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Abstract: Shallow convective clouds (SCCs) frequently occur over mountainous terrain. However,
previous studies have mostly focused on SCCs over flat surfaces. Here, the effects of mountainous
terrains on the cloud size distributions (CSDs) and spatial distributions of SCCs are investigated using
data obtained from the Landsat-8 satellite. We find that the CSDs are well-described by double power
laws separated by scale breaks. The CSDs are controlled by two parameters, i.e., the scale breaks and
the number of clouds with sizes between 0.2 and 1 times the scale breaks. We also find that the number
of clouds generally increases with the elevation. In particular, the number of clouds larger than the
scale breaks increases faster than that of the smaller clouds. The sizes of the larger clouds (the 90th
and 95th percentiles) increase with the elevation, while the sizes of the smaller clouds are not sensitive
to the elevation. It is suggested that the variations of cloud numbers and sizes with elevation should
be used together with the CSDs to describe the cloud fields over mountainous terrains.

Keywords: shallow convective clouds; topographic effects; Landsat-8; cloud size distribution

1. Introduction

Shallow convective clouds (SCCs) frequently appear both over the ocean [1] and over
land [2–4], and play important roles in the earth system [5,6]. SCCs strongly reflect solar
radiation, exerting a negative radiative forcing on the surface [7]. They can also transport
pollutants and other substances from the boundary layer into the free troposphere [8].
Particularly, when SCCs transport vapor into the free troposphere, they can promote the
development of deep convective clouds [9].

The typical sizes of SCCs are on the order of 102 m, which are much smaller than
the typical grid intervals of global climate models [10] and global weather forecasting
models [11]. Therefore, the effects of SCCs can only be considered via parameterization
schemes. Many parameterization schemes of SCCs assume a single bulk updraft [12]. In this
situation, all SCCs are assumed to have the same size. However, some studies have pointed
out that these parameterization schemes cannot correctly treat the coupling between the
cloud layer and the sub-cloud layer [13]. Other parameterization schemes that consider
multiple bulk updrafts were therefore proposed [13–15]. In this type of parameterization
schemes, the sizes of SCCs are assumed to follow prescribed distributions [14].

Cloud size is an important parameter describing SCCs. When a cloud develops
upward, it entrains dry air from the environment into the cloud [16]. This decreases the
liquid water content, and can potentially lead to cloud dissipation. Many studies have
shown that the entrainment rate is inversely proportional to the cloud size [17,18]. In
other words, a larger cloud is more resistant to the detrimental effect of entrainment.
Therefore, a larger cloud possesses more positive vertical velocity, and can be more efficient
in transporting substances into the free troposphere.
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Cloud size distributions (CSDs) have been frequently reported in the literature.
Plank [19] used photographs taken from high-flying aircrafts and found that the CSD
follows an exponential distribution. Neggers et al. [20] used data obtained from the
Landsat-5 satellite and found that the CSD follows a power law from the lower end up to a
certain size. This result is also supported by results from large-eddy simulations [20,21].
Mieslinger et al. [22] used 1158 images obtained from the Advanced Spaceborn Thermal
Emission and Reflection Radiometer (ASTER) satellite, and found that for SCCs larger
than the scale break, the CSD can also be described by a power law, but with a different
exponent. Stevens [23] suggested that the scale break is a controlling parameter of the CSD.
It is worth mentioning that all CSDs mentioned above were obtained either over relatively
flat land [19,20] or over the ocean [21,22].

It is well known that topography has substantial impacts on the development of
SCCs [24,25]. In the daytime, solar radiation heats the slopes. Thereby, the air in contact
with the slopes becomes warmer than the air far away from the slopes. The resulting
horizontal temperature gradient leads to the formation of upslope winds [26]. If the air is
sufficiently humid, clouds are produced when the upslope winds meet near the tops of the
mountains. Both observational studies [27–29] and modelling studies [30,31] confirm that
clouds prefer to develop near mountain tops. Note that these studies are mostly concerned
with deep convective clouds instead of SCCs.

Rotach et al. [32] pointed out that more than 50% of the land surface is covered by
hills and mountains. However, to the best of our knowledge, few studies have investigated
the topographic effects on SCCs. In this study, we use data obtained from Landsat-8 to
investigate whether the presence of topography affects the CSDs of SCCs. Furthermore,
since CSDs are defined for a cloud field over a large area (on the order of 102 to 104 km2), it
does not describe the spatial distribution of SCCs. Therefore, we also investigate how the
sizes of SCCs vary with the elevation.

In Section 2, we present the methods. Section 3 first presents the CSDs, and then
the variations of cloud sizes and cloud numbers with the elevation. A discussion is
presented in Section 3.3. Section 4 summaries this study, and then provides perspectives for
future studies.

2. Study Area, Data, and Methods
2.1. Study Area

This study focuses on SCCs in Southeast China (Figure 1). Due to the warm and
humid climate, SCCs frequently occur in this area [2]. According to Warren et al. [3], the
frequency of occurrence of SCCs is 23% in summer (June, July, and August), and is over
10% in spring (March, April, and May) and autumn (September, October, and November).
The study area is characterized by mountainous terrain, with the minimum and maximum
elevations of −70 m and 3838 m, respectively, and the mean elevation of 283 m. Such a
complex topographic condition is suitable for the study of topographic effects on SCCs.

2.2. Data

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
Global Digital Elevation Model version 2 (GDEMV2) is used in this study. It has a resolution
of 30 m and is freely available (https://www.jspacesystems.or.jp/ersdac/GDEM/E/index.
html (accessed on 9 September 2023)). Compared to GDEMV1, the vertical accuracy of
GDEMV2 has been improved from ±20 m to ±17 m. For regions that are predominantly
mountainous or hilly, GDEMV2 is more reliable than the shuttle radar topography mission
digital elevation model (SRTM DEM) product [33].

Cloud information was obtained from the Operational Land Imager (OLI) and Thermal
Infrared Sensor (TIRS) onboard the Landsat-8 satellite. The Landsat-8 satellite crosses the
equator at 10:00 am ± 15 min local time, and has a revisit period of 16 days. To the best
of our knowledge, no method is currently available to automatically identify Landsat-8
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scenes that are dominated by SCCs. Therefore, we selected scenes by eye inspection, and
114 scenes were obtained. The scenes span the period from 2014 to 2023.

Figure 1. Study area and locations of the 292 SCC samples from the Landsat-8 scenes.

Each Landsat-8 scene covers a spatial area of approximately 190 km × 190 km. Due to
the spatial variations of weather conditions, it is unusual that such a large area is covered by
a single cloud type, e.g., a SCC. As a result, the scenes need to be cropped to exclude cloud
types other than SCCs. For clarity, the remaining scenes after cropping are called samples.
Two constraints were imposed during the cropping. First, the samples are rectangular,
and the four edges are parallel to the original Landsat-8 scenes. Second, each edge of the
samples is longer than 70 km. This length is big enough to cover a sufficient number of
SCCs. More importantly, it is close to the grid interval of global climate models, so our
results can be used in the parameterization of SCCs. For each of the 114 scenes, at least
one and at most four samples were obtained after cropping. A total of 292 samples were
produced in total. Their positions are shown in Figure 1.

2.3. Cloud Identification Method

An official cloud mask product of Landsat-8 scenes is available. It uses the Fmask 4.0
algorithm [34] and has a high overall accuracy. However, it is found that the official product
sometimes incorrectly identifies water bodies and riverbanks as clouds, and sometimes
incorrectly identifies scattered SCCs as cloud decks when the SCCs develop in a cold air
mass. These misidentifications cannot be ignored for the purpose of this study, so a revised
algorithm was developed. The bands used in the revised algorithm are listed in Table 1.
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Table 1. Landsat-8 bands used in this study. NIR is near infrared, SWIR is shortwave infrared, and
TIR is thermal infrared.

Band Number Band Name Wavelength (µm) Resolution (m) Sensor

2 Blue 0.452∼0.512 30 OLI
3 Green 0.533∼0.590 30 OLI
4 Red 0.636∼0.673 30 OLI
5 NIR 0.851∼0.879 30 OLI
6 SWIR1 1.566∼1.651 30 OLI
7 SWIR2 2.107∼2.294 30 OLI

10 TIR 10.60∼11.19 100 TIRS

Following Zhu et al. [35], potential cloudy pixels were first identified using the nor-
malized difference vegetation index (NDVI), which is defined as

NDVI =
Band5− Band4
Band5 + Band4

(1)

here, Band4 and Band5 are the top-of-atmosphere (TOA) reflectance of the fourth and fifth
bands. For cloudy pixels, the NDVI is usually much smaller than 1. Here, we used a
threshold value of 0.5. The reflectance of clouds is flat in the visible range, so clouds look
white. The “whiteness” index is defined as [36]:

Whiteness =
4

∑
i=2
|Bandi− MeanVis|/MeanVis (2)

MeanVis =
1
3

4

∑
i=2

Bandi (3)

here, Bandi is the TOA reflectance of the i-th band. The cloud is whiter when the whiteness
index is closer to 0. Here, a threshold of 0.6 was used. The results of this step were still
contaminated by water bodies, buildings, bare soils, etc.

Water has a small reflectance in the NIR band, so water bodies can be effectively
removed using this band. A threshold value of 0.15 was selected. In addition, for buildings
and bare soils, the reflectance of Band 6 is larger than that of Band 5 [37], while for clouds,
the reflectance of Band 6 is smaller than that of Band 5, so another criterion was applied:

Band6 < Band5 (4)

Clouds are cooler than the surface. Zhu et al. [35] used a fixed threshold of brightness
temperature (BT), derived from band 10. Here, a dynamic BT threshold was obtained
for each sample using the Otsu algorithm, which categorizes the pixel-level BTs into two
clusters so that a threshold BT is defined. Pixels with BTs lower than the threshold BT are
identified as cloudy pixels.

After applying all the criteria discussed above, it was found that the results were still
contaminated by noise pixels and elongated features (e.g., roads), and it was also found that
some clouds are only briefly connected. These were avoided by performing morphological
opening, which first erodes the pixels at the edge of the object, and then dilates the resulting
object. Figure 2 shows an example of the cloud identification results. A comparison of
Figure 2c,d indicates that the noise pixels were removed and the briefly connected clouds
were separated, and a comparison of Figure 2b,e reveals that cities and roads were removed.
Figure 2 suggests that the clouds were correctly identified.
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Figure 2. (a) A real-color composite sample. (b) The result after applying the NDVI and the whiteness
tests. (c,d) The results before and after applying the morphological opening. The region of (c,d) is
shown with the red rectangle in (e). Such a small area is shown in (c,d) for clarity. (e) The final result
of the cloud identification. This sample is for 29 July 2014.

Sixty samples were randomly selected to further evaluate the accuracy of the cloud
identification results. For each sample, the cloud identification results produced by the
aforementioned algorithm are compared with visual interpretation results at 100 randomly
selected points. The mean producer’s accuracies are 87.3% for cloudy pixels and 99.5% for
clear pixels. The mean user’s accuracies are 94.6% for cloudy pixels and 98.4% for clear
pixels. The mean overall accuracy is 98.1% and the mean κ coefficient is 0.87. These metrics
indicate that the cloud identification method is reliable.
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3. Results and Discussion
3.1. Cloud Size Distribution

The identified cloudy pixels were four-way connected to form clusters. Each cluster is
defined as a cloud [9]. The size of a cloud is defined as:

l =
√

A, (5)

where A is the area of the cloud. The CSD is defined as:

N(l) =
dN
dl

, (6)

where dN is the number of clouds whose sizes are between l and l + dl. In practice, bins of
finite sizes were used to calculate the CSD, so that:

N(l) ≈ ∆N
∆l

, (7)

where ∆N is the number of clouds in the size bin whose width is ∆l. Two methods are
frequently used to establish the size bins, i.e., linear binning and logarithmic binning.
These two methods produce slightly different CSDs [22]. Here, we adopted the logarithmic
binning. An example CSD is shown with the dots in Figure 3. Hereafter, the CSD calculated
using Equation (7) is called the original CSD, so that it can be distinguished from the fitted
CSD discussed below.

Figure 3. The original CSD (dotted), and the fitted CSD (yellow line) obtained using piecewise
regression for a sample on 29 July 2014. The dashed line shows a reference line with an exponent
of −1.7.

As discussed in Section 1, various functional forms have been proposed to describe
CSDs. In this study, we adopted the power law because it fits the data well, as shown later.
Specifically, the fitted CSD is described as:

N(l) =
{

a1lb1 , ( l < lSB)
a2lb2 . ( l ≥ lSB)

(8)

here, a1, b1, a2, and b2 are constants, and lSB is the scale break. These five parameters are
obtained using piecewise regression [38,39]. Note that logarithms are taken for both l and
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N(l) before the piecewise regression is invoked. The corresponding fitted CSD is also
shown in Figure 3. It is clearly seen that the CSD follows two power laws separated by a
scale break.

Piecewise regression was performed on each sample to derive the fitted CSDs and
the associated scale breaks. We first focus on the scale breaks, as shown in Figure 4. The
scale break varies from 100 to 1900 m. This is similar to the results of Neggers et al. [15],
who found that the scale break varies from 400 to 1250 m. We note that the variation of
scale break in this study is caused by the variation of surface properties (e.g., topography)
and weather conditions, while the variation of scale break in Neggers et al. [15] is mainly
caused by the diurnally varying surface heating. Figure 4 also shows that the scale break
has a mode at 800 m. Further investigation is required to understand the formation of
the mode.

Figure 4. Histogram of scale breaks for the 292 SCC samples.

The original CSDs of all samples are shown in Figure 5a. Due to the variations of
surface properties and weather conditions, the cloud number at a given cloud size varies
by approximately one order of magnitude, and it is difficult to identify the power laws.
In order to collapse the CSDs, Neggers et al. [15] normalized both the cloud size and the
cloud number. Specifically, the normalized cloud size is defined as:

l′ =
l

lSB
. (9)

Figure 5. CSDs of all samples. (a) The original CSDs. (b) The CSDs where cloud sizes are normalized
by scale breaks and cloud numbers are normalized by N0∼∞. (c) The CSDs where clouds sizes are
normalized by scale breaks and cloud numbers are normalized by N0.2∼1.
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In this situation, the CSD becomes N∗(l′), and is related to N(l) via

N∗
(
l′
)
= N(l)lSB (10)

The cloud numbers are further normalized by the total number of clouds:

N0∼∞ =
∫ ∞

0
N∗
(
l′
)
dl′. (11)

Note that the subscript on the left-hand side is used to emphasize that clouds of all
sizes are included. After the two normalizations, the CSD becomes

N∗∗
(
l′
)
=

N∗(l′)
N0∼∞

(12)

Figure 5b shows the normalized CSDs, as defined by Equation (12), for all samples. It
is seen that the normalized CSDs clearly exhibit the double power laws, consistent with
the findings of Neggers et al. [15]. However, Figure 5b also shows that even after the two
normalizations, the normalized cloud number still varies by approximately an order of
magnitude at a given cloud size.

For satellite data, the cloud size has a finite lower limit, which is related to the pixel
size, so the lower limit of integration of Equation (11) is actually not 0, but is determined by
the pixel size and the scale break. Furthermore, Figure 4 shows that the scale break varies
substantially from one sample to another. In this situation, the lower limit of integration
also varies substantially. This means that the integration is performed for substantially
different intervals. Similar arguments also apply to the upper limit of integration. We note
that the integration of Equation (11) is much more sensitive to the lower end than to the
upper end due to the double-power law behavior of the CSD. In this study, we normalize
the cloud numbers using

N0.2∼1 =
∫ 1

0.2
N∗
(
l′
)
dl′. (13)

The CSD becomes:

N∗∗∗
(
l′
)
=

N∗(l′)
N0.2∼1

. (14)

With the help of Equation (13), the interval of integration is explicitly controlled.
Figure 5c shows the CSDs as defined by Equation (14). Obviously, the revised method of
normalization collapses the data better.

The values of b1 and b2 in Equation (8) are shown in Figure 6. The mean values
of b1 and b2 are very close to their counterparts obtained by Mieslinger et al. [22], who
investigated SCCs over oceans. Other studies usually reported values for b1 but not for
b2. The reported values of b1 vary from −1.7 [15] to −1.9 [40] and −2.5 [41]. It is clear that
these values of b1 are within the range found by this study (Figure 6).

3.2. The Variation of Cloud Numbers and Sizes with the Elevation

By inspecting individual samples (e.g., Figure 2), it is clear that the presence of to-
pography substantially affects the spatial distribution of SCCs. In order to quantitatively
investigate how the number and sizes of clouds vary with the elevation, the connection
between clouds and elevation needs to be established. This is simply carried out by defining
the centroid of a cloud to be the position of the cloud [9,42], after which the elevation of the
position right below the centroid of the cloud is connected to the cloud. In addition, since
the samples cover different regions, the range of the elevation varies from one sample to
another. In this situation, the elevation is normalized so that all samples can be averaged to
produce an overall picture. The normalized elevation is defined as zn = (z− z0)/(z1 − z0),
where z is the elevation, and z0 and z1 are the smallest and largest elevations associated
with the sample.
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Figure 6. The box-whisker plots of coefficients b1 and b2 in Equation (8).

The variation of the cloud number density with the elevation is shown in Figure 7.
Six classes are defined according to the normalized cloud size. For each sample, the cloud
number density of each size class is calculated for each elevation bin. Here, 10 equally-
spaced bins of normalized elevation are used. As discussed above, the total number
of clouds in each sample varies by approximately an order of magnitude. Thus, the
cloud number densities are also normalized by N0.2∼1 before they are averaged over all
the samples.

Figure 7. (a) The variation of the normalized cloud number density with the normalized elevation.
(b) The variation of the cloud number density relative to the cloud number density of the first bin of
the normalized elevation.

At a given elevation, Figure 7a shows that the cloud number density decreases with
cloud size. This is consistent with the characteristics of the CSDs discussed in Section 3.1.
For each size class, the cloud number density generally increases with the elevation. Fur-
thermore, Figure 7b shows that the number density of the largest clouds (e.g., those with
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l′ > 1) increases faster than that of the smaller clouds. This indicates that the fraction of large
clouds increases with the elevation. Near the higher end of the elevation, the variation of
the cloud number density with the elevation becomes more complicated, e.g., the number
density of clouds with 0 < l′ < 0.2 decreases with the elevation while the number density of
clouds with 0.4 < l′ < 0.6 increases with the elevation. Further investigation is required to
understand this complicated behavior.

The variation of the cloud size with the elevation is shown in Figure 8. For small
clouds, e.g., those at the 10th, 30th, and 50th percentiles, their sizes hardly change with the
elevation. For large clouds, e.g., those at the 90th and 95th percentiles, their sizes increase
with the elevation, and the size of the clouds at the 95th percentile increases faster than the
size of the clouds at the 90th percentile. Previous studies have shown that larger SCCs are
more likely to develop into deep convective clouds [9], and Figure 8 suggests that deep
convective clouds tend to form near the top of the mountains. This is consistent with the
results of previous studies [29,43].

Figure 8. The variation of the normalized cloud size with the normalized elevation.

3.3. Discussions

Section 3.1 shows that even in the presence of topography, CSDs can also be described
by double power laws separated by scale breaks, similar to CSDs obtained over homo-
geneous surfaces. However, Section 3.2 shows that both the number and sizes of clouds
do vary with the elevation. This indicates that it is not sufficient to describe cloud fields
with CSDs only. The variations of cloud numbers and cloud sizes with the elevation, and
probably some other information, should be used together with the CSDs to describe the
cloud fields over mountainous terrains.

4. Conclusions

Shallow convective clouds (SCCs) frequently occur over mountainous terrain. How-
ever, few studies investigated topographic effects on SCCs. This study investigates the
topographic effects on SCCs using scenes of the Landsat-8 satellite and an algorithm
specifically designed for identifying SCCs.

We found that the cloud size distributions (CSDs) over mountainous terrains are
well-described by double power laws separated by scale breaks, similar to the results
obtained for SCCs over homogeneous surfaces, such as ocean surfaces. The CSDs are
controlled by two parameters. The first is the scale break, and the second is the number
of clouds with sizes between 0.2 and 1 times the scale breaks. The second parameter is
different from that used by a previous study [15], where the number of all clouds is used.
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The number of clouds generally increases with the elevation, regardless of the sizes of the
clouds. Furthermore, it was found that the number of clouds larger than the scale breaks
increases faster than that of the smaller clouds. It was also found that the sizes of the clouds
at the 90th and 95th percentiles increase with the elevation, while the sizes of the clouds at
lower percentiles hardly vary with the elevation. These results indicate that large clouds
tend to develop near the tops of the mountains. Our results suggest that cloud fields over
mountainous terrains cannot be simply described with CSDs; other information, such as
the variations of cloud numbers and cloud sizes with the elevation, should also be used.

Several aspects can be explored to further enhance our understanding of topographic
effects on SCCs. First, more samples of SCCs should be collected. In this study, only
292 samples were used, so it is unclear whether the results of this study can be generalized
to other regions. In order to obtain more samples, a larger study area and more satellites
(e.g., other satellites of the Landsat series, ASTER, and the Sentinel series) should be utilized.
However, as discussed earlier, no automatic method is currently available to select scenes
dominated by SCCs, so it is difficult to increase the number of samples. We hope that the
rapidly developing machine learning technique will provide a solution to accelerate the
identification of SCCs from high-resolution satellite data. Second, the satellite data should
be combined with meteorological data to investigate how the topographic effects on SCCs
are modified by meteorological conditions, such as surface wind speed, boundary-layer
height, atmospheric stability, and others. Special attention should be paid to how the scale
break varies with these meteorological conditions, because the scale break is probably a
controlling parameter of the CSD.
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