
Citation: Chen, J.; Xiong, P.; Wu, H.;

Zhang, X.; Feng, J.; Zhang, T. A

Multi-Parameter Empirical Fusion

Model for Ionospheric TEC in

China’s Region. Remote Sens. 2023, 15,

5445. https://doi.org/10.3390/

rs15235445

Academic Editor: Stephan

Havemann

Received: 19 October 2023

Revised: 19 November 2023

Accepted: 20 November 2023

Published: 21 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Multi-Parameter Empirical Fusion Model for Ionospheric
TEC in China’s Region
Jianghe Chen 1, Pan Xiong 1,* , Haochen Wu 1, Xuemin Zhang 1 , Jiandi Feng 2 and Ting Zhang 3

1 Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China;
chenjianghe0118@163.com (J.C.); bunnywu31@163.com (H.W.); zxm@ief.ac.cn (X.Z.)

2 School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China;
jdfeng@whu.edu.cn

3 Institute of Precision Measurement Science and Technology, Chinese Academy of Sciences,
Wuhan 430071, China; zhangting@apm.ac.cn

* Correspondence: xiongpan@ief.ac.cn

Abstract: This article takes the measured Total Electron Content (TEC) from the GPS points of the
China Regional Crust Observation Network as the starting point to establish a regional ionospheric
empirical model. The model’s performance is enhanced by considering solar flux and geomagnetic
activity data. The refinement function model of the ionospheric TEC diurnal variation component,
seasonal variation component, and geomagnetic component is studied. Using the nonlinear least
squares method to fit undetermined coefficients, MEFM-ITCR (Multi-parameter Empirical Fusion
Model–Ionospheric TEC China Regional Model) is proposed to forecast the regional ionosphere TEC
in China. The results show that the standard deviation of MEFM-ITCR residuals is 3.74TECU, and
MEFM-ITCR fits the modeling dataset well. Analyses of geographic location variation, seasonal
variation, and geomagnetic disturbance were carried out for MEFM-ITCR performance. The results
indicate that in the Chinese region, MEFM-ITCR outperforms IRI2020 and NeQuick2 models in terms
of forecast accuracy, linear correlation, and model precision for TEC measured using GPS points
under different latitudes and longitudes, different seasons, and different geomagnetic disturbances.
The empirical TEC model built for the Chinese region in this paper provides a new ionospheric delay
correction method for GNSS single frequency users and is of great significance for establishing other
new and improving existing ionospheric empirical models.

Keywords: TEC; empirical model; IRI2020; NeQuick2

1. Introduction

The Total Electron Content (TEC) is a key physical parameter for the study of the
ionosphere, and it is tremendously valuable for the correction of wave propagation and the
exploration of ionospheric theory. When the frequency of satellite signals is known, only the
TEC in the signal transmission path needs to be obtained to determine the ionospheric delay.
Therefore, TEC can serve as an effective descriptor of ionospheric delays in satellite signals.
Dual-frequency or multi-frequency users can form a linear combination of ionosphere-free
delay using satellite observations, thereby weakening or eliminating ionospheric delay as
much as possible. However, single-frequency users generally cannot obtain ionospheric
delay from their own measurement data and must rely on the ionospheric TEC model
for corrections. This TEC model is widely used in Global Navigation Satellite Systems
(GNSS) [1]. Different GNSS systems adopt different ionospheric models; for example, GPS
and the BeiDou Satellite Navigation System use the Klobuchar model to correct ionospheric
delay, while the European Satellite Navigation System Galileo chooses the NeQuick model
for ionospheric delay correction [2–4]. However, the accuracy of these models is not
satisfactory, with the Klobuchar model only being able to correct 50% to 60% of ionospheric
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delays [1]. In addition, the ionospheric TEC calculated using dual-frequency or multi-
frequency observations can be modeled, providing a reference for GNSS single-frequency
users for ionospheric delay.

Thus, it is crucial to obtain TEC quickly and accurately. Existing techniques for ob-
taining ionospheric TEC are mainly divided into two categories: actual TEC methods
and ionospheric model methods. The first type includes calculating TEC using GNSS
dual-frequency observations, TOPEX/Poseidon dual-frequency altimeter data, radio occul-
tation data, and ionosonde data. The second method is to obtain TEC using ionospheric
models, separated into physical models and empirical models. The physical models of the
ionosphere are continuous energy and momentum equations based on the physicochemical
properties of the ionosphere. However, due to the complexity of the intrinsic structure of
the ionosphere and spatial disparities, physical models cannot comprehensively describe
the spatiotemporal characteristics of the ionosphere, so related research often focuses on
smaller regions. Ionospheric empirical models, on the other hand, are based on the spa-
tiotemporal characteristics of the ionosphere, using reasonable functions to depict these
characteristics and form empirical formulas from data observed in the long-term records
of the ionosphere. Ionospheric TEC empirical models can fairly reflect the spatiotemporal
characteristics of the ionosphere. In practical applications, ionospheric empirical models
are typically chosen.

The GPS network has been operational on a global scale for over two decades, accu-
mulating a significant volume of satellite observational data during this period [5]. Such
data has yielded copious modeling material for the creation of empirical Total Electron
Content (TEC) models at individual stations. Mao and his team, for instance, leveraged
TEC data from 1980 to 1990 and applied empirical orthogonal function analysis to develop
an empirical TEC model over the Wuhan station [6]. Huang et al. also stood out for using a
Gaussian mixture model with an improved radial basis function neural network algorithm
that successfully forecasted short-term TEC overhead at a single station [7]. Huang’s team
also made use of a hybrid genetic algorithm and a Back Propagation (BP) artificial neural
network algorithm to construct a one-hour forecast model for the single-station ionospheric
TEC [8]. Feng et al., focusing their research on the MSNA area Antarctic Peninsula station,
proposed a single station ionospheric TEC empirical model, namely the “SSM-month”
(single station model-month) model [9]. This model encompasses twelve sub-models,
which separately describe TEC changes in different months without interference. Yet, these
single-station models have some limitations [10]. The SSM-month model, for example, is
complex and has many coefficients, which may cause inconvenience in practical application.
Moreover, these single-station models have significant regional limitations, which restrict
their use to relatively small areas [7,9]. Future studies might make attempts to address
these issues or seek new solutions.

Region-wide models have been developing rapidly. Orus et al. improved the accuracy
of the global ionosphere map of the Polytechnic University of Catalonia by using the
Kriging interpolation algorithm [11]. Jakowski’s team built a global empirical model of the
ionosphere using the nonlinear least squares method and GIM data issued by the European
Orbit Centre from 1998 to 2007. The model is driven mainly by F10.7 and includes twelve
model coefficients [12]. Mukhtarov et al. also used the same method to build a global
empirical model of the ionospheric TEC, drawing on CODE GIM data collected from 1999
to 2011 [13,14]. Ercha’s team constructed a global ionosphere model using the EOF method
based on GIM data provided by the Jet Propulsion Laboratory between 1999 and 2009 [15].
Also utilizing the EOF method, Wan et al. simulated the total global ionospheric electron
content using JPL GIM data from 1998 to 2011 [16]. Feng et al. utilized the CODE GIM
data from 1999 to 2015, employed the Non-linear Least Squares estimation in conjunction
with grid point concepts to fit model parameters, and developed a new Global Ionospheric
TEC model [10]. Performing an analysis of the previous day’s ionospheric simulation,
Wang’s team succeeded in obtaining satellite and receiver spherical harmonics coefficients
and code biases. Subsequently, they used Bayesian estimation as a tool and successfully
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enhanced the accuracy of the global ionospheric map at Wuhan University [17]. Wang’s
team went on to develop a unique adaptive autoregressive model for predicting the global
ionospheric vertical total electron content diagram. This model is mainly based on the
autoregressive model for predicting spherical harmonic coefficients and utilizes the F-test
method to adaptively determine the order of the autoregressive model [18]. In 2020, Wang
et al. further proposed an improved version of the adaptive autoregressive grid point
vertical total electron content prediction algorithm.

Meanwhile, Cherrier utilized deep neural networks and a series of CODE TEC data
from 2014 to 2016 to design a global ionospheric model. This model can predict global TEC
diagrams based on known past TEC graphs without introducing any prior information [19].
Xiong proposed a new type of extended encoder–decoder long short-term memory ex-
tension (ED-LSTME). This model demonstrated good performance in the consistency of
long-term time sequences and the determination of the optimal delay and predictions [20].
However, there are inherent problems with these large models. Some models only cover
specific areas or time periods, and some models use inconsistent accuracy datasets, which
pose challenges for prediction accuracy and stability.

Taking into account the pros and cons of single-site models and regional models, our
study has developed a new method for constructing regional ionospheric models based
on single-site measurement data. For our model data set, we have used high-precision
and unified GPS single-site data from mainland China. The Non-linear Least Squares
method is used, considering anomalies during empirical model subcomponent modeling,
and constructing a regional ionospheric model. The results indicate that the model has
higher precision than empirical models such as IRI2020 and NeQuick2. This provides a
new method for improving the current ionospheric models and offers more accurate data
support for applications in ionospheric space weather and communication navigation fields.

2. GPS-TEC Data

GPS stations provide pseudo ranges and carrier phase readings for two L band fre-
quencies. By calculating the difference between the codes or carrier phase values of the two
frequencies, the pseudo-range TEC (also known as STECa) and phase TEC (i.e., STECr) from
the satellite to the receiver can be obtained [21]. The computation formula for pseudo-range
TEC is as follows:

STECa =
f 2
1 f 2

2
A
(

f 2
2 − f 2

1
) [(P1 − P)2 − c

(
bs,1 − bs,2

)
− c(br,1 − br,2)

]
(1)

In this formula, A represents 40.3 m3/s2; f1 and f2 are GPS signal frequencies; p1 and
p2 are recorded pseudo ranges; c represents the speed of light; bs,1 − bs,2 and br,1 − br,2
designate the satellite’s and receiver’s differential code biases, respectively. The estimation
of the differential code bias requires a reduction in the differences in ionospheric delays
between corresponding measurements [22,23]. The equation for phase TEC is as follows:

STECr =
f 2
1 f2

A
(

f 2
1 − f 2

2
)[( cφ1

f1
− cφ2

f2

)
−
(
λ1Ns

r,1 − λ2Ns
r,2
)]

(2)

where φ1 and φ2 signify carrier phases; λ1, λ2 represent wavelengths. Assuming that cycle
slips do not disrupt the continuity of observation, differential code biases, and integer cycle
ambiguities are constant within a cycle. Based on STECa, by smoothing STECr for a specific
time i over N continuous epochs, a more accurate slant TEC (STECi) can be obtained [24,25].

STECi = STECri +
1
N ∑N

i=1(STECi − STECri) (3)

To make slant TEC fit for a wider range of regional analyses, it must be converted
into vertical TEC (VTEC). This conversion process uses the mapping function at various
ionospheric penetration points, where the penetration point is the intersection of the line
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of sight and the shell of the ionosphere. The charged particles in the ionosphere are
theoretically considered to be primarily distributed in a single thin layer, concentric with
the Earth, and nested within the ionosphere. The height of this layer is subject to variations
in day and night, geographical location, solar zenith, among other factors, generally
between 350 and 480 km. The computation of its height can be quickly implemented.
With measurement angles exceeding 30 degrees, the accuracy of the associated calculations
significantly improves, making the conversion process feasible in most global regions. The
calculation of VTEC can be achieved via the following formula [24,26].

VTEC = STEC×

√
1−

(
RE cos E0

RE + hm

)2
(4)

Here, RE represents the Earth’s average radius, and hm indicates the F2 layer’s peak
height. E0 denotes the satellite station’s elevation angle [27,28]. It is worth noting that in the
crust observation network in the China region, the data at some stations may be unstable.
In our TEC solution, we found occasional TEC values reaching thousands. For data quality
assurance, it is necessary to conduct quality control, in the subsequent experiments, all TEC
records exceeding 200 TECU will be excluded.

3. Proposed Methodology of Regional Model Development

In this study, not only the ground-based GPS-TEC data has been incorporated, but
also auxiliary data including solar activity parameters and geomagnetic indices have
been employed. These two types of data were selected and introduced based on the
understanding and simulation of ionospheric variations. The following section provides a
detailed overview of these data.

3.1. Solar Activity Parameters

Ionospheric variations are predominantly influenced by solar activities [29]. Con-
sequently, when constructing ionospheric models, the impact of solar activities serves
as a significant factor. In this research, we have opted to use the F10.7 as the param-
eter representing solar activity for establishing the ionospheric model. F10.7, which
denotes the radio flux of the sun (10.7 cm wavelength), is a widely used index of so-
lar activity that correlates with the condition of the ionosphere. The data of F10.7 can
be found within NASA’s Omniweb database, accessible at this specific download link:
https://omniweb.gsfc.nasa.gov/form/dx4.html (accessed on 19 August 2023).

3.2. Geomagnetic Indices

Intense solar activities can trigger a series of disturbances in the near-Earth space
environment. These activities initiate the migration of a vast amount of high-energy par-
ticles through the solar wind into near-Earth space, forming geomagnetic storms. This
process involves the coupling of the magnetosphere, the ionosphere, and the thermosphere.
Severe geomagnetic storms often lead to ionospheric storms, which result in intense iono-
spheric oscillations [30,31]. Therefore, when constructing ionospheric models, it is essential
to take into consideration the influence of the geomagnetic environment and to select
a suitable geomagnetic index to portray the strength of geomagnetic activities. The Kp
index represents a global geomagnetic activity index, which is derived from the average K
indices given by 13 geomagnetic stations located within geomagnetic latitudes from 47◦

to 63◦. The Ap index is derived from the Kp index, transforming the semi-logarithmic
relationship of the Kp index to a mainly linear one, and the summation of 8 indices in a day
leads to the daily Ap index, reflecting daily geomagnetic disturbances. These geomagnetic
indices can be obtained from NASA’s Omniweb database, specific download link located
at https://omniweb.gsfc.nasa.gov/form/dx4.html (accessed on 19 August 2023).

MEFM− ITCR(doy, LT, longtitude, latitude, solarindex) = (F1 + F2) ∗ F3 ∗ F4 ∗ F5 ∗ F6 (5)

https://omniweb.gsfc.nasa.gov/form/dx4.html
https://omniweb.gsfc.nasa.gov/form/dx4.html
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Equation (5) shows a comprehensive model that incorporates five input parameters:
the accumulated solar day, local time, longitude, latitude, and solar activity parameters.
On the other hand, the right-hand side of the model comprises six core components,
encompassing: diurnal variability, MSNA (Mean Summer Nighttime Anomaly) correction,
seasonal variations, geomagnetic component, EIA correction, and solar activity. The diurnal
variation F1 is expressed as a function of local time LT, longitude, and latitude, as shown in
Equations (6)–(8).

sin(h) = sin ϕ sin δ + cos ϕ cos δ cos(VLT) (6)

DC =
4

∑
i=1

ai cos(i
2π

24
LT + bi) (7)

F1 = 1 + DC sin(h) (8)

Here, h represents the solar elevation angle, ϕ the latitude, δ the solar declination,
VLT the hour angle, and ci and di are coefficients to be estimated in the model. The solar
radiation function, which describes the geographical differences in solar radiation, is a
function of latitude, solar declination, solar elevation angle, and the hour angle, as shown
in Equation (6). The TEC diurnal curve is formed using a combination of four harmonics
and four coefficients to be estimated, as shown in Eq. (7). The four harmonics can describe
the variations in the TEC at different timescales within a day, while the four estimated
coefficients can correct the ionospheric diurnal details beyond the four harmonics. As initial
studies were restricted to the MSNA region, Equation (9) does not involve any positional
information. This study introduces a function expression, PMSNA, to describe the MSNA
positional information and introduce the region-specific MSNA correction expression
into the global ionospheric Total Electron Content (TEC) empirical model. The piecewise
function, PMSNA, only operates in the MSNA phenomenon occurrence sector: (40◦–60◦N,
120◦–140◦E) and is invalid in other areas. The day–night ratio correction is included
following previous studies. Our proposed model is regional, with the new equation for
MSNA correction being Equation (10).

SMSNA = cos(
2π(doy− doyMSNA)

365.25
)

4

∑
i=1

ci cos(i
2π

24
LT + di) (9)

F2 = PMSNA ∗ SMSNA + SDNR (10)

SDNR = S1 + S2 + S3 + S4 (11)

S1 =INT((200− F10.7P)/120)

·
2

∑
i=1

ei(INT((−1)i+1 · cos(2π
(doy− doyDNR)

365.25
) + 1) · cos(2π · LT

24
+ gi))

(12)

S2 =(INT((200− F10.7P)/80)− INT((200− F10.7P)/120))

·
4

∑
i=3

ei(INT((−1)i+1 · cos(2π
(doy− doyDNR)

365.25
) + 1) · cos(2π · LT

24
+ gi))

(13)

S3 =(INT(F10.7P/121)− INT(F10.7P/160))

·
6

∑
i=5

ei(INT((−1)i+1 · cos(2π
(doy− doyDNR)

365.25
) + 1) · cos(2π · LT

24
+ gi))

(14)

S4 =INT(F10.7P/160)

·
8

∑
i=7

ei(INT((−1)i+1 · cos(2π
(doy− doyDNR)

365.25
) + 1) · cos(2π · LT

24
+ gi))

(15)
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The seasonal change component, F3, is set to be a function of the accumulated solar day
and modeled using a combination of four harmonics and four coefficients to be estimated.
The exact formula is as follows:

F3 = 1 +
4

∑
i=1

hi cos(i
2π

365.25
doy + ki) (16)

In this paper, the modified magnetic inclination latitude (modip latitude) is used as
the geomagnetic parameter. ϕmodip represents the corrected magnetic inclination latitude;
I represents the magnetic inclination, obtained from the 13th International Geomagnetic
Reference Field model IGRF13; ϕ represents the geographic latitude. The geomagnetic
term, F4, is represented in Equations (17) and (18):

F4 = 1 + l cos ϕmodip (17)

tan ϕmodip = I/
√

cos ϕ (18)

In this paper, we follow the approach of Mukhtarov and use linear variations in the
solar activity parameter to describe the solar activity trend and thereby understand the
current state of solar activity [14].

F6 = o + p1F10.7 + p2KF10.7 + p3F10.7
2 + p4F10.7 · KF10.7 + p5KF10.7

2 (19)

In total, there are 47 coefficients in Equations (5)–(19), which were obtained by applying
the method of non-linear least squares fitting. The modeling process is illustrated in Figure 1.
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Figure 2 presents the distribution histogram of model residuals. It can be distinctly
seen from the figure that the residuals of the MEFM-ITCR model exhibit characteristics of a
normal distribution, with the majority of the residuals falling within ±15 TECU range. The
mean value of the residuals of this model is 0 TECU, with a standard deviation of 3.74 TECU.
It suggests that the model fits the data well, indicating good predictive capabilities.
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4. Model Comparison

To fully evaluate the performance of the model, we have selected the 2017 solar activity
parameters, geographic coordinates (longitude and latitude) of various locations, day of the
year, and local time as the input variables for the MEFM-ITCR model. The aim is to predict
the TEC at various locations in China for the year 2017. For a comprehensive validation of
the accuracy of our model, we additionally introduced the IRI2020 and NeQuick2 models
for comparative reference. The ground truth was based on TEC calculated from 30 GPS
locations. Here is the detailed information of GPS survey stations as shown in Table 1.We
compared the three models in different geographic locations, in different seasons, and
under different geomagnetic disturbance conditions. Through this methodology, we hope
to gain a comprehensive understanding of the accuracy and forecasting ability of the
MEFM-ITCR model, as well as its strengths and weaknesses compared with other models.

4.1. Overview of IRI2020 and NeQuick2 Models

The International Reference Ionosphere 2020 (IRI2020) is an internationally recognized
ionosphere model intended to depict the physical and chemical characteristics of the
global ionosphere. This model can provide forecasts of ionospheric parameters (such as
electron density, ionospheric height, TEC, etc.) and indices related to solar and geomagnetic
activities. Based on the actual data from multiple monitoring stations worldwide and
combined with physical models and statistical methods, IRI2020 can accurately model
and predict ionospheric characteristics at different latitudes, longitudes, seasons, and
times. This model plays a key role in scientific research, astronomy, communication, and
navigation systems among others. As an international standardization model based on
global cooperation, IRI2020 continues to iterate and optimize to provide more accurate
ionosphere information and forecast data.
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Table 1. Station information table.

Station Code Province (City) Geographic
Latitude

Geographic
Longitude

High latitude

XJKL Xinjiang 45.61◦N 84.91◦E
XJJJ Xinjiang 42.85◦N 94.34◦E

LNSY Liaoning 41.83◦N 123.58◦E
NMWT Mongolia 41.08◦N 107.06◦E
HECD Hebei 41.02◦N 117.92◦E
DXIN Mongolia 40.98◦N 100.20◦E

Middle latitude

GSJY Gansu 39.81◦N 98.22◦E
QHMY Qinghai 38.48◦N 90.80◦E
TASH Xinjiang 37.77◦N 75.23◦E
SXTY Shanxi 37.71◦N 112.43◦E
HELY Hebei 37.40◦N 114.71◦E
XJHT Xinjiang 37.16◦N 79.05◦E
SDZB Shandong 36.81◦N 117.99◦E
XJYT Xinjiang 36.43◦N 81.97◦E
SNXY Shaanxi 35.17◦N 108.39◦E

QHMD Qinghai 34.92◦N 98.21◦E
SNTB Shaanxi 34.06◦N 107.32◦E
XZBG Tibet 30.84◦N 81.43◦E
CQWZ Chongqing 30.77◦N 108.49◦E
WUHN Hubei 30.53◦N 114.36◦E

Low latitude

LHAS Tibet 29.66◦N 91.10◦E
XZZF Tibet 28.36◦N 86.94◦E
HNLY Hunan 28.16◦N 113.63◦E
SCML Sichuan 27.93◦N 101.28◦E
FJWY Fujian 27.62◦N 117.99◦E
GZGY Guizhou 26.47◦N 106.67◦E
FJPT Fujian 25.50◦N 119.77◦E

XIAM Fujian 24.45◦N 118.08◦E
GUAN Guangdong 23.18◦N 113.34◦E
HISY Hainan 18.24◦N 109.53◦E

NeQuick2 is another ionosphere model used to predict the physical characteristics of
the global ionosphere in various different environments. As one of the recommended iono-
spheric prediction models by the International Telecommunication Union (ITU), NeQuick2
is specifically used to optimize the performance of the Global Navigation Satellite System
(GNSS). This model utilizes a substantial amount of global ionospheric observational data,
combined with relevant physical models, to model and forecast the vertical electron density
distribution of the ionosphere. It can also calculate various ionospheric parameters such
as electron density, TEC, etc. In the application of GNSS, the NeQuick2 model plays a
crucial role, especially in improving signal propagation accuracy and stability. By pro-
viding accurate ionospheric delay correction, NeQuick2 helps to enhance the accuracy of
navigation and positioning. The model is co-developed by the European Space Agency
(ESA) and other partners and is widely used in global navigation, communication, weather
forecasting, and so on. In this study, we obtained data from the NeQuick2 model using
the Fortran source code provided by The Abdus Salam International Centre for Theoretical
Physics (ICTP). The download link is https://t-ict4d.ictp.it/nequick2/ (accessed on 19
August 2023).

4.2. Evaluation Parameters

The evaluation metrics encompass primarily R2 (also known as the coefficient of deter-
mination), RMSE (root mean square error), MAE (mean absolute error), and ρ2 (the square
of Pearson’s correlation coefficient). Each of these parameters is defined and calculated as
follows:

https://t-ict4d.ictp.it/nequick2/


Remote Sens. 2023, 15, 5445 9 of 20

R2, the coefficient of determination, quantifies the extent to which there exists a
correlation between the observed variables and the predictions made by a model. Its values
range from 0 to 1. The computational formula for R2 is given below:

R2 = 1− (SSR/SST) (20)

Here, SSR symbolizes the residual sum of squares, which is generated by squaring and
summing the differences between each observed value and its corresponding predicted
value, and SST stands for a total sum of squares (the sum of squares of deviations between
each observed value and the average of observed values).

Onto RMSE (root mean square error). This is a metric applied to gauge the divergence
between a model’s predictive values and the true values. Below is how it is calculated:

RMSE = sqrt[(1/n) ∗∑ (yi − ŷi)
2] (21)

In the above computation, n signifies the count of samples, yi denotes the observed
value, and ŷi represents the corresponding forecasted value.

Switching to MAE (mean absolute error), this functions as a measure for the average
absolute discrepancy between the predictive values and the legitimate values. Its calculation
proceeds as follows:

MAE = (1/n) ∗∑|yi − ŷi| (22)

Herein, n represents the total of samples, yi indicates the observed value, and ŷi is the
corresponding estimated value.

Transitioning to ρ2, (the square of Pearson’s correlation coefficient), Pearson’s corre-
lation coefficient gauges the strength of a linear association between two variables. The
square of this coefficient, ρ2, embodies the percentage of variance in one variable elucidated
by the variance in another variable. The computation for this occurs as follows:

ρ = ∑[(xi − ux) ∗ (yi − uy)]/[sqrt(∑ (xi − ux)
2 ∗ (yi − uy)

2)] (23)

where, xi, yi are the data, and ux, uy are the means of x and y, respectively.

5. Results
5.1. Comparative Analysis of Overall Performance

Based on the given data and calculated results of R2, MAE, RMSE, and ρ2, the MEFM-
ITCR model exhibits robust explanatory capacity and relatively lower predictive errors.
As indicated in Table 2. Per the R2 determination coefficient: the R2 of the MEFM-ITCR
model is considerably higher at 0.7036 compared to IRI2020 (0.5545) and NeQuick2 (0.4762),
suggesting a superior capacity of the MEFM-ITCR model in explaining ionospheric charac-
teristics. This denotes a stronger correlation between the predictions of the MEFM-ITCR
model and actual values. Examining the MAE (Mean Absolute Error), the MEFM-ITCR
model’s MAE score of 2.2530 TECU is significantly less than IRI2020’s 3.2951 TECU and
NeQuick2’s 3.2887 TECU. This confirms that the average prediction error of the MEFM-
ITCR model is lesser in predicting ionospheric attributes compared to the other two models.

Table 2. Overall model performance evaluation.

Models R2 MAE RMSE ρ2

MEFM-ITCR 0.7036 2.2530 3.4353 0.7525
IRI2020 0.5545 3.2951 4.2121 0.7383

NeQuick2 0.4762 3.2887 4.5670 0.6694
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Regarding the RMSE (Root Mean Square Error), it measures the square root of the av-
erage squared difference between the predicted and actual measurements, and it penalizes
larger errors than MAE. The MEFM-ITCR model’s RMSE value of 3.4353 TECU is consid-
erably lower than that of IRI2020 (4.2121 TECU) and NeQuick2 (4.5670 TECU), further
indicating superior predictive accuracy of the MEFM-ITCR model. With respect to ρ2 Pear-
son’s coefficient of determination, the MEFM-ITCR model’s ρ2 value of 0.7525 is marginally
higher than IRI2020 (0.7383) and much higher than NeQuick2 (0.6694). This signifies a
higher degree of linear correlation between the MEFM-ITCR model’s predictions and actual
values. In summary, the MEFM-ITCR model surpasses the IRI2020 and NeQuick2 models
in terms of explanatory power, prediction error (including mean deviation and fluctuation),
and linear correlation, exhibiting distinct advantages.

5.2. Variation Characteristics of Model Performance Based on Geographic Location

For a comprehensive evaluation of the predictive performance of the models under
different latitudinal conditions, we calculated the R2, RMSE, MAE, and ρ2 scores of MEFM-
ITCR, IRI2020, and NeQuick2 models relative to the actual GPS-TEC data. The results
are presented in Figure 3, where measurement stations are arranged from higher to lower
latitudes. Focusing on high-latitude regions, for example, the XJJJ station, the MEFM-ITCR
model shows significantly higher agreement in predicting GPS-TEC and demonstrates
a strong correlation with actual GPS-TEC data, compared to NeQuick2. Conversely, a
negative R2 value for the IRI2020 model indicates its worst predictive correlation at this
station. The MEFM-ITCR model also outperforms the NeQuick2 model in terms of standard
deviation and mean absolute error, showcasing the highest accuracy. In contrast, the IRI2020
model exhibits the highest standard deviation and mean absolute error indicating the lowest
accuracy. The comparative fitting results of different models are illustrated in Figure 4.
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Consequently, in high-latitude regions, the overall predictive performance of the
MEFM-ITCR model is notably superior to IRI2020 and NeQuick2. In mid- and low-latitude
regions, the MEFM-ITCR model encounters some fluctuations in accuracy along with an
increase in the standard deviation and mean absolute error with declining latitude. This
trend could be attributed to the decrease in the number of GPS stations in China with
decreasing latitude, affecting the prediction accuracy of empirical models such as MEFM-
ITCR based on actual data. Moreover, lower latitude areas are considerably influenced by
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the equatorial ionospheric abnormality, which could also be a contributing factor. Nev-
ertheless, holistically, in mid- and low-latitude areas, the MEFM-ITCR model performs
better in terms of fitting accuracy, root mean square error, mean absolute error, and linear
correlation compared to IRI2020 and NeQuick2. The specific performance evaluation of
each model for each testing station is provided in Tables A1–A3 in Appendix A.

Existing studies have indicated that the performance of the TEC prediction models
varies with the change in seasons, as referenced in the works of Mukesh et al., 2020; Ruwali
et al., 2020; Song et al., 2018; and Tebabal et al., 2018–2019 [32–35]. Therefore, we ran all
considered models for each season to investigate their performance throughout the solar
year. The seasons were defined as spring (March–May), summer (June–August), autumn
(September–November), and winter (December–February). Furthermore, to validate our
proposed MEFM-ITCR model more comprehensively, we compared the TEC calculated
using the MEFM-ITCR model, IRI2020, NeQuick2, and 30 GPS stations. Figure 5 displays
the trend of seasonal variation in model performance. Table 3 lists the corresponding R2,
MAE, RMSE, and correlation coefficient ρ2 values of the TEC forecast and their seasonal
variations for each model. The MEFM-ITCR model exhibited the best performance in
each season, with the following specific figures: spring R2 = 0.7085, summer R2 = 0.6937,
autumn R2 = 0.6904, winter R2 = 0.6338. Evidently, the performance of the IRI2020 model
surpasses that of NeQuick2 in spring, autumn, and winter. Both are influenced by seasonal
changes, but IRI2020 is slightly stronger, with the MEFM-ITCR model consistently leading
the way. Notably, the MEFM-ITCR model demonstrated a significant edge in resisting solar
activity interference, with a smaller prediction curve fluctuation compared to the IRI2020
and NeQuick2 models, especially in winter. The MEFM-ITCR winter R2 value of 0.6338 far
surpasses the 0.2323 of the IRI2020 model and the 0.1991 of the NeQuick2 model.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 20 
 

 

Nevertheless, holistically, in mid- and low-latitude areas, the MEFM-ITCR model per-
forms better in terms of fitting accuracy, root mean square error, mean absolute error, and 
linear correlation compared to IRI2020 and NeQuick2. The specific performance evalua-
tion of each model for each testing station is provided in Tables A1–A3 in Appendix A. 

Existing studies have indicated that the performance of the TEC prediction models 
varies with the change in seasons, as referenced in the works of Mukesh et al., 2020; Ru-
wali et al., 2020; Song et al., 2018; and Tebabal et al., 2018–2019 [32–35]. Therefore, we ran 
all considered models for each season to investigate their performance throughout the 
solar year. The seasons were defined as spring (March–May), summer (June–August), au-
tumn (September–November), and winter (December–February). Furthermore, to vali-
date our proposed MEFM-ITCR model more comprehensively, we compared the TEC cal-
culated using the MEFM-ITCR model, IRI2020, NeQuick2, and 30 GPS stations. Figure 5 
displays the trend of seasonal variation in model performance. Table 3 lists the corre-
sponding R2, MAE, RMSE, and correlation coefficient ρ2 values of the TEC forecast and 
their seasonal variations for each model. The MEFM-ITCR model exhibited the best per-
formance in each season, with the following specific figures: spring R2 = 0.7085, summer 
R2 = 0.6937, autumn R2 = 0.6904, winter R2 = 0.6338. Evidently, the performance of the 
IRI2020 model surpasses that of NeQuick2 in spring, autumn, and winter. Both are influ-
enced by seasonal changes, but IRI2020 is slightly stronger, with the MEFM-ITCR model 
consistently leading the way. Notably, the MEFM-ITCR model demonstrated a significant 
edge in resisting solar activity interference, with a smaller prediction curve fluctuation 
compared to the IRI2020 and NeQuick2 models, especially in winter. The MEFM-ITCR 
winter R2 value of 0.6338 far surpasses the 0.2323 of the IRI2020 model and the 0.1991 of 
the NeQuick2 model. 

 
Figure 5. The seasonal variations in R2 (top left), MAE (top right), RMSE (bottom left), and ρ2 (bot-
tom right) values for the TEC measurements and predictions made using the MEFM-ITCR, IRI2020, 
and NeQuick2 models. MAE denotes the Mean Absolute Error; RMSE stands for Root Mean Square 
Error; TEC represents Total Electron Content. 

In an effort to delve deeper into the effectiveness of the models, we chose specific 
dates in four different seasons (i.e., 19 March, 19 June, 19 September, and 19 December) 
for further validation. We compared the TEC calculated using the MEFM-ITCR model, 
IRI2020, NeQuick2, and three GPS stations (TASH at mid-latitudes, LHAS at low latitudes, 
and the HECD station at high latitudes). As Figure 6 indicates, the MEFM-ITCR model’s 
predictions showed a high correlation with the measured TEC, particularly in spring and 

Figure 5. The seasonal variations in R2 (top left), MAE (top right), RMSE (bottom left), and ρ2

(bottom right) values for the TEC measurements and predictions made using the MEFM-ITCR,
IRI2020, and NeQuick2 models. MAE denotes the Mean Absolute Error; RMSE stands for Root Mean
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Table 3. The performance metrics of each model throughout the different seasons.

Season Models R2 MAE RMSE ρ2

Spring
MEFM-ITCR 0.7085 3.9751 2.5946 0.7961

IRI2020 0.6620 4.2803 3.2306 0.8002
NeQuick2 0.6203 4.5367 3.2034 0.7243

Summer
MEFM-ITCR 0.6937 2.7356 1.9719 0.7474

IRI2020 0.5028 3.4853 2.6955 0.7150
NeQuick2 0.5342 3.3735 2.5148 0.6380

Autumn
MEFM-ITCR 0.6904 3.9412 2.5241 0.7297

IRI2020 0.5432 4.7871 3.7571 0.7280
NeQuick2 0.3398 5.7553 3.9322 0.6568

Winter
MEFM-ITCR 0.6338 2.8959 1.9221 0.6067

IRI2020 0.2323 4.1931 3.4990 0.6004
NeQuick2 0.1991 4.2829 3.5071 0.5371

In an effort to delve deeper into the effectiveness of the models, we chose specific
dates in four different seasons (i.e., 19 March, 19 June, 19 September, and 19 December)
for further validation. We compared the TEC calculated using the MEFM-ITCR model,
IRI2020, NeQuick2, and three GPS stations (TASH at mid-latitudes, LHAS at low latitudes,
and the HECD station at high latitudes). As Figure 6 indicates, the MEFM-ITCR model’s
predictions showed a high correlation with the measured TEC, particularly in spring and
summer, where the prediction curve of the MEFM-ITCR model almost overlapped with the
curve of the actual TEC values. This suggests that advanced empirical models, compared
to simple models considering only basic space environment parameters, can achieve higher
precision in TEC estimation.
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5.3. The Impact of Solar and Geomagnetic Activity on Model Performance

To probe our model’s prediction accuracy under different solar and geomagnetic
activity conditions further, we contrasted the Total Electron Content (TEC) values derived
during quiet (Kp < 3.0 or Ap < 56) and disturbed (Kp > 3.0 or Ap > 56) days. It is well known
that during geomagnetic activity, ionospheric changes often become notably significant.
Figure 7 reveals the precision error comparison of each model. The results show that in
conditions where Kp > 3.0, the root mean square error (RMSE) of the MEFM-ITCR model
increased by 0.2992 TECU, compared to an increase of 0.5466 TECU and 0.3172 TECU in the
RMSE of IRI2020 and NeQuick2, respectively. Under Ap > 56, the RMSE of MEFM-ITCR
compared to full-year data increased by 1.2769 TECU, reaching 4.71219, while increases for
IRI2020 and NeQuick2 were 2.1567 TECU and 0.2731 TECU, reaching 6.3687 TECU and
4.8401 TECU, respectively. Despite the changing condition, the MEFM-ITCR model still
maintained the smallest RMSE and MAN. This clearly demonstrates that the MEFM-ITCR
model presents a high level of performance under disrupted conditions, and this model can
accurately grasp the trends presented during storms and other geomagnetic disturbances,
fully highlighting its efficient and stable performance. The performance of the model is
illustrated in Table 4.
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Table 4. Comparison of the performance of each model under different solar and geomagnetic
activity levels.

Season Models R2 MAE RMSE ρ2

KP < 3
MEFM-ITCR 0.6960 3.3601 2.2116 0.7588

IRI2020 0.5637 4.0253 3.1379 0.7453
NeQuick2 0.4637 4.4628 3.1997 0.6759

KP > 3
MEFM-ITCR 0.7209 3.6645 2.3849 0.7418

IRI2020 0.5293 4.7586 3.7958 0.7302
NeQuick2 0.5042 4.8842 3.5722 0.6514

AP < 56
MEFM-ITCR 0.7036 3.4095 2.2353 0.7541

IRI2020 0.5575 4.1659 3.2621 0.7394
NeQuick2 0.4693 4.5622 3.2819 0.6687

AP > 56
MEFM-ITCR 0.6788 4.7122 3.3004 0.7278

IRI2020 0.4133 6.3687 5.2429 0.7784
NeQuick2 0.6612 4.8401 3.6925 0.7033

ALL
MEFM-ITCR 0.7036 3.4353 2.2530 0.7525

IRI2020 0.5545 4.2121 3.2951 0.7383
NeQuick2 0.4762 4.5670 3.2887 0.6694

5.4. Regional Model Accuracy Comparison

Since June 1998, Global Ionospheric Maps (GIM) have been computed and made
public within the IGS Ionosphere Working Group, encapsulating the global distribution
of VTEC. We selected CODE TEC (global ionospheric map provided by the European
Center for Orbit Determination) as comparative data due to its relatively high accuracy; it
is calculated using a sum function model and based on a large number of dual-frequency
observation data from hundreds of permanent GNSS receivers worldwide. We compared
the relative accuracy of MEFM-ITCR, IRI2020, and NeQuick2 models in China. Figure 8
displays that at 8:00 in the morning, the ionospheric TEC content of the research area
clearly shows a step shape, with the overall content increasing as the latitude decreases.
Within the range of 20◦–40◦N, CODE TEC is predominantly distributed at 15–25 TECU.
Both IRI2020 and NeQuick2 obviously overestimate the TEC content, especially the IRI2020
model, with some areas reaching up to 40 TECU, deviating from CODE TEC by nearly
15 TECU. By noon (12:00), areas with high TEC content are mainly concentrated near the
Indian Peninsula and the Indian Ocean. The precision of the model may be compromised
in the Indian Peninsula and the Indian Ocean due to the distribution limitations of China’s
crust observation network. Nevertheless, it successfully predicts the main distribution
area of TEC, indirectly reflecting the potential of such modeling methods in constructing
global ionospheric empirical models. At 4:00 in the afternoon and 8:00 in the evening,
for the mainland China region, MEFM-ITCR is closer to CODE TEC compared to IRI2020
and NeQuick2. At 4:00 pm, the deviation of MEFM-ITCR from CODE TEC is between 0
and 4 TECU, while the deviation for IRI2020 and NeQuick2 models from CODE TEC is
between 2 and 8 TECU. In conclusion, the deviation of MEFM-ITCR from CODE TEC is
considerably less.
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Figure 8. Comparison of regional model accuracy.

6. Conclusions

In this research, we delve deeply into precise function models of the ionospheric Total
Electron Content (TEC) diurnal component, seasonal variation component, geomagnetic
activity component, MSNA correction component, and solar activity-related component
based on the actual TEC data measured at GPS stations, in conjunction with solar flux
and geomagnetic activity data. Utilizing the non-linear least squares method to fit the
coefficients to be determined, we constructed an empirical model, MEFM-ITCR, aiming to
forecast China’s regional ionospheric TEC.

We conducted multidimensional evaluations of the performance of the MEFM-ITCR
model, which included geographical position variation analysis, seasonal variation analysis,
geomagnetic disturbance analysis, and regional model comparison. In the area of China,
irrespective of different latitudes and longitudes, different seasons, or various states of
geomagnetic disturbance, the MEFM-ITCR model’s predictive power, its linear correlation,
as well as the model’s accuracy, have all surpassed the IRI2020 and NeQuick2 models. When
conducting a regional model comparison, we found that this model possesses considerable
scalability. Even in the Indian Peninsula and Indian Ocean regions, areas not covered by
the modeling dataset, it can accurately predict the increment of TEC, which implies that
this model carries the potential for application in other areas. However, constrained by
the fact that the modeling dataset only includes crust observation network GPS stations
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within China, the predictive capacity of the model for ionospheric abnormal phenomena,
such as Equatorial Ionization Anomaly (EIA), remains to be enhanced. In response to this,
we should further reinforce research in both MSNA and EIA areas to drive the continuous
improvement and development of this model.
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Appendix A

Table A1. Accuracy evaluation of the MEFM-ITCR model at test stations.

Station Code R2 RMSE MAN ρ2

High latitude XJKL 0.3786 2.5562 2.0714 0.4205
XJJJ 0.6153 2.0582 1.6261 0.6421

LNSY 0.5475 2.0477 1.5919 0.6343
NMWT 0.5801 2.0016 1.5402 0.6565
HECD 0.5368 2.0406 1.5775 0.6473
DXIN 0.6462 1.9849 1.5393 0.6909

Middle latitude GSJY 0.6836 1.9774 1.5182 0.7330
QHMY 0.7327 1.9988 1.5462 0.7687
TASH 0.7528 2.0211 1.5603 0.7671
SXTY 0.5471 2.2635 1.7072 0.7146
HELY 0.5106 2.3502 1.7946 0.7060
XJHT 0.7579 2.0395 1.5826 0.7787
SDZB 0.5198 2.4067 1.8233 0.7213
XJYT 0.7500 2.1317 1.6440 0.7864
SNXY 0.5721 2.4737 1.8583 0.7564

QHMD 0.7011 2.3420 1.7724 0.7847
SNTB 0.6027 2.5787 1.9305 0.7605
XZBG 0.7567 2.7741 2.0699 0.8082
CQWZ 0.6416 3.0277 2.2581 0.7887
WUHN 0.5917 3.1105 2.3488 0.7609

Low latitude LHAS 0.7500 3.2131 2.3184 0.7994
XZZF 0.7517 3.6092 2.5051 0.8034
HNLY 0.6818 3.6064 2.6198 0.7799
SCML 0.7343 3.8950 2.6329 0.8025
FJWY 0.6715 3.6853 2.6713 0.7754
GZGY 0.7231 4.5513 2.9215 0.8073
FJPT 0.7262 4.3654 2.9962 0.7930

XIAM 0.6337 6.1443 3.9636 0.7001
GUAN 0.6568 6.9318 4.4115 0.7928
HISY 0.6908 7.3725 5.2306 0.8192

http://www.shao.ac.cn/shao_gnss_ac
https://www.gfz-potsdam.de/en/kp-index/
https://omniweb.gsfc.nasa.gov/form/dx1.html
https://omniweb.gsfc.nasa.gov/form/dx1.html
http://irimodel.org
https://t-ict4d.ictp.it/nequick2/nequick-2-web-model
https://t-ict4d.ictp.it/nequick2/nequick-2-web-model
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Table A2. Accuracy evaluation of the IRI 2020 model at test stations.

Station Code R2 RMSE MAN ρ2

High latitude XJKL −0.3399 3.7535 3.2836 0.6983
XJJJ −0.3829 3.9024 3.3955 0.6779

LNSY −0.3065 3.4794 2.9474 0.6357
NMWT −0.3932 3.6460 3.0965 0.6421
HECD −0.3583 3.4946 2.9772 0.6418
DXIN −0.2662 3.7552 3.1851 0.6613

Middle latitude GSJY −0.1713 3.8050 3.2428 0.6857
QHMY 0.1321 3.6020 3.0324 0.7207
TASH 0.1783 3.6845 3.1056 0.7318
SXTY −0.1454 3.5994 3.0380 0.6789
HELY −0.0505 3.4435 2.9106 0.6788
XJHT 0.2183 3.6649 3.0843 0.7367
SDZB 0.0725 3.3446 2.8038 0.7045
XJYT 0.3282 3.4946 2.8992 0.7473
SNXY 0.0854 3.6165 3.0384 0.7173

QHMD 0.2981 3.5887 2.9935 0.7543
SNTB 0.2578 3.5245 2.9437 0.7430
XZBG 0.5976 3.5678 2.8653 0.7740
CQWZ 0.4716 3.6763 2.9521 0.7546
WUHN 0.4539 3.5974 2.9236 0.7568

Low latitude LHAS 0.6125 4.0002 3.1980 0.7792
XZZF 0.6363 4.3681 3.3018 0.7760
HNLY 0.6036 4.0251 3.0357 0.7682
SCML 0.6255 4.6243 3.4528 0.7797
FJWY 0.6376 3.8712 2.9285 0.7695
GZGY 0.6390 5.1970 3.8928 0.7719
FJPT 0.6251 5.1086 3.7407 0.7708

XIAM 0.5840 6.5479 4.8229 0.6830
GUAN 0.6599 6.9010 5.0258 0.7406
HISY 0.7741 6.3025 4.7520 0.7821

Table A3. Accuracy evaluation of the NeQuick2 model at test stations.

Station Code R2 RMSE MAN ρ2

High latitude XJKL 0.0262 3.2000 2.5707 0.6392
XJJJ 0.0123 3.2980 2.6538 0.6120

LNSY −0.0665 3.1436 2.4351 0.6141
NMWT −0.1988 3.3821 2.6480 0.5750
HECD −0.1547 3.2221 2.5195 0.5942
DXIN −0.0843 3.4750 2.7537 0.5789

Middle latitude GSJY 0.0602 3.4083 2.6816 0.6278
QHMY 0.2013 3.4555 2.7310 0.6295
TASH 0.2872 3.4316 2.7474 0.6398
SXTY −0.0227 3.4013 2.6430 0.6166
HELY 0.0266 3.3147 2.5514 0.6485
XJHT 0.3924 3.2310 2.5353 0.6955
SDZB 0.0632 3.3613 2.5740 0.6685
XJYT 0.3849 3.3439 2.6241 0.6806
SNXY 0.1478 3.4909 2.7106 0.6484

QHMD 0.2650 3.6722 2.8303 0.6952
SNTB 0.1154 3.8479 2.9551 0.6900
XZBG 0.4680 4.1021 3.1809 0.6987
CQWZ 0.3212 4.1668 3.1416 0.7048
WUHN 0.3411 3.9515 2.9573 0.6996
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Table A3. Cont.

Station Code R2 RMSE MAN ρ2

Low latitude LHAS 0.3124 5.3288 3.9513 0.7106
XZZF 0.5100 5.0704 3.8490 0.6944
HNLY 0.3830 5.0215 3.6278 0.7060
SCML 0.4548 5.5797 4.1250 0.7014
FJWY 0.3787 5.0684 3.6438 0.6921
GZGY 0.4240 6.5641 4.7613 0.7130
FJPT 0.5222 5.7667 4.0987 0.7083

XIAM 0.4214 7.7229 5.4613 0.6304
GUAN 0.5927 7.5516 5.4635 0.6694
HISY 0.7123 7.1124 5.2663 0.7515
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