point temperature.
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In this case, based on the MWR precipitation sensor record, we separate precipitation
and non-precipitation periods, and calculate the seasonally averaged values of temperature,
water vapor density, and relative humidity in the precipitation and non-precipitation
scenarios, which is depicted in Figure 7.
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Figure 7. Profiles of seasonally averaged (a) temperature, (b) water vapor density, and (c) relative
humidity in precipitation and non-precipitation conditions. The green, red, orange, and blue lines
represent the results from spring to winter, and the solid and dashed curves denote the results under
the conditions of precipitation and non-precipitation, respectively.

Whether it rains or not, the mean temperature is the highest in summer and the lowest
in winter. In summer and autumn, the temperatures of 302.9 and 294.6 K near the surface
under the condition of non-precipitation are obviously higher than those of 298.7 and
287.8 K under the condition of precipitation, respectively. The strong temperature drops
during precipitation events is related to the convection and frontal activity in summer,
and especially the cold air from the north in autumn. In winter and spring, the surface
temperatures of 280.1 K and 290.8 K during non-precipitation events are close to those
of 280.2 K and 289.8 K during precipitation events, respectively. Above about 2 km, the
temperature in winter is about 2–5 K lower during non-precipitation events compared with
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that during precipitation events, and in the other three seasons, the temperature differences
are small.

For the water vapor density, its vertical variation in two scenarios shows the different
seasonal features. On the ground, the mean vapor contents of 14.23, 23.34, and 7.67 gm−3

in spring, summer, and winter are larger under precipitation conditions than those of
13.36, 22.98, and 4.84 gm−3 under non-precipitation conditions, respectively. However, in
autumn, the water vapor density of 12.44 gm−3 is even lower in precipitation conditions
than that of 13.04 gm−3 in non-precipitation conditions, which is closely associated with
the intense temperature drop from 294.6 K in non-precipitation conditions to 287.8 K in
precipitation conditions. Besides the larger water vapor content in winter, it is interesting
that above 1.0 km, 1.7 km, and 2.0 km, the water vapor content from spring to autumn
is higher in precipitation conditions compared with that in non-precipitation conditions,
respectively. In summer (spring), the water vapor density below 1.7 (1.0) km in precipitation
conditions is roughly consistent with that in non-precipitation conditions, whereas in
autumn, the water vapor content below 2.0 km in precipitation conditions is less than in
non-precipitation conditions.

Figure 7c illustrates that under the condition of precipitation, the relative humidity has
the large values of 90–100% from the surface to about 5 km, in particular, to about 6.5 km in
summer, indicating frequent mid- and high-cloud precipitation events due to the abundant
water vapor transport by monsoon and the strong air lifting in the hot summer. Above
5 km (6.5 km in summer), the relative humidity exhibits a rapid decrease as the height
rises. In non-precipitation conditions, the relative humidity below 5 km is far smaller than
that in precipitation conditions; nevertheless, the peak of relative humidity can exceed 85%
at about 0–2 km in summer and spring, and 80% in autumn and winter, but in slightly
higher levels.

The MWR measurement clearly shows the changes in the temperature and water
vapor from non-precipitation to precipitation events, especially the high relative humidity
during precipitation events and the obvious temperature drop during precipitation events
in autumn and summer.

4.2. Diurnal Variations

The MWR measurement is suitable for analyzing the diurnal variations of temperature
and water vapor because of its fine temporal resolution. Figure 8 presents their diurnal
evolutions for the condition of non-precipitation in the four seasons. Near the ground, the
temperature has the maximum value in the afternoon, while the peak of water vapor density
occurs in the morning. Both the temperature and water vapor density are the highest in
summer and the lowest in winter and reduce quickly with height. The temperature depends
mainly on solar radiation heating, and the seasonal cycle of temperature is caused by the
periodicity of radiation heating due to the direct solar point moving back and forth. The
0 ◦C (273.15 K) level is located in the range of 2.75–3.25 km, 4.25–4.75 km, 2.5–2.75 km,
and 1.0–1.2 km from spring to winter, respectively. The diurnal variation of the surface
temperature is larger in spring (7.6 K) and autumn (7.9 K) relative to summer (6.9 K) and
winter (6.7 K), while the height of the 0 ◦C level has a more obvious diurnal change in
spring and summer than in autumn and winter.

Figure 9 depicts the diurnal evolutions of temperature and water vapor density aver-
aged from the ground to 1.0 km in the four seasons. The maximum (minimum) temperature
is 291.5 K at 17:33 (287.4 K at 6:33), 301.6 K at 17:03 (298.1 K at 5:51), 294.2 K at 16:42 (290.2 K
at 7:03), and 280.5 K at 17:03 (277.6 K at 8:21) from spring to winter, respectively. As the
temperature increases after sunrise, the height of the boundary layer ascends; thus, the
water vapor density near the ground tends to decrease due to the upward expansion of
air in the boundary layer. On the contrary, with the temperature dropping, the water
vapor density near the ground increases owing to the downward contraction; thus, the
water vapor content generally attains the maximum level in the morning. The correlation
coefficient between the water vapor density and temperature within 1.0 km is calculated
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to be −0.44, −0.92, −0.86, and −0.22 from spring to winter, whereas we calculate their
correlation coefficient within 0.5 km, which grows up to −0.69, −0.95, −0.93, and −0.56.
This demonstrates that near the ground, the diurnal variation of water vapor tends to be
opposite to that of temperature.
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Figure 9. Diurnal variations of temperature and water vapor density averaged within 1 km under
non-precipitation conditions in four seasons. The solid line denotes the temperature scaled on the left
axis, and the dashed line denotes the water vapor density scaled on the right axis. The green, red,
orange, and blue lines represent the results from spring to winter, respectively.

We further present the diurnal evolutions of temperature and water vapor density
averaged between 4.5–5.5 km and 8.5–9.5 km in Figure 10. In the two height ranges, the
temperature change is very small in winter. However, the diurnal variation of temperature
is obvious in the other seasons, similar to that at 0–1.0 km, but its maximum value arises
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2–3 h ahead of that at 0–1.0 km. For example, in summer, the temperature peaks (272.0 and
248.6 K) in the two height ranges occur at 14:12, which is prior to the peak (301.6 K) at
0–1.0 km at 17:03. Over the Tibetan Plateau region with a mean altitude of about 4 km,
the satellite and reanalysis data showed that in summer, the maximum temperature at
550 hPa (~4.2 km) occurs at about 16:00, which is slightly earlier than about 17:00 at 400 hPa
(~6.5 km) [47]. It can be noted that the diurnal changes of temperature between 4.5–5.5 km
and 8.5–9.5 km display a fine synchronization, with the large correlation coefficients of 0.99,
0.97, and 0.97 in spring, summer, and autumn, respectively. These results indicate that the
air temperature is mainly dominated by solar and surface radiation, whereas the air–land
interaction has a strong influence on the temperature near the ground, but little influence
on the free atmosphere above 4.5 km.
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Figure 10. Diurnal variations of temperature and water vapor density averaged (a) from 8.5 to 9.5 km
and (b) 4.5 to 5.5 km under non-precipitation conditions in four seasons. The solid line denotes the
temperature scaled on the left axis, and the dashed line denotes the water vapor density scaled on
the right axis. The green, red, orange, and blue lines represent the results in spring, summer, autumn
and winter, respectively.
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As for water vapor, it is interesting that in summer, the water vapor content at
4.5–5.5 km exhibits a positive correlation with the temperature from about 8:00 to 19:00
but an opposite correlation at the other times, while at 8.5–9.5 km, the water vapor density
maintains an inverse correlation with the temperature, with a correlation coefficient of
−0.85, similar to that at 0–1.0 km. The similar scenario can be seen in spring and autumn
but with a weaker correlation. The relationships of water vapor with the temperature at
different heights are possibly related to the large-scale vertical motion associated with the
solar diurnal cycle, besides the temperature itself, which represents the ability to contain
water vapor.

Hence, due to the high time resolution, the MWR observation can obtain the diurnal
evolutions of temperature and water vapor and reveal the relationship of their diurnal
variations at different levels, which is almost impossible to attain for the RS and satellite
observations owing to their low time sampling.

4.3. Relationship between Mean Temperature and Water Vapor

As shown in Figure 9, the water vapor density increases with the temperature rise from
winter, spring, and autumn to summer. The high air temperature implies not only the strong
evaporation of moisture from the ground, but also the great capacity for the air to hold water
vapor due to the high saturated vapor pressure. According to the Clausius–Clapeyron
Equation (5), the saturated water vapor pressure changes roughly exponentially with
the reciprocal of temperature; thus, it is generally accepted that the Clausius–Clapeyron
equation implies that the water-holding capacity of the atmosphere increases by about 7%
for every 1 ◦C rise in temperature [66]. This indicates that the water vapor content has an
approximately exponential relation with the reciprocal of temperature at a constant relative
humidity. Here, we discuss the relationship between the mean temperature and water
vapor content in non-precipitation conditions over Wuhan.

The 24-h average temperature and water vapor density within 1 km are derived
from their diurnal distributions, which is shown in Figure 11, together with their linearly
fitted line. Meanwhile, in Figure 11, we also plot the water vapor-temperature curves at
several specified relative humidities according to Equation (5). Interestingly, from winter,
spring, and autumn to summer, the mean water vapor densities of 3.72, 10.90, 12.81, and
20.11 gm−3 have an approximately linear relationship with the mean temperatures of 279.1,
289.4, 292.1, and 299.9 K, which is different from the exponential curves from Equation
(5) because of the seasonal changes in the mean relative humidity. In summer, the mean
relative humidity is high due to the wet summer monsoons and intense evaporation from
the ground; in contrast, there is a low relative humidity in winter owing to dry cold air from
the north, causing the approximately linear relationship between the average water vapor
content and temperature. The fitted coefficient is 0.78, which means that in the Wuhan
region, when the temperature is between about 280 K and 300 K, at least on the season
scale, the water vapor content increases by about 0.78 gm−3 for a temperature rise of 1 K.
Therefore, the mean value of water vapor density near the ground increases approximately
linearly with the mean temperature, but its diurnal change is approximately opposite to
that of the temperature.

Figure 12 shows the seasonal mean temperature and water vapor density at 4.5–5.5 km
and their linearly fitted line, as well as the water vapor–temperature curves derived from
Equation (5). Considering the possible low accuracy of the MWR data, the counterpart
at 8.5–9.5 km is not presented. At 4.5–5.5 km, the fitted coefficient is 0.125; thus, in broad
terms, the water vapor content increases with the temperature rise. Nevertheless, the
increment of water vapor for the 1 K temperature growth declines rapidly with height. It is
noteworthy that the relationship between the mean water vapor content and temperature
deviates nor only from the curves derived from Equation (5), but also obviously from the
fitted line. As shown in Figure 10b, although the temperature is higher in spring than in
autumn, the water vapor content is much lower than in autumn, which is different from
those in Figure 9, thus the mean water vapor density and temperature at 4.5–5.5 km do
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not have a linear relationship. This indicates that water vapor at high altitudes is largely
influenced by its horizonal and vertical transport, in addition to the air temperature.
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In this case, the statistical analysis reveals the significant conclusion that the mean
water vapor content near the ground increases approximately linearly with the mean
temperature, which can help us to roughly estimate the water vapor content in terms
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of the air temperature over Wuhan if it is difficult to measure the water vapor content.
Nevertheless, the liner relationship is gradually deviated with height.

5. Summary and Conclusions

In this paper, using MWR observations obtained in Wuhan over the course of 21 months,
we compared the observed temperature and water vapor content with those from the RS
sounding data at 8:00 and 20:00, and discussed the diurnal changes of temperature and
water vapor over Wuhan from the MWR data with a high temporal resolution.

1. Based on the MWR and RS measurements at 8:00 and 20:00 LT, the differences between
the mean temperature (and dew point temperature) derived from the MWR retrievals,
and the mean temperature derived from RS observations in non-precipitation con-
ditions are small below 2 km. Above 2 km, the MWR average temperature is about
1.8–2.8 and 2.5–3.5 K lower than the RS average temperature at 8:00 and 20:00, respec-
tively. The difference of average water vapor densities is within 1.5 gm−3 near the
ground and decreases with height. In general, compared with the relative humidity in
the RS measurement, the relative humidity is higher in the MWR observation below
6.5 km, with the difference within 20%. In the seasonal averages, the temperature and
water vapor content biases are roughly consistent with those in the 21-month averages,
except for a larger water vapor bias near the ground in summer. The MWR and RS
relative humidity data have correlation coefficients of 0.6–0.9 at different heights,
and their bias is generally in the range of −15% to 20% but with different seasonal
profiles. The results are roughly consistent with those in different sites from previous
studies where the temperature is generally 0–3 K lower in the MWR data than in the
RS data but the humidity is about 0–20% higher [31,32,67]. In addition, differences
between the MWR and RS observations vary with height and season, which is similar
to the differences recorded in in previous studies [64,65,68]. The discrepancy between
the two measurements may be related to the sensing methods, retrieval algorithms,
two-site distance, and environment around the MWR site.

2. We averaged the temperature, water vapor, and relative humidity during the precipi-
tation and non-precipitation periods in the four seasons from the MWR observations,
respectively. The mean surface temperature during precipitation periods is close to
that during non-precipitation periods in winter and spring, but 4.2 and 6.8 K lower
than that during non-precipitation periods in summer and autumn, respectively; as
the Chinese proverb goes, “one autumn rain, one cold, and after ten autumn rains,
you need to put on cotton clothes”. The mean vapor content near the ground is
higher in precipitation than in non-precipitation conditions in spring, summer, and
winter, whereas it is slightly lower in precipitation conditions in autumn due to the
strong cooling that occurs in precipitation conditions. These results indicate that
precipitation in Wuhan during autumn is mainly caused by cold air from the north.
Under precipitation conditions, the relative humidity exceeds 90% from the ground to
5 km, especially to 6.5 km in summer, which is obviously larger relative to that under
non-precipitation conditions. In early studies, the temperature and humidity from
the MWR observations also show the different features between precipitation and
non-precipitation events [69,70].

3. On the seasonal scale, the averaged water vapor density in the height range of
0–1.0 km during non-precipitation events shows an approximately linear increase
with the average temperature, with the increment of about 0.78 gm−3 for the tempera-
ture rise of 1 K; nevertheless, as the altitude rises, their relationship gradually deviates
from the linear form due to the effect of water vapor transport. In each season, the
mean temperature at 0–1.0 km clearly displays a diurnal change with the maximum
temperature at about 16:40–17:40 and the minimum temperature at 6:30–8:30. Because
of the change of the boundary layer height due to radiation heating and cooling,
the mean water vapor content has a diurnal variation opposite to the temperature,
with the correlation coefficients of −0.69, −0.95, −0.93, and −0.56 in the range of



Remote Sens. 2023, 15, 5422 17 of 20

0–0.5 km from spring to winter. In the height ranges of 4.5–5.5 km and 8.5–9.5 km, the
temperature shows a synchronized diurnal evolution, with correlation coefficients of
0.99, 0.97, and 0.97 from spring to autumn, and the maximum value prior to that at
0–1.0 km, for example, about 3 h earlier in summer. This indicates the strong influence
of the air–land interaction on the temperature near the ground, but the weak influence
on the free atmosphere above 4.5 km. The time when the maximum temperature
occurs in summer is different from that in the Tibetan Plateau [47], which indicates
that diurnal variations in the temperature differ regionally. In the two height ranges,
the diurnal change of temperature is small in winter. In summer, the diurnal variation
in the water vapor density at 8.5–9.5 km is opposite to that in the temperature, with a
correlation coefficient of −0.85, similar to that at 0–1.0 km, while at 4.5–5.5 km, the
water vapor content exhibits a positive correlation with the temperature from about
8:00 to 19:00, but an inverse correlation at other times. A similar scenario can be seen
in spring and autumn, but with a weaker correlation.

This investigation is helpful for deepening our understanding of the temperature and
humidity variabilities and their relationship over Wuhan. Meanwhile, since temperature
and humidity are the important two input parameters for weather and climate models, the
quantitative clarification of the seasonal and diurnal changes in temperature and water
vapor is conducive for improving the reliability and accuracy of weather and climate model
output results. With the aid of the MWR measurements with high temporal resolution,
we will gain further insight into the dynamics and thermodynamics involved in various
weather processes in the future.
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