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Abstract: The use of pixel-based remote sensing techniques in archaeology is usually limited by
spectral confusion between archaeological material and the surrounding environment because they
rely on the spectral contrast between features. To deal with this problem, we investigated the pos-
sibility of using geographic object-based image analysis (GEOBIA) to predict archaeological and
non-archaeological features. The chosen study area was previously occupied by farming communities
and is characterised by natural soils (non-sites), vitrified dung, non-vitrified dung, and savannah
woody vegetation. The study uses a three-stage GEOBIA that comprises (1) image object segmen-
tation, (2) feature selection, and (3) object classification. The spectral mean of each band and the
area extent of an object were selected as input variables for object classifications in support vector
machines (SVM) and random forest (RF) classifiers. The results of this study have shown that GEO-
BIA approaches have the potential to map archaeological landscapes. The SVM and RF classifiers
achieved high classification accuracies of 96.58% and 94.87%, respectively. Visual inspection of the
classified images has demonstrated the importance of the aforementioned models in mapping archae-
ological and non-archaeological features because of their ability to manage the spectral confusion
between non-sites and vitrified dung sites. In summary, the results have demonstrated that the
GEOBIAs ability to incorporate spatial elements in the classification model ameliorates the chances
of distinguishing materials with limited spectral differences.

Keywords: advanced classification algorithms; vitrified dung; non-vitrified dung; remote sensing;
image segmentation; very high spatial resolution

1. Introduction

Remote sensing has proved to be a vital instrument for the survey, documentation,
and monitoring of archaeological sites [1,2]. It offers a relatively cheap, fast, systematic, and
reproducible method of survey, which is capable of documenting and monitoring archae-
ological sites across huge and/or inaccessible locations within a short period [3–5]. The
use of remote sensing in archaeology commonly exploits the spectral difference between
archaeological features and their surrounding [6,7]. This is largely because past anthro-
pogenic activities have a localised impact on the soil’s chemical and physical properties,
therefore, making it different from its surroundings [8,9]. A key requirement in remote
sensing image analysis is the decision concerning the basic unit of classification, which
can either be an image pixel or an image object [10–13]. The image pixel is the smallest
discrete area within a two-dimensional array of cells that forms an image. The image object
is created by grouping spatially connected pixels with homogeneous properties using
segmentation analysis [10,14,15].
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Different pixel-based image classifiers have been tested in archaeological applications
using imagery captured by hyperspectral and multispectral sensors [16–20]. Image enhance-
ment techniques have been mainly employed to increase the prominence and identification
of archaeological features in an image [19,21]. For example, the principal component
analysis was used to enhance the spectral differences of cropmarks associated with archae-
ological sites in southern Scotland, therefore improving the visibility and identification of
archaeological features in the landscape [16]. Bennett et al. [22] used normalised vegetation
indices to identify archaeological sites in the grasslands of Salisbury Plain, Wiltshire. On
the other hand, some researchers used unsupervised pixel-based classifiers to assess the
possibility of spectrally separating archaeological features from their surroundings and
identifying unknown classes [4,23–25]. Ciminale et al. [26] used the ISODATA unsuper-
vised classifier to identify paleo-riverbeds which cut through the ditches of the Neolithic
village of Schifata in Northern Italy. The main challenge of using unsupervised classifiers
is that an analyst does not develop reference data classes that will be used in training the
classification model [27]. As a result, the classifiers produce meaningless classes of data,
which can be challenging to merge into meaningful classes [28]. Researchers [20,29,30]
employed supervised pixel-based classifiers to predict areas of archaeological interest.

The pixel-based methods have produced high classification accuracies in detecting
most of the archaeological sites. However, some limitations associated with the pixel-based
methods in archaeological applications have been reported in recent studies [20,31]. Pixel-
based classifiers cannot handle within-class spectral variability [32]. Above all, the major
issue with the application of the aforementioned classification methods is that they assume
the pixel as the spatial unit of analysis and depend solely on its spectral properties for
classification [15]. This becomes problematic in archaeological sites and environments
characterised by features with variance in material composition and spatial attributes but
having similar spectral signatures [32,33]. For example, despite the difference in their
spatial attributes, Thabeng et al. [20] found that there is no spectral difference between
vitrified dung deposits and non-sites. The confusion between the two features might be
because of their similar whitish colour or the washing down of dung deposits into the river
by water erosion, which is rampant in the area. As a result, this calls for the classification
process, which will incorporate spatial attributes of the aforementioned features, such as
texture and size, in addition to spectral properties, to achieve accuracy improvement.

GEOBIA has been used to differentiate features with similar spectral characteristics
and different spatial, textural, and contextual properties [15,33–35]. Research has also
shown that GEOBIA is superior to pixel-based classifications, especially, in complex en-
vironments [33,36] and on images with limited spectral details [37]. For instance, Myint
et al. [15] proved that GEOBIA outclassed pixel-based analysis when mapping the cen-
tral part of the city of Phoenix in Arizona, which was characterised by spectrally similar
feature classes. In their study, the object-based classifier outperformed the pixel-based
maximum likelihood classifier by 22.8% as they achieved an overall accuracy of 90.40%
and 67.60%, respectively. Furthermore, GEOBIA has been used for classification in numer-
ous Land Cover Land Use (LULC) research, which include agriculture [10,38,39], urban
landscapes [14,40–42], and vegetation mapping [43], where it achieved excellent results.
Lately, GEOBIA has been used to delineate landforms for the prediction of archaeological
sites [31,44] and detect looting activities [45]. Conversely, this method has not been tested
in discriminating against surface archaeological deposits of vitrified dung, non-vitrified
dung, and non-sites (natural soils), which are the major characteristic features of archae-
ological sites previously occupied by farming communities in the south-central part of
Southern Africa.

However, mapping features using GEOBIA requires an image with a high spatial reso-
lution because it reveals the spatial and contextual properties of individual features [11,15,46].
Myint et al. [15] posit that for the object to be effectively delineated, it must at minimal
be twice the spatial resolution of the image or more. Additionally, Thabeng et al. [20]
report that an archaeological feature has to be at least 4 m in diameter for it to be discrimi-
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nated when using Worldview-2 images. This, therefore, means that very high-resolution
satellite images, such as those from WorldView-2 and GeoEye, have the spatial accuracy
to capture the spatial and contextual attributes of byres in the study area, because they
range between 3 m and 18 m in diameter (Huffman, pers comm., 2018). Therefore, this
study intends to investigate whether the use of GEOBIA based on advanced classification
algorithms, RF and SVM, can accurately discriminate between the archaeological deposits
and non-archaeological deposits in the Shashi–Limpopo Confluence Area (SLCA) using a
high-resolution WorldView-2 satellite image.

2. Materials and Methods
2.1. The Study Area and Archaeological Context

This study was carried out in the Mapungubwe Cultural Landscape, which is situated
at the confluence of the Limpopo and Shashi rivers in Southern Africa (Figure 1). The
landscape is listed under UNESCO World Heritage and is believed to have been occupied
by one of the earliest complex societies in Southern Africa [47]. The Mapungubwe cultural
landscape has been inundated with archaeological research since the early 1930s, with the
discovery of the golden rhinoceros on Mapungubwe Hill [48,49]. These include one of
the most extended systematic field walking surveys in the Mapungubwe landscape under
the ‘Origins of Mapungubwe Project’ spanning more than two decades and discovering
over 1100 farming community sites in the process [48]. Research has also revealed a lot
of the archaeological materials that formed an integral part of everyday life and social
patterns within the settlement. These include artefacts such as glass beads, bangles, ce-
ramic figurines, and pots together with features such as middens and byres [50–53]. The
byres are likely the centre of the settlement. This is because research has shown that the
societies which occupied the Mapungubwe landscape practised the Central Cattle Pattern
(CCP) settlement system, whereby the central space of the settlement housed the animal
byre (kraal) in proximity to the male gathering area [47,54]. The byres are of two types,
with one type having vitrified deposits while the other has non-vitrified/unburned dung
deposits [49,55]. Vitrified dung is formed when thick dung deposits burn at about 1100 ◦C
forming a glassy biomass slag [56,57]. However, there is no consensus on the cause of the
above-mentioned burning—some researchers [55,56] attribute it to intentional causes, while
others posit that it was accidental occurrences such as wildfires or lightning at very high
temperatures [57]. Furthermore, the level of vitrification varies across the sites depending
on the conditions under which the dung was burned. Some deposits depict a high degree
of vitrification, while others are not fully vitrified or depict a mixture of vitrified dung
and non-vitrified dung. Huffman et al., [55] postulates that a high level of vitrification is
mostly found along the fence where there is wood, and the thickness of the vitrified layer
reduces as one moves to the centre of the byre. This then leaves most of the vitrified dung
sites with a combination of non-vitrified and vitrified dung deposits, depending on the
degree of vitrification. However, this study investigates the feasibility of using GEOBIA to
detect archaeological sites with vitrified dung and non-vitrified dung deposits in the SLCA.
Although Cenchrus cilliaris has been previously used as an indicator of the aforementioned
sites in central Eastern Botswana by Denbow [58], it is not a diagnostic feature of the sites
in SLCA. As a result, this study targeted bare sites.
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Figure 1. Location of the study area in Southern Africa with a true colour WorldView-2 image used
in this study and major farming communities’ sites.

2.2. Worldview-2

Two cloud-free WorldView-2 images captured on 5 August 2014, covering 1388 km2

of the study area, at spatial resolutions of 0.5 m and 2 m for the panchromatic band
and multispectral bands, respectively, were used in this study. This is the best period to
identify the surface of archaeological features because the vegetation has lost leaves and
grasses have died, leaving most of the archaeological dung deposits uncovered (South-
ern hemisphere spring season). The images were obtained from Digital Globe and were
geometrically corrected on supply. WorldView-2 satellite collects images in one panchro-
matic (450–800 nm) and eight multispectral bands at 400–450 nm (B1-coastal), 450–510 nm
(B2-blue), 510–581 nm (B3-green), 585–625 nm (B4-yellow), 630–690 nm (B5-red), 705–745 nm
(B6-red edge), 770–895 nm (B7-near infrared-1), and 860–1040 nm (B8-near-infrared-2).
Nonetheless, the panchromatic band was excluded from the analysis in this study. The Fast
Line-of-Sight Atmospheric Analysis of Hypercubes (FLAASH) tool in Envi 4.8 software
was used to perform radiometric corrections on each image before they were merged.

2.3. Segmentation and Feature Selection

Image segmentation creates the objects, which are the basic spatial units of analysis
in GEOBIA [33]. The created objects relate to natural spatial units; therefore, they should
form a meaningful spatial unit for land cover classification [36,59]. Moreover, the quality
of demarcation of target objects directly impacts the accuracy rate for predicting classes
in an image [33]. Multi-resolution segmentation (MRS) algorithm in 64-bit Ecognition
developer v.9 software, was used in this study. This is the most regularly used segmentation
technique [60] and researchers [10,61,62] have held it as one of the best segmentation
methods in GEOBIA. MRS employs a bottom–up region method, whereby a pixel is
identified as a single object before being paired with other spatially adjacent objects to
form bigger objects, depending mainly on the defined scale heterogeneity level [10,63]. The



Remote Sens. 2023, 15, 5491 5 of 19

object pairing is entrenched in the pairwise clustering procedure [64]. The MRS gives the
user an opportunity to regulate the magnitude of homogeneity within the objects by setting
the scale, shape, and colour parameters [65].

The scale parameter significantly affects the quality of the segmentation procedure
because it determines the extent of the object which can, in turn, lead to under-segmentation
or over-segmentation error [15]. The large values for scale parameter allow for the creation
of large objects and more heterogeneity within the objects while small values for scale create
small homogeneous objects. The impact of the segmentation scale on class distinction was
investigated at 10 different scales (10, 20, 30, 40, 50, 60, 70, 80, 90, and 100) in this study.
After finding the suitable scale factor, the shape and colour parameters were adjusted to
improve the features of output image objects [36,63]. The shape is based on the geometric
characteristics of the archaeological and non-archaeological features. The shape of an
object is influenced by two inversely proportional properties, which are smoothness and
compactness [66,67]. The colour parameter deals with spectral heterogeneity of archaeo-
logical and non-archaeological features, as a result, it is affected by the weight assigned
to each band in segmentation [10,63]. However, the weight value of each band was left
at one, which is the default, to avoid biases in the classification. The combined weighted
values of shape and colour parameters add up to a total of one [10,67]. Studies by Costa
et al. [59] and Mathieu et al. [63] have shown that in most cases desired results are achieved
when the shape is given less weight than colour. As a result, in tuning the parameters
for segmentation in this study, the shape parameter was always given less value than
colour in order to give more weight to spectrally homogenous pixels when segmenting.
To identify the optimum image segments using the abovementioned parameters, studies
have used the trial-and-error method by varying their values [13,35,39,63,68]. The image
segmentation procedure is, therefore, performed when the objects produced visually match
the real-world features of interest. Consequently, in identifying the optimum segments
in this study, the trial-and-error method assessed through visual inspection was used to
regulate the scale, shape, and colour parameters in segmentation. The scale parameter of
50 and the shape parameter of 0.2 were chosen as the optimum segmentation parameters
in this study.

After image object segmentation, the variable selection was carried out for use in object-
based classification. Variable feature selection procedure identifies a subset of optimum
object features that will produce the best results in the classification process [32,69]. The
classification process can comprise numerous object feature properties ranging from context,
size, spectral data, texture, and shape [32,33]. The feature selection process can be executed
in two ways by either using software algorithms or a manual process based on literature
reviews and expert knowledge [12,35,69,70]. In this study, several object characteristics
were manually assessed based on a literature review and expert knowledge in an attempt
to identify the best subset of features for classification [12,71]. All the object features
used as input variables in this study are listed in Table 1. Image objects were spectrally
differentiated using the mean spectral value of each band computed at the object level.
To differentiate image objects with information extracted from their geometric features,
the area extent of the image objects was used. The area extent of an object is measured
by counting the pixels within it. This was carried out to differentiate objects of different
sizes with similar spectral properties, such as river sand and vitrified dung sites [20].
Other various object characteristics and parameter settings, such as shape, texture, and
class-related features, were explored but did not produce suitable outcomes.

Table 1. Image object features used in this study.

Type Tested Feature Number of Features Description

Spectral mean 8 Mean reflectance of each band
for an object

Geometry extent Area 1 Area of an object (Pixel)
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2.4. Image Classification
2.4.1. Random Forest

RF classifier was used to map the archaeological sites and other LULC cover types
using the classes created on the segments. Since its inception by Breiman [72], RF has been
effectively used in several domains like pharmacology [73,74], medical imaging [75–77],
and genetics [78–80] because of its intrinsic ability to measure variable importance and its ro-
bust predictive power. Furthermore, throughout the last decade, there was a surge in the use
of RF in different remote sensing applications, such as vegetation species mapping [81–83],
agriculture [84,85], and archaeology [20,86].

RF is pronounced as a group of classifiers that generates binary decision trees and
allocates class according to popular votes on each node [87]. RF grows each tree using
a different bootstrapped sample drawn from the training data, with about a third of
the training data not being included in building each tree [72,88]. The left-out sample,
commonly known as the out-of-bag (OOB), is then used to evaluate the significance of
each variable in classification and generalisation error [88,89]. RF classification was carried
out using the randomForest package within the R statistical environment [90]. Training
the RF classifier encompasses optimising two parameters: (1) the number of variables
used in a dataset to split trees at each node (mmtry) and (2) the number of trees in the
forest (ntree) [90,91]. Following earlier studies [83,92,93], this study used a grid search
approach based on the OOB estimate of error to look for the best pair of both mtry and ntree
parameters. The values for mtry and ntree were assessed from 1 to 9 and 500 to 9500 with
an interval of 1000, respectively.

2.4.2. Support Vector Machines

SVM is a non-parametric supervised classifier that is gaining wide use in remote
sensing because of its ability to achieve good generalisations even with inadequate training
data [94–96]. The SVM model was initiated by Vapnik and Chervonenkis [97] before it was
fully discussed by Vapnik [98]. In general, SVMs are linear classifiers that are composed of
hyperplanes that separate data classes via the largest margin within a high dimensional
feature space [99,100]. The user chooses the SVM kernel function to be used for the training
process that picks support vectors along the hyperplane surface [101]. The radial basis
function (RBF) kernel was selected for classification in this study. RBF has been applied
to numerous LULC classifications where it achieved higher classification accuracies than
other SVM kernels and classification algorithms [100]. This is also supported by the results
from Pal and Mather [102], who found out that RBF outperformed other classification
algorithms in classifying land cover data. This might be largely because of its ability to
handle non-linear relationships concerning class labels and attributes, which is mostly
the case with spatial data [99]. In this study, the RBF classification process involved the
identification of optimal values of regularisation parameter sigma (C) and the width of the
kernel gamma (γ) that are suitable for discriminating archaeological and non-archaeological
classes [99,100,103]. The optimisation for the optimum combination of γ and C param-
eter values was carried out using a 10-fold cross-validation and grid search. The grid
search procedure assesses various pairs of cost and gamma parameters and picks the one
with the lowest cross-validation error [104,105]. The optimisation of RBF parameters and
classification used e1071 and caret libraries of R statistical packages, respectively.

2.4.3. Reference Data and Accuracy Assessment

Mapping of ground reference points to be used in image classification was carried out
in September 2016, after initially visiting the Mapungubwe cultural landscape in September
2015 with an archaeological expert. The short time lapse between the date of image capture
and reference points collection has no bearing on the classification outcome of this study
because the chemical composition and structure of the targeted deposits take a long time to
change [55]. Data was collected during spring, which is also the season when the images
were captured, when most of the landscape is bare, thus, revealing archaeological materials
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on the surface. Furthermore, the land use changes in the chosen study area are minimal
because it is legally protected by national laws as a national park and a game reserve
and by the United Nations Educational, Scientific and Cultural Organisation as a Cultural
Landscape.

Data collection was carried out using a purposive sampling technique whereby only
vitrified dung and non-vitrified dung deposit sites appearing in the literature and dating
to the period of interest were targeted. The coordinates for the identified sites were ac-
quired from a site register developed by Huffman [51,52], and their location was tracked
using a handheld global positioning system device (GPS). Additionally, three more LULC
classes composed of irrigated agriculture (pivot agriculture), savannah woody vegeta-
tion, and bare land (natural soils) identified during fieldwork were added as variables
during the image classification process. The savannah woody vegetation represented the
natural vegetation within the study area, while pivot irrigation farms were classified as
irrigated agriculture. The focus of the study is to differentiate archaeological deposits,
non-archaeological deposits, and vegetation in general; therefore, a broad categorisation
of vegetation species is deemed acceptable, because individual vegetation species are not
important in this study. For general LULC, we used our expert knowledge of the features
in the study area to randomly select additional objects for each class through the visual
inspection of a pan-sharpened WV image. In sum, 394 objects were chosen, of which 17
belonged to vitrified dung, 114 non-vitrified dung, 36 irrigated agriculture, 114 non-sites,
and 114 savannah woody vegetation. The variation in class sizes was largely due to the
differences in the areas covered by each class, with vitrified dung being the least prevalent
in the study area.

The accuracy assessment in GEOBIA is a contested terrain, with some studies [106,107]
arguing that the shape of the segment influences the overall classification accuracy of the
model. On the other hand, research [14] demonstrated that the accuracy of the shape of
the segment has no significant impact on the classification accuracy of the models. The
accuracy assessment in this study is focused on the location accuracy of the objects rather
than the accuracy of their shape in relation to ground features. This is because the high
erosion, which is prevalent in the area, has led to instances where vitrified dung and non-
vitrified dung get mixed, or one gets coated with the other depending on which one is in the
direction of erosion. The quality of thematic maps created using RF and SVM classification
algorithms was evaluated using a dataset that was randomly generated by splitting the
ground-referenced data for the study area into 70% and 30% for training and validation,
respectively, before running the classification model. This resulted in 117 polygons spread
across the entire study area, with class sizes varying from 5 to 34 polygons being chosen
for validation. This is because the polygons are the basic spatial units for the thematic
maps created from the segments. This method was applied as it permits the assessment
of the whole classification process, beginning with the segmentation. Some statistical
analysis, which includes overall accuracy, user’s accuracy, and producer’s accuracy, were
then performed as a way of assessing the reliability of the maps generated for a site survey.
The layout plans of archaeological sites drawn by Huffman [53] and Calabrese [108] were
overlaid on the matching predicted sites to visually evaluate the accuracy of the above-
mentioned classifiers in detecting site extent together with the distribution of archaeological
and non-archaeological features within a site.

3. Results
3.1. Image Segmentation

The optimum image segments were identified by varying the values for scale, colour,
and shape based on a trial-and-error approach. The results demonstrated that segmentation
performed using the scale, shape, and colour parameters of 50, 0.2, and 0.8, respectively,
produced accurate boundaries of geographic features (Figure 2). The segmentation process
produced 5,189,584 objects.
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3.2. Tuning RF and SVM Parameters

The RF algorithm parameters were optimised to predict archaeological classes using
a grid search procedure, and the results have shown that a combination of a mtry value
of 5 and a ntree value of 500 produced the lowest OOB error rate of 0.059 (Figure 3). The
highest OOB error rates (0.072) were produced by combinations of mtry values of 9 and
ntree values of 500 and 1500.

The best-input parameters for classification using RBF in SVM were determined using
10-fold cross-validation and grid search. The optimisation results have demonstrated that
the C

(
log10(100)

)
and γ (log10(0.01) ) are the best input parameters for predicting archaeologi-

cal classes using RBF in the SVM classifier (Figure 4). The combination of the optimal C
(100) and γ (0.01) produced the lowest cross-validation error of 0.036. The highest cross-
validation error (0.8) was attained when C was set to log10(o.1) and γ was set to log10(1000)

see Figure 4.
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3.3. Image Classification and Site Prediction

GEOBIA classification carried out using RF and SVM algorithms defined non-sites,
savannah woody vegetation, irrigated agriculture, vitrified dung, and non-vitrified dung
across the study area, as shown in Figure 5. Non-sites cover large parts of the study area,
followed by savannah woody vegetation, while other classes cover very small portions
of the study area. A visual inspection of the predictive maps of RF and SVM shows that
the two classifiers have correctly predicted the locations of known archaeological sites
(Figure 5). However, there was a difference in how the two classifiers predicted the non-sites,
savannah woody vegetation, irrigated agriculture, vitrified dung, and non-vitrified dung
sites across the study area (Figure 5 and Table 2). Non-sites on a map predicted by SVM
(878 km2) covered a large area when compared to the one predicted by RF (812.10 km2). On
the other hand, the map produced by RF (19.74 km2) indicates the spread of non-vitrified
dung over large portions of the study area than the one on the map produced by SVM
(13.28 km2). The map predicted by RF shows that non-vitrified dung sites are widely spread
in the northern parts of the study area when compared to the one produced by SVM.
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Table 2. Area (km2) and the proportions of various LULC classes as classified by RF and SVM
algorithms across the study area.

Class
RF SVM

Area (km2) Area Proportion (%) Area (km2) Area Proportion (%)

NS 812.10 59.20 878.88 64.07
NVD 19.74 1.44 13.28 0.97

IA 3.84 0.28 3.97 0.29
SWV 534.01 38.93 474.05 34.56
VD 2.14 0.16 1.64 0.12

Total 1371.83 1371.83

3.4. Accuracy Assessment

The prediction accuracies for RF and SVM classification algorithms were assessed
using 117 holdout polygons created by partitioning reference data into training (70%) and
verification (30%). Overall, SVM achieved higher classification accuracies than the RF
(Tables 3 and 4). SVM achieved an overall classification accuracy of 96.58% and a kappa
coefficient of 0.9536, while the overall accuracy and kappa coefficient achieved by RF
were 94.87% and 0.9305, respectively. Concerning the individual classes, a comparison
between the SVM and RF algorithms shows that they achieved similar results for user’s and
producer’s accuracies in most classes (Tables 3 and 4). Vitrified dung achieved the lowest
producer’s and user’s accuracies of 80% each in both RF and SVM algorithms. Irrigated
agriculture and savannah woody vegetation achieved the highest user’s and producer’s
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accuracies of 100% each in both SVM and RF. The differences in the user’s and producer’s
accuracies for the two abovementioned classifiers were noted in the classification of non-
sites and non-vitrified dung classes. Two non-vitrified dung sites were confused with
other classes, one with vitrified dung and the other confused with non-sites in RF (Table 4).
However, in SVM classification, the confusion occurred in only one non-vitrified dung site,
which was misclassified as vitrified dung (Table 3).

Table 3. Error Matrix for non-sites (NS), non-vitrified dung (NVD), irrigated agriculture (IA), savan-
nah woody vegetation (SWV), and vitrified dung (VD) predicted using SVM classifier.

NS NVD IA SWV VD TOTAL UA (%)

NS 32 0 0 0 0 32 100.00
NVD 2 33 0 0 1 36 91.67

IA 0 0 10 0 0 10 100.00
SWV 0 0 0 34 0 34 100.00
VD 0 1 0 0 4 5 80.00

TOTAL 34 34 10 34 5 117
PA (%) 94.12 97.06 100.00 100.00 80.00

OA 96.58%
Kappa 0.9536

Table 4. Error Matrix for non-sites (NS), non-vitrified dung (NVD), irrigated agriculture (IA), savan-
nah woody vegetation (SWV), and vitrified dung (VD) predicted using RF classifier.

NS NVD IA SWV VD TOTAL UA (%)

NS 31 1 0 0 0 32 96.88
NVD 3 32 0 0 1 36 88.89

IA 0 0 10 0 0 10 100.00
SWV 0 0 0 34 0 34 100.00
VD 0 1 0 0 4 5 80.00

TOTAL 34 34 10 34 5 117
PA (%) 91.18 94.12 100.00 100.00 80.00

OA 94.87%
Kappa 0.9305

The outlines of the sites mapped were also used to gauge the accuracy of the RF and
SVM models in classifying non-vitrified dung and vitrified dung deposits (Figures 6 and 7).
However, the sizes of sites predicted by the RF and SVM models in places that are poten-
tially vulnerable to erosion are covering a larger area extent than the plans drawn by both
Huffman [53], see Figure 6, and Calabrese [108], see Figure 7. Generally, the SVM model
picked larger extents of non-vitrified dung than the RF model in most sites (Figures 6 and 7).
Additionally, some of the byres mapped by Calabrese [108] were not detected by the SVM
and RF models (Figure 7). The two abovementioned models also classified other archaeo-
logical features, such as dagga, middens, and grain bins, as non-sites.
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4. Discussion

The monitoring and prospection of archaeological sites using remote sensing tech-
niques entrenched on the variations in the spectral reflectance of archaeological features
and their surroundings are widely becoming a common practice [4,19,25,109]. Even though
high classification accuracies have been achieved, some challenges in relation to subtle
spectral differences between archaeological features and their surroundings have been
reported [7,29]. Areas characterised by archaeological features that were constructed using
local materials or are covered with tracts of eroded archaeological material normally share
spectral signatures with archaeological features in their locality [7,29]. This challenge
becomes a major limitation when using methods such as pixel-based techniques because
they depend solely on spectral signatures to classify remote sensing data [29,110], conse-
quently restricting the application of remote sensing techniques in archaeology to areas
with detectable spectral variations between archaeological features and non-archaeological
features. The solution, thus, lies in using classification approaches that can integrate spatial
and spectral data in their process [15,33,36,110]. Hence, the main intention of this study
was to assess the possibility of discriminating non-vitrified dung, vitrified dung, and non-
sites using their spatial and spectral data as input variables in GEOBIA models based on
advanced classification algorithms (RF and SVM). Furthermore, the classification outcomes
of this study were assessed using confusion matrices and visual inspection.

Results of this study have shown that GEOBIA based on SVM and RF classifiers can
differentiate archaeological and non-archaeological features, even in environments where
there are different features with spectral homogeneity. The aforementioned success in the
classification attained using GEOBIA can mainly be credited to its utilisation of spatial
attributes to compensate for the spectral homogeneity of various features [33]. The high
spatial resolution of the WorldView-2 images used in this study clearly defined the extent of
each site, thus facilitating the incorporation of the area extent of the individual image objects
into classification models. The image objects depicting non-sites were generally larger than
those depicting the vitrified dung sites. This enabled the classification models to discern
vitrified dung from non-sites, especially along the river where there is spectral confusion.
This was a great improvement compared to the pixel-based classification performed by
Thabeng et al. [20], where features such as rivers were confused with vitrified dung sites
due to their spectral similarities. Our findings concur with those of Hu et al. [35], who
successfully incorporated area as a spatial attribute to differentiate spectrally homogenous
but spatially different features, such as rivers and lakes. Despite the findings of the
earlier studies [111], this study proves that GEOBIA models can achieve positive results in
archaeological applications, even when the shape is not one of the site spatial characteristics
used as input variables. This is because the outlines of most sites are deformed by post-
depositional processes.

The error matrix accuracy assessment of the GEOBIA-based RF and SVM algorithms
has shown that they both generally achieved high overall classification accuracies and
kappa coefficients. This is consistent with other studies [10,39,112,113], which attained
high classification accuracies when using GEOBIA based on SVM and RF classification
algorithms to delineate features in complex landscapes. However, errors of commission
and omission for vitrified dung sites and non-vitrified dung sites are higher in the GEOBIA
models used in this study when compared to the pixel-based approach used by Thabeng
et al. [20]. This might be because GEOBIA does not rely on a single pixel value as is the
case in pixel-based classification but uses a combination of spatial attributes and averages
of spectral values of an object for prediction. Furthermore, some of the dung deposits
do not completely vitrify, while in some instances, erosion causes vitrified dung to coat
non-vitrified dung or vice versa. As such, this leaves a thin line between vitrified and
non-vitrified dung deposits on the landscape, resulting in the confusion between vitrified
and non-vitrified dung deposits. A comparison of the two GEOBIA classifiers used in this
study reveals that SVM outclassed RF in user’s and producer’s accuracies of non-vitrified
dung, savannah woody vegetation, non-sites, and irrigated agriculture (Tables 3 and 4). In
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general, this was a great improvement from the results of pixel-based SVM classification
carried out by Thabeng et al. [18], where RF showed better overall performances than
SVM. In contrast, the performance of RF generally decreased in GEOBIA when compared
against the pixel-based approach [20]. Our results for this study support those of Kavzoglu
et al. [114], who found that SVM outperforms RF in GEOBIA models.

Furthermore, when overlaid on the layouts of the sites, there were variations in how RF
and SVM classifiers predicted the extent of individual archaeological sites (Figures 6 and 7).
SVM classifier detected areas possibly covered with thin layers of eroded materials from
non-vitrified dung deposits, whereas RF only picked thick non-vitrified dung deposits.
As a result, the sizes of the sites predicted by the RF and SVM models are not a true
representative of their original extent [53,108]. However, the aforementioned variations
in the accuracies of the RF and SVM models can complementarily be used to survey for
archaeological sites, as suggested by Thabeng et al. [20]. Generally, the visual inspection of
the classifications produced by both RF and SVM models has shown that non-vitrified dung
covers large areas, and it always surrounds the deposits of vitrified dung. This supports the
findings of Huffman et al. [55], who posits that not all dung vitrifies during the vitrification
process. Moreover, some of the byres mapped by Calabrese [108] were not detected by
the models possibly because all of their materials have been eroded. This is in line with
the findings of Calabrese [108], who posits that the majority of the sites are in danger of
being extinct because of the erosion which is rampant in the area. Other archaeological
features that the models could not detect include the middens, possibly because they had
been eroded.

A visual inspection of the classification results also demonstrates that both maps depict
a moderately accurate representation of the LULC classes of interest within the study area.
In general, both classifiers accurately predicted the archaeological sites characterised by
non-vitrified dung and vitrified dung. However, there are differences in the classification
accuracies of the RF and SVM classifiers, especially in the prediction of non-vitrified dung
deposits in the northern part of the study area. The non-vitrified dung class appears to be
well represented by the SVM classifier in GEOBIA. For example, SVM depicts less confusion
between non-vitrified dung and non-sites in the northern part of the study area (Figure 5).
The fact that GEOBIA reduces within-class spectral heterogeneity by using spectral values
means of an object in classification might have contributed to the betterment of SVM
classification accuracies in this study. The aforementioned assertion is in agreement with
the findings of Maxwell [115], that the classification accuracies of SVM improve when mean
spectral values are used in the classification process. Despite less emphasis on the geometric
accuracy of segmentation results, GEOBIA achieved better classification accuracies than
pixel-based classification when predicting vitrified dung, non-vitrified dung, and non-sites
in the SLCA [20]. Our findings are similar to those of Myint et al. [15], who found that
GEOBIA performs better than pixel-based classification. Additionally, the outcomes of
this study further support the findings of Belgiu and Drǎguţ [14], that the segmentation
output has less impact on the accuracy of the classification models. The success of the
method presented in this study will help researchers and heritage managers extend the
utilisation of remote sensing techniques to areas where there are subtle spectral contrasts
between archaeological features and their surroundings. In addition, employing remote
sensing techniques will also assist the researchers and heritage managers in surveying and
monitoring archaeological sites in huge and remote areas over a short period [4,25,109,116].
In summary, we acknowledge that this study had some limitations, which resulted in
confusion between classes, especially non-vitrified dung and non-sites in the northern part
of the study area. The aforementioned limitations can be linked to the inability to gather
data in the near-infrared regions, which are sensitive to the soil chromosomes due to the
satellite sensor used. A possible solution to the above problem is the fusion of data from
high spectral resolution and high spatial resolution sensors.
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5. Conclusions

The findings of this research have shown that GEOBIA based on RF and SVM classi-
fiers accurately discriminate amongst the archaeological deposits and non-archaeological
deposits in the SLCA. The GEOBIA managed the spectral confusion between archaeological
and non-archaeological features, such as vitrified dung deposits and non-sites, by com-
bining their spatial and spectral attributes in the classification process. Even though SVM
generally outperformed RF, both classifiers attained high prediction accuracies. Therefore,
this means that both classifiers should be considered reliable predictors of archaeological
sites with vitrified dung and non-vitrified dung deposits. In summary, this study demon-
strated the capabilities of the GEOBIA method in mapping surface archaeological features,
especially those with similar spectral characteristics to other objects in their surroundings,
which is a common challenge in the use of remote sensing in archaeology.

The ability to map archaeological features which have similar spectral properties to
their surroundings by the GEOBIA method will help researchers and heritage managers to
expand archaeological remote sensing surveys to areas where it was impossible to carry
them out before because of a lack of spectral contrast between features. Additionally, the
use of remote sensing applications will help researchers and heritage resources managers
carry out fast, cheap, and systematic regional archaeological site surveys and monitoring,
especially when considering the challenges and risks one has to face when carrying out
foot surveys in certain areas of the world.
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