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Abstract: The Qinghai–Tibet Plateau (QTP) is among one of the most sensitive regions to global
environmental change worldwide. Although climate change and engineering construction on the
QTP have jointly modified the regional vegetation activity, little is known about how this affects the
vegetation variation. Using Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced
Vegetation Index (EVI) data from 2000–2021, this study investigated the spatiotemporal variation of
vegetation activity and the compound effects of climate change and reconstruction along the Tibetan
section of the G318 national highway (TG318) through a novel contribution quantification model
and partial correlation analysis, as well as through a structural equation model (SEM). The results
showed that the mean growing-season EVI increased significantly at a rate of about 0.0020/year in
the western side of the TG318 after reconstruction but fluctuated in the east. Reconstruction generally
had a significant effect on the mean growing-season EVI, with contributions of 7.67%, 19.12%, 18.24%,
and −4.15% in different sections of the TG318, whereas climate change contributed from −10.14% to
8.84% of the total variation. The mean growing-season EVI negatively correlated with snow cover
and minimum temperature in humid and sub-humid regions, whereas it was positively related with
vapor pressure in semi-arid regions. Moreover, there existed an obvious lag effect of climate change
on the mean growing-season EVI, with lag time generally decreasing from west to east and apparent
heterogeneity among different months and regions. These findings will help better understand the
environmental impacts along the engineering corridors and provide a scientific basis for ecological
conservation in the QTP regions.

Keywords: Qinghai–Tibet Plateau; effects of climatic and anthropogenic forces; vegetation activity;
G318 highway

1. Introduction

The Qinghai–Tibet Plateau (QTP), also known as the Third Pole, is the largest geo-
graphical entity with the highest elevation [1,2]. Due to its unique geographic location
and hydrothermal conditions, the QTP promotes biodiversity by playing a crucial role
in maintaining ecological security in China and Asia [3–5]. The QTP is among the most
fragile environmental regions in China and is particularly sensitive to climate change
and anthropogenic forces [6,7]. Warmer and wetter weather has been observed over the
QTP during the past few decades, with warming rates of 0.16–0.67 ◦C/decade from the
1950s to the 2000s [8], 0.46 ◦C/decade from 1984 to 2009 [9], and 0.3–0.6 ◦C/decade from
2000 to 2015 [10–12], which are higher than those in the Northern Hemisphere and global
values [9,10]. Precipitation has increased slightly, with strong spatial heterogeneity between
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the southern and northern regions [12,13], and these upward trends are predicted to con-
tinue until the end of the 21st century [14,15]. Anthropogenic activities on the QTP have
intensified during the past several decades with rapid economic development. The number
of towns and the urban land area increased approximately 3-fold during 1990–2020 [3,4].
Highway mileage rose from 65,200 to 120,700 km from 2012 to 2021 [16], and overgrazing
has intensified since the late 1990s [17]. This intensification of anthropogenic activities
and climate change has challenged the local vegetation dynamics by altering ecosystem
processes and services. Therefore, it is of great scientific and practical merit to understand
the anthropogenic and climate effects on QTP vegetation.

Assessing the dynamics of vegetation and its response to environmental factors is
essential to understanding ecosystem changes. In past decades, great efforts have been
made to quantify the relative impacts of human activities and climate change on vegetation
changes, such as in China [18], India [19], and around the whole world [20]. Recently,
an increasing number of studies have concentrated on the relative contributions in the
QTP of grazing management [7] and the effects of ecological projects [21,22]. However,
our understanding of the effects of road construction disturbance on vegetation is limited,
which has been suggested to be a main factor driving increased human activities in Ti-
bet [23]. Several methods have been used to separate the contributions of human activities
and climate change to vegetation dynamics in the QTP, such as residual and regression
analysis approaches [24,25]. Notwithstanding, a common drawback of residual analysis
is that the contribution of human activity is considered residual in areas without human
activity [26], whereas regression analysis does not consider the collinearity of independent
variables and often cannot identify the relationships between vegetation dynamics and
anthropogenic factors due to a lack of detailed spatial data, particularly with respect to
road engineering [24]. A recent study conducted an innovative spatiotemporal invari-
ant analysis along the Qinghai–Tibet Railway, which relied on residuals of the 12-month
Global Inventory Monitoring and Modeling System normalized difference vegetation index
(GIMMS NDVI) [26]. The vegetation growth period in the QTP is very short, and the
effects of multiple environmental factors, such as snow cover on the NDVI during the
non-growing season, leads to uncertainties in effects analyses [6,27]. It is still unclear how
the combination of climate change and road construction affects the vegetation activities
on the QTP. Moreover, the interactions among multiple variables cannot be predicted using
regression analysis, and the indirect effects of multiple variables on vegetation dynamics
should not be ignored in alpine ecosystems [28,29]. However, this underlying mechanism
also remains poorly understood.

The G318 highway has a total length of 5476 km. It begins in the Huangpu district
of Shanghai, China, and ends in Shigatse City, Tibet. This highway is of great significance
for economic and cultural exchange between the east and west of China and is the main
transportation route connecting Tibet and the provinces in southwest China. In this study,
we used the Tibetan section of the G318 national highway (TG318) as a study area and
developed a novel method to evaluate the dual effects of climate change and reconstruction
on vegetation activity in the QTP using the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) Enhanced Vegetation Index (EVI) and ground-observed climate data. This
study aims to quantify the spatial and temporal variation in vegetation activity along the
reconstructed regions, distinguish the contributions of climatic forces and reconstruction
to vegetation change, and explore the interactive mechanisms and lag impacts of climate
factors on vegetation.

2. Materials and Methods
2.1. Study Area

Traffic has improved significantly with democratic reform in Tibet. The total length of
highways open to traffic in Tibet is 89,300 km, and passenger and freight transportation
has increased to 10.47 million person–time and 23.63 million tons over the past 60 years,
representing 56% and 96% of the comprehensive transportation system, respectively, and
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laying the foundation for regional socioeconomic development. The TG318 is the main
transportation route of Tibet and plays a significant role in Tibet’s economic and social
development [30]. The highway was built in December, 1954, and extensive paving and
reconstruction were mainly carried out section by section through the 1980s–2000s to
develop the existing asphalt pavement [31] The topography of the highway is high in the
west and low in the east due to uplift in the QTP (Figure 1). Large-scale construction,
particularly black asphalt pavement, has inevitably boosted heat absorption and altered
heat and moisture transfer between paving layers and the frozen soil structure, further
inducing ecological and environmental problems [32,33].
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Figure 1. Location and schematic diagram of the core and background areas of the study regions
along the TG318 in Tibet.

Vegetation is frequently used as an ecological indicator. Long-term vegetation dynamic
characteristics and the contributions of climate change and construction activity play
significant roles in the ecological evolution and restoration of major projects in ecologically
fragile areas. In this study, we selected our study area and designated a 600 m strip
buffer zone around the G318 national highway as the core disturbance area (“C”), which
experiences direct anthropogenic impacts, and a 600–1200 m ring buffer outside the G318
national highway as an ecological background area (“B”) (Figure 1), similar to previous
studies [34,35].

2.2. Datasets

Vegetation index data: The EVI is proposed based on a feedback-based approach that
incorporates both background adjustment and atmospheric resistance concepts into the
NDVI, which is sensitive to soil and atmospheric effects and can be used to solve the easy
saturation problem in NDVI to some extent. The EVI is widely used to infer vegetation
activity and phenology [36,37]. In this study, we used the MOD13Q1 EVI datasets for
2000–2021 (https://modis.gsfc.nasa.gov, accessed on 12 April 2022). These data have a
spatial resolution of 250 m and a temporal resolution of 8 days and have been reported to
be of better quality than GIMMS data for the Tibetan Plateau [38]. The maximum value
compositing method [39] was used to obtain the monthly EVIs from 2000 to 2021. Then,

https://modis.gsfc.nasa.gov
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the monthly EVI time-series data of MOD13Q1 was obtained based on the maximum
image value in the same month. To avoid environmental interference in the EVI during the
non-growing season, the growing-season EVI (April–October) was chosen as the focus of
this study.

Climate data: To analyze the relationships between climate factors and vegetation
activity, monthly snow cover (GSS, cm), precipitation (PRE, mm), relative humidity (RHU,
%), sunshine duration (SSD, h), mean temperature (T-mean, ◦C), maximum temperature (T-
max, ◦C), minimum temperature (T-min, ◦C), and vapor pressure (VAP, hPa) were obtained
from meteorological stations of the Resource and Environmental Science and Data Center
(https://www.resdc.cn, accessed on 2 March 2023 ) for 2000–2019. For the few missing
recorded values in the climatic dataset, we further interpolated them by using the average
value from the same month of the two adjacent years. Considering the regional limitations
of climate, when there were two or more stations within a given highway section, average
values were calculated for five meteorological stations close to the road in the selected area
and used as the monthly climate data.

Other data: We used the Global 30 land-cover datasets (Globelland30) in 2010 as a
reference (http://www.globallandcover.com, accessed on 4 June 2023) and divided the
land-use types into 9 categories within the 50 km buffer zone (Figure 1). A digital elevation
model with the spatial resolution of 1 km was provided by the Resource and Environmental
Science and Data Center (https://www.resdc.cn, accessed on 15 February 2023). Road
reconstruction and expansion records were obtained from the Transport Planning Research
Institute Ministry of Transport (https://www.tpri.org.cn, accessed on 6 August 2022). Road
reconstruction and expansion are usually completed in a relatively short time to comply
with local government regulations, and the completion time varied among regions. We
divided the highway into four sections according to differences in their reconstruction
periods and land use characteristics (Table 1). A list of definitions and abbreviations used
in this study is presented in Appendix A (Table A1).

Table 1. Classification of the TG318 based on reconstruction time.

Road Section Length (km) Pre-Reconstruction
Period (a)

Post-Reconstruction
Period (a)

West of Shigatse (WS) 510 2000–2005 2006–2021
Shigatse to Lhasa (SL) 296 2000–2005 2006–2021

Lhasa to Nyingchi (LN) 430 2000–2003 2004–2021
East of Nyingchi (NE) 790 2000–2008 2009–2021

2.3. Methods
2.3.1. Trend Analyses

To comprehensively evaluate and compare regional vegetation trends, linear least-
squares regression analysis was performed for the growing season and monthly scales
before (pre) and after (post) reconstruction. The significance level was p < 0.05. Linear
least-squares regression was used to investigate the vegetation index trend, as follows:

Slope (S) =
n×∑n

i=1(i× EVIi)− (∑n
i=1 i)× (∑n

i=1 EVIi)

n×∑n
i=1 i2 − (∑n

i=1 i)2 (1)

where n is the time series, EVIi is the value of the EVI at time i, and Slope (S) represents the
strength of the change in vegetation activity. We established five categories of significant
increase (SI; S > 0 and p ≤ 0.05), increase (IN; S > 0 and p > 0.05), no change (NO; S = 0),
decrease (DE; S < 0 and p > 0.05), and significant decrease (SD; S < 0 and p ≤ 0.05).

2.3.2. Quantitative Modeling of the Impacts of Climatic and Reconstruction Forces

We used a novel method to quantify the relative contributions of climatic and recon-
struction forces to the EVI (Figures 2 and 3).

https://www.resdc.cn
http://www.globallandcover.com
https://www.resdc.cn
https://www.tpri.org.cn


Remote Sens. 2023, 15, 5473 5 of 23

1 
 

 
 
 

 

Figure 2. Framework for quantifying the relative contribution of climate and reconstruction effects.

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 22 
 

 

 

Figure 2. Framework for quantifying the relative contribution of climate and reconstruction effects. 

 

Figure 3. Diagram of the respective climate and reconstruction effects in the section of the TG318, 

taking the WS section as an example. 

Due to the periodicity of vegetative growth, we assumed that vegetation activity of 

the background area ( 𝐵𝐸𝑉𝐼 ) was affected only by the multi-year vegetation biomass 

(𝐸𝑉𝐼𝑚𝑎𝑠𝑠) and the climate impact (𝐸𝑉𝐼𝑐𝑙𝑖𝑚𝑎𝑡𝑒), whereas that of the core area (𝐶𝐸𝑉𝐼 ) was af-

fected by these two factors and the reconstruction impact (𝐸𝑉𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛).  

𝐵𝐸𝑉𝐼 = 𝐸𝑉𝐼𝑚𝑎𝑠𝑠 + 𝐸𝑉𝐼𝑐𝑙𝑖𝑚𝑎𝑡𝑒  (2) 

  𝐶𝐸𝑉𝐼 = 𝐸𝑉𝐼𝑚𝑎𝑠𝑠 + 𝐸𝑉𝐼𝑐𝑙𝑖𝑚𝑎𝑡𝑒 + 𝐸𝑉𝐼𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛   (3) 

Figure 3. Diagram of the respective climate and reconstruction effects in the section of the TG318,
taking the WS section as an example.

Due to the periodicity of vegetative growth, we assumed that vegetation activity of the
background area (BEVI) was affected only by the multi-year vegetation biomass (EVImass)
and the climate impact (EVIclimate), whereas that of the core area (CEVI ) was affected by
these two factors and the reconstruction impact (EVIreconstruction).

BEVI = EVImass + EVIclimate (2)

CEVI = EVImass + EVIclimate + EVIreconstruction (3)
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To eliminate the effects of the multi-year vegetation biomass as much as possible, we
subtracted the EVI of the previous year (EVI(i−1)) from the EVI of the current year (EVI(i))
to obtain the EVI variation of the background (δB(i)) and core (δC(i)) areas in that year.

δB(i) = BEVI(i) − BEVI(i−1) (4)

δC(i) = CEVI(i) − CEVI(i−1) (5)

Supposing adjacent areas have similar climate conditions, the difference (di f f(i))
between the (δC(i)) and (δB(i)) was used to eliminate the effects of climate change.

di f f(i) = δC(i) − δB(i) (6)

where di f f(i) is the impact of reconstruction and spatial heterogeneity. Considering that
there is no reconstruction impact before reconstruction, di f f(i) was attributed to natural
effects. We defined di f f(i) before reconstruction as spatial heterogeneity (di f f ′

(i′)) and
calculated the impact of construction after reconstruction as follows:

ε(i) = di f f(i) − di f f ′
(i′) (7)

where (di f f ′
(i′)) is the mean value of di f f(i) before reconstruction and ε(i) is the reconstruc-

tion impact (EVIreconstruction).
The effects of climate were calculated by removing the reconstruction impact as follows:

w(i) = δC(i) − ε(i) (8)

Thus, the respective contributions of climate and reconstruction to vegetation dynam-
ics were distinguished.

Distinguishing Dynamics: When the reconstruction and climate impact components
were either positive or negative, the contribution ratios of climate (W(i)) and the reconstruc-
tion impact (E(i)) were calculated directly. The effect of climate was calculated by removing
the reconstruction impact as follows:

E(i) =
ε(i)

δC(i)
× 100% (9)

E(i) =
ε(i)

δC(i)
× 100% (10)

When the signs of the reconstruction and climate components were inconsistent, the
difference between the two values (d(i)) was calculated, followed by the contribution ratio,
and the effects of climate were calculated by removing the reconstruction impact as follows:

d(i) =
∣∣∣ε(i) − w(i)

∣∣∣ (11)

E(i) =
ε(i)

d(i)
× 100% (12)

W(i) =
w(i)

d(i)
× 100% (13)

2.3.3. Relationships between Climatic Factors and Vegetation Activity

We used the structural equation model (SEM) to assess the direct and indirect effects
of climatic factors on vegetation. The SEM is a multivariate statistical approach that
synthesizes paths, factors, and maximum-likelihood analyses and provides inferences to
underlying deterministic processes [28]. We performed a model with all possible paths with
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prior knowledge and then adjusted the paths according to the running result parameters
to make them achieve the best-fit status. The best-fit SEM was selected by the root mean-
square error of approximation (RMSEA) index (0 ≤ RMSEA ≤ 0.08), goodness-of-fit (GIF)
index (GIF≥ 0.80), and other indices [40,41]. SEM analysis was performed using the AMOS
24 software (Amos Development Corporation, Chicago, IL, USA) [42].

To further analyze the interactive mechanism and lag effects of climate variables,
we calculated partial correlation coefficients (R) between time series of the EVI and the
climate variables. Partial correlation analysis is a geostatistical method based on correlation
analysis [43] that effectively eliminates other influencing factors and is more accurate and
reliable [44]. Then, to investigate the time-lag effects of climatic factors on vegetation
activity, the lag time was determined for each climatic variable as the months preceding
the vegetation activity period in which the mean climatic variable had the largest partial
correlation coefficient with the growing-season EVI. We limited the lag-time range to
0–3 months before the vegetative activity period during the growing season and to a
monthly scale. A p-value of 0.05 was considered to indicate statistical significance.

3. Results
3.1. Spatiotemporal Changes in Vegetation Activity
3.1.1. Trends and Interannual Variation in the Growing-Season EVI

Figure 4 illustrates the variation in the mean growing-season EVI before and after
reconstruction. The mean growing-season EVI in the core area of the LN and NE sections
was slightly shorter than that in the background area, and both showed less variation after
reconstruction, whereas these were larger in the core area of the western sections (WS
and SL), with significant trends of 0.0022 year−1 and 0.0020 year−1, respectively, (p < 0.05)
after reconstruction. These results suggest that vegetation activity increased after highway
G318 reconstruction in the western sections of the TG318, whereas vegetation activity was
inhibited in the central and eastern sections after reconstruction.
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before and after reconstruction. (a) WS; (b) SL; (c) LN; (d) NE.

We further investigated variations in the EVI on a monthly scale to assess the veg-
etation changes during the growing season. Although a single-peaked distribution was
prevalent, with maximum EVI values in July across the TG318, variations in the monthly
trend of the EVI showed significant spatial heterogeneity in different sections (Figure 5).
The EVI increased significantly after reconstruction in the WS and SL sections during the
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almost-growing-season months (except June and July), particularly during August–October.
However, the EVI along the two eastern sections showed a significant increase only in
October, with rates of 0.010 decade−1 and 0.014 decade−1 for the core and background areas
in the LN section and 0.030 decade−1 and 0.027 decade−1 in the NE section, respectively.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 22 
 

 

almost-growing-season months (except June and July), particularly during August–October. 

However, the EVI along the two eastern sections showed a significant increase only in Octo-

ber, with rates of 0.010 decade−1 and 0.014 decade−1 for the core and background areas in the 

LN section and 0.030 decade−1 and 0.027 decade−1 in the NE section, respectively. 

 

Figure 5. Variation in the monthly EVI in different sections of the TG318 before and after reconstruc-

tion. (a–d) For WS, SL, LN, NE before reconstruction. (e–h) For WS, SL, LN, NE after reconstruction. 

* indicates significance at the 0.05 level. 

3.1.2. Spatial Variation of the EVI 

Spatial heterogeneity in the EVI was noticeable at the growing-season scale (Figure 

6). The mean growing-season EVI increased in the core area across the sections WS and 

SL after reconstruction, representing 78.65% (20.72% significant) and 76.45% (26.12% sig-

nificant) of all pixels, respectively, whereas the pre-reconstruction stage was mainly dom-

inated by decreases. In contrast, areas toward the eastern sections of the TG318 core area 

exhibited a notable spatial difference, with increases accounting for only 51.09% (7.11% 

significant) after reconstruction in the LN section and 54.23% (3.79% significant) in the NE 

section, which was consistent with the pre-reconstruction period. Similar patterns were 

detected for the background area of these sections (Figure 7). 

 

Figure 6. Spatial distribution of the mean growing-season EVI trend in the four sections of the TG318 

before and after reconstruction. (a) Core area. (b) Background area. 

Figure 5. Variation in the monthly EVI in different sections of the TG318 before and after reconstruc-
tion. (a–d) For WS, SL, LN, NE before reconstruction. (e–h) For WS, SL, LN, NE after reconstruction.
* indicates significance at the 0.05 level.

3.1.2. Spatial Variation of the EVI

Spatial heterogeneity in the EVI was noticeable at the growing-season scale (Figure 6).
The mean growing-season EVI increased in the core area across the sections WS and SL after
reconstruction, representing 78.65% (20.72% significant) and 76.45% (26.12% significant)
of all pixels, respectively, whereas the pre-reconstruction stage was mainly dominated by
decreases. In contrast, areas toward the eastern sections of the TG318 core area exhibited
a notable spatial difference, with increases accounting for only 51.09% (7.11% significant)
after reconstruction in the LN section and 54.23% (3.79% significant) in the NE section,
which was consistent with the pre-reconstruction period. Similar patterns were detected
for the background area of these sections (Figure 7).
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after reconstruction. (a–d) The core area in the WS, SL, LN, and NE section. (e–h) The background
area in the WS, SL, LN, and NE section.

3.2. Impacts of Climate Change and Reconstruction on Vegetation Activity

The fluctuation in the growing season δC(i) and δB(i) was greater after reconstruction
than that before (Figure 8). For example, the growing season δC(i) and δB(i) of the WS
and SL sections varied from −0.04 in 2009 to 0.05 in 2016, with obvious peak values in
2008, 2011, and 2016 and relatively low values in 2009 and 2015. For the NE section, peak
growing season δC(i) and δB(i) values were reached mainly in 2013, 2015, and 2021, while
lowest values were observed in 2014. Additionally, it can be seen that the growing season
δC(i) and δB(i) for three highway sections clearly increased from 2001 to 2021 (except for the
SL section).
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We further assessed the change in δC(i) and δB(i) from April to October before and after
reconstruction to investigate the monthly variation features (Figure 9). Generally, although
the monthly δC(i) and δB(i) differed greatly before and after reconstruction, they appeared to
show the same change tendency for the WS, SL, and LN sections after reconstruction, which
were greater than zero across the whole growing season. The results suggested that climate
change and reconstruction forces can promote the development of vegetation activity
in general. Compared with the pre-reconstruction period, the monthly δC(i) and δB(i)
showed a marked increase from August to October for the WS section, in May, September,
and October for the SL section, and for most months for the other two sections after
reconstruction, with the largest rate of 0.0032 year−1 and 0.0033 year−1 in June for the NE
section, respectively.
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Figure 9. Changes in the monthly δC(i) and δB(i) for different sections of the TG318 before and after
reconstruction. (a–d) For WS, SL, LN, NE before reconstruction. (e–h) For WS, SL, LN, NE after
reconstruction. * indicates significance at the 0.05 level.

The contributions of reconstruction to the EVI were mostly positive at the growing-
season level, with 7.67%, 19.12%, and 18.24% in the WS, SL, and LN sections, respectively,
whereas a negative effect was detected only in the eastern part of the TG318. These results
suggest that reconstruction likely promoted vegetative activity in a widespread area of the
TG318, while an inhibitory effect was detected in the eastern parts. In contrast, a significant
positive effect of climate change on vegetation activity was observed in most sections
(Figure 10).
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season EVI. (The stars indicate the mean values of the contributions).
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We further examined the monthly contributions of reconstruction and climate change
to vegetation activity (Figure 11). Reconstruction had a similar inhibitory effect on the EVI
for the three eastern parts at the beginning of the growing season, but it had a positive
effect on the EVI in the SL and LN sections and a negative effect in the NE section during
the mid- to late-growing season, suggesting that reconstruction did not likely promote
vegetative activity during the germination stage across the central and eastern parts of the
TG318. In contrast, there was an obvious promotion effect of reconstruction on the EVI
in the WS section during most of the growing season, particularly in August (8.67%) and
October (9.95%).
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Climate change had a positive effect on the EVI during most months, excluding June
and July in the WS and SL sections, with maximum contributions of 24.23% and 16.87%
in September, respectively. A positive effect of climate change on the EVI was detected in
the LN and NE sections, excluding October in the LN section and May and June in the NE
section. However, the contributions differed greatly with time; for example, the effects of
climate change increased during summer in the LN section but peaked in April and July in
the NE section.

3.3. Response of Vegetation Activity to Climate Change and Lag Time
3.3.1. The Effects of Climate Factors on the Vegetation Variation

We fitted a piecewise SEM to infer the direct and indirect effects of climate factors
on the vegetation variation in different sections along the TG318 (Figure 12). The SEM
indicated that the main limiting factors were the VAP, PRE, GSS, SSD, and T-min, although
high spatial heterogeneity was detected among these sections. The results identified a
significant positive effect of the growing-season VAP and PRE on the EVI, with path
coefficients of 0.30 and 0.39, respectively, whereas the T-mean during the growing season
was negatively associated with the EVI in the WS section. In contrast, the growing-season
VAP (0.67) had a positive effect on the EVI in the SL section, whereas the growing-season
T-min, PRE, SSD, and GSS were generally negatively associated with the EVI in the SL
and LN sections. However, the effects of the growing-season T-min (−0.69) on the EVI in
the LN section were stronger than those in the SL section (−0.28). Additionally, the mean
growing-season EVI was mainly related to the direct negative effects of GSS in the NE
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section, suggesting that monthly snow cover may be a key factor influencing vegetation
activity in the alpine and canyon regions.
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Figure 12. Structural equation model of the drivers of vegetation activity. (a) WS; (b) SL; (c) LN;
(d) NE. Double-headed gray arrows indicate the covariance between these variables. Single-headed
arrows indicate the hypothesized direction of causation, with positive and negative relationships in
pink and blue, respectively. Arrow thickness is proportional to the strength of the relationships, and
the standard path coefficients are adjacent to each arrow.

3.3.2. The Lagging Effect of Vegetation Activity on Climate Change

We performed the partial correlation analysis with the EVI and climate variables at
the growing-season and monthly scales to determine whether there was a lag effect of the
climate variables on vegetation activity (Figures 13 and 14). As shown in Figure 13, the
mean growing-season EVI was positively correlated with the pre-growing-season GSS and
VAP in the WS section, with coefficients increasing from a 0-month lag to a 3-month lag,
whereas similar negative correlations were detected for the pre-growing-season T-max
and RHU. The correlation between pre-growing-season climate variables and the mean
growing-season EVI is stronger than that between the corresponding climate variables and
the mean growing season, indicating that vegetation activity in the WS section of the TG318
was more closely associated with pre-growing-season climate variables during the past
few decades. Negative correlations between the mean growing-season EVI and the pre-
growing-season PRE, RHU, SSD, T-max, and T-min were primarily found with a 0–3-month
lag for the SL section, whereas the mean growing-season EVI was positively correlated
with the T-mean and VAP, with a 2-month lag generally, suggesting that vegetation has
a 2-month lag response to the hydrothermal conditions. However, strong correlations
between the mean growing-season EVI and corresponding climate variables were observed
for the LN and NE sections. For example, the mean growing-season EVI was positively
correlated with the VAP, T-min, and T-max but negatively correlated with other variables
(with GSS significantly) during the same period in the NE section. A positive correlation
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was also detected between the mean growing-season EVI and the corresponding T-max
(R = 0.67), T-min (R = 0.34), and VAP (R = 0.71) in the LN section, whereas it was negatively
correlated with the T-mean (R = −0.77), RHU (R = −0.71), PRE (R = −0.26), and GSS
(R = −0.11). These results suggest that increases in the T-min, T-max, and VAP during the
same period were likely to improve vegetation activity in a widespread area of the central
and eastern parts of the TG318, but moisture was a limiting factor.
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(d) April–October. * indicates significance at the 0.05 level.

The relationships between the EVI and climate variables differed at the monthly scale
(Figure 14). The EVI was positively correlated with the T-mean, RHU, and GSS for the WS
section in April, with a stronger positive relationship with a 2–3-month lag (Figure A3),
whereas the opposite relationships were detected for a 1-month lag (Figure A1). This
finding indicates that moisture during the early stage may promote vegetation activity,
but this could inhibit vegetation activity one month before the start of the growing season.
Close correlations were detected between the EVI and climate variables with a 2-month
lag in July, a 3-month lag in August, and no lag in September (Figure 15). The EVI in the
LN section was closely correlated with climate variables with a 3-month lag in April, a
1-month lag in July, and a 3-month lag in August. In particular, significantly negative
correlations were detected between the EVI and T-min (R = −0.78) and PRE (R = −0.80)
with a 3-month lag in April. A significant negative correlation was detected with GSS
(R = −0.73), and a positive correlation was observed with the T-min (R = 0.68) with a
2-month lag in June. The EVI was significantly negatively correlated with the T-mean
(R = −0.72) and RHU (R = −0.66) and positively correlated with VAP (R = 0.66), with a
1-month lag in July (Figure 15). There was also a 1-month lag response of the EVI to climate
variables in April and May and a 2–3-month lag response during the later growing season
in the NE section. Notably, the highest partial correlation coefficients between the EVI
and the pre-growing-season T-min and T-max were mainly positive from April to October
(excluding September), whereas those between the EVI and the pre-growing-season T-mean
(excluding September) and PRE (excluding August and October) were negative.
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4. Discussion
4.1. Regional Vegetation Changes and Anthropogenic Forces

Based on the linear least-squares regression, the mean growing-season EVI increased
significantly in western sections along the TG318 during 2000–2021, whereas greater fluctua-
tions were observed in the eastern sections, which is consistent with previous studies [45,46].
For example, the changes in the mean growing-season NDVI in most western area of the
Lhasa City was between 0 and 0.15/decade during 1992–2020 [47]. However, the annual
NDVI varies greatly in humid and sub-humid areas of the QTP, and a large decreasing
area appeared near Nyingchi City from 1998 to 2018 [48]. These differences may be related
to the vegetation type to some extent. According to the Globelland30 land use distribu-
tion in 2010, the WS section was mainly dominated by grassland (64.04%) and bare area
(11.15%) within 600 m of the core area, whereas the SL section was dominated by grassland
(61.42%) and cropland (21.25%), both in the temperate and semi-arid plateau regions. The
eastern sections (LN and NE), in the temperate humid and sub-humid plateau regions, are
characterized by grassland (71.59% and 57.61%, respectively) and forestland (17.21% and
24.83%, respectively). The mean growing-season EVI in the WS and SL sections (~0.25)
was lower than that in the eastern sections (~0.40). A previous study reported that areas
with high vegetation coverage were less sensitive to environment changes than those with
low coverage [49]. This may be caused by the fact that vegetation in different geographic
regions has different variables in response to climate change and human activities [50].
For example, a slight increase in precipitation (0.93–1.28 mm/year) was observed in all
sections during the study period, and vegetative activity would be more active, like when
the moisture content increased in the semi-arid area. The intensity of human activity was
gradually increasing in the QTP during 1997–2018 [51], but it promoted the desertification
mitigation on the western region of Lhasa City from 2000 to 2014 [52] and had negative
effects on the change in net primary production in the eastern region of Lhasa City from
2001 to 2015 [53].

We used a novel method to quantify the relative contributions of climatic and an-
thropogenic forces to vegetation activity. Unlike traditional multiple-regression residual
analyses [54] and prediction models, we constructed a core area (0–600 m) and a back-
ground area (600–1200 m) as suggested by previous findings [35]. The results indicated
that reconstruction was likely to promote vegetative activity in a widespread area of the
TG318, with contributions of 7.67%, 19.12%, and 18.24% in the WS, SL, and LN sections,
respectively. However, a previous study reported an inhibitory effect of engineering activity
along the Qinghai–Tibet railway, with contributions of −0.24% in the south and −0.04%
in the north [55]. This divergence may be attributed to the time scale. The mean growing-
season EVI better reflects vegetative activity and reduces the effects of environmental
interference [36]. Thus, we focused on the growing-season EVI (April to October) to avoid
the effects of environmental interference as much as possible in this study. Second, this
difference may also be influenced by the spatial resolution of remote-sensing data and
the road features. Ma et al. [25] used datasets with a 0.0833◦ spatial resolution, and lower
temporal resolution usually leads to poorer results to some extent. Furthermore, compared
with railways, it is necessary to consider that highway construction produces thermal influ-
ences on the permafrost in the QTP [56]. Reconstruction activity, especially asphalt paving,
can significantly reduce the surface albedo and even make it degrade [57–59]. On the
other hand, most surface precipitation is discharged horizontally or vertically through the
road slope, and only a small amount of precipitation infiltrates into the pavement through
cracks [60], which may be responsible for promoting the vegetation activity in plateau
temperate semi-arid regions. Environment changes in the QTP permafrost have strong
impacts on the ecosystems of alpine meadows and alpine swamp meadows, resulting in an
obvious decrease in alpine meadow coverage and biomass production as the permafrost
depth increases.
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4.2. Relationships between Climate Factors and Vegetation Variation

The vegetation of the QTP is extremely sensitive to climate change due to the harsh
geographical environment [61,62], and it demonstrates different responses to climatic
variables [63]. The results indicated that there exist negative correlations between the mean
growing-season EVI and the corresponding T-max and T-min in the WS and LS sections and
positive correlations between the mean growing-season EVI and the corresponding T-max
and T-min in the LN and NE sections (Figure 14d). Similarly, a negative spatial correlation
was detected between the NDVI and two temperature indices (T-max and T-min) in semi-
arid regions of the QTP using geographically weighted regression during 1982–2015 [64],
which was mainly related to the finding that temperature increases accelerate soil moisture
loss and nutrient consumption [65]. For humid and semi-humid areas with high vegetation
coverage, temperature may be an important limiting factor and it increases the facilitation
of photosynthesis until the optimum temperature is reached [66]. Negative relationships
between the mean growing-season EVI and the corresponding PRE, RHU, and GSS in the
LN and NE sections are consistent with these findings. The SEM showed that the T-max
and PRE affected the mean growing-season EVI through VAP in the western sections, and
these variables may play a role in affecting the EVI by the GSS or T-mean, suggesting
a complex influence of climatic variables on the mean growing-season EVI, apart from
a possible direct influence. Therefore, the mechanisms driving these influences require
further study. The mean growing-season EVI of the western sections is more sensitive to
climate variables in the pre-growing season than these in the corresponding period, which
are generally in line with the findings of a previous study [67], and may be associated with
the sensitivity difference of vegetation to hydrothermal conditions.

Vegetation responded differently to hydrothermal conditions at different growth
stages. In the NE section, there was generally no lag time for vegetative activity during
April and May, whereas a 2–3-month lag was observed from July to October. In contrast,
the strongest correlation between the monthly EVI and climate variables from April to May
occurred with over a 1-month lag in the other three sections. Vegetation activity during
spring was mainly dependent on pre-growing-season snowmelt or precipitation due to
the low precipitation during winter in the western QTP. Warming not only promotes snow
melting but accelerates moisture evapotranspiration. The positive relationships between
the EVI and T-max and T-min with a 1-month lag in April and negative relationships in
the previous 2–3 months in the three western sections seem to be practicable in reflecting
these relationships. Additionally, the spring temperature increase occurs more rapidly in
the eastern QTP than in the western QTP [36], which may explain why the lag time in
temperature is longer in the western QTP than in the eastern QTP. Most vegetation along
the TG318 exhibited a 2–3-month lag in temperature and precipitation variation during
autumn, and a 1-month lag in winter from 1981 to 2010 [68], which was inconsistent with
our findings, perhaps due to the cumulative effects of climate change during the early
growing season [69,70].

4.3. Uncertainties

Numerous studies have explored the impacts of climate change on vegetation dy-
namics over the Qinghai–Tibet Plateau, but there has been relatively little research on
the ecological effects of highway construction. In this study, we conducted quantitative
analyses on the combined effects of highway reconstruction and climate change on veg-
etation activity, but there are still some uncertainties. First, although the MODIS EVI
dataset is widely used for its high precision and resolution [71] and is more in line with
vegetative activity characteristics in the QTP [72], remote-sensing products are subject to
the physical limitations of the sensors, limited temporal and spatial coverage, and spatial
resolution, which may result in uncertainty regarding the analysis results [73]). Second,
to avoid largely environmental interference with the EVI during the non-growing season,
we focused only on vegetation activity during the growing season. However, the spatial
pattern of vegetation phenology along the G318 national highway in the QTP is not yet
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clearly identified. In addition, various segments of the TG318 underwent reconstruction
and expansion at different times. Although we divided the study period into two periods,
mainly according to the average reconstruction time of each section, the determination of
the time points before and after reconstruction may lead to some uncertainties. We also
defined the core and background area by referring to areas suggested in a previous study.
However, the ecological sensitivity experiments need to be further explored due to the
spatial heterogeneity in different regions.

5. Conclusions

In this study, we examined the effects of climate change and reconstruction on the
spatial and temporal variations in vegetative growth along the G318 national highway in
Tibetan autonomous regions during 2000–2021 based on MODIS EVI data. The variation in
mean growing-season EVI differed among highway sections, with a significant increase
in the WS section to a slight decrease in the LN section. We performed a novel residual
analysis to identify the relative contributions of reconstruction and climate change to
vegetation activity and found that these likely promoted vegetative growth in a widespread
area of the TG318, whereas inhibitory effects were limited to very small regions. The
reconstruction at a monthly scale positively contributed to vegetation activity from August
to October in the WS section but negatively in the NE section during the growing season.
The mean growing-season EVI was closely correlated with pre-growing-season climate
variables, with lag times of approximately 2 and 3 months in the WS and SL sections,
respectively, and no lag in the LN and NE sections, although these relationships varied
widely across different regions and months along the TG318. This diverse response of
vegetation to climate change and human activity suggests differences in the mechanisms of
the EVI response to hydrothermal conditions along the TG318. However, more detailed
studies based on long-term observation data are needed to better understand implications
of highway reconstruction on vegetation activity.
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Figure A2. Partial correlation coefficients for the monthly EVI and climate variables of the previous
two months for the four sections. (a) WS; (b) SL; (c) LN; (d) NE. * indicates significance at the
0.05 level.
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