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Abstract: Motorcycle detection and collision warning are essential features in advanced driver
assistance systems (ADAS) to ensure road safety, especially in emergency situations. However,
detecting motorcycles from videos captured from a car is challenging due to the varying shapes and
appearances of motorcycles. In this paper, we propose an integrated and innovative remote sensing
and artificial intelligence (AI) methodology for motorcycle detection and distance estimation based
on visual data from a single camera installed in the back of a vehicle. Firstly, MD-TinyYOLOv4 is
used for detecting motorcycles, refining the neural network through SPP (spatial pyramid pooling)
feature extraction, Mish activation function, data augmentation techniques, and optimized anchor
boxes for training. The proposed algorithm outperforms eight existing YOLO versions, achieving
a precision of 81% at a speed of 240 fps. Secondly, a refined disparity map of each motorcycle’s
bounding box is estimated by training a Monodepth2 with a bilateral filter for distance estimation.
The proposed fusion model (motorcycle’s detection and distance from vehicle) is evaluated with
depth stereo camera measurements, and the results show that 89% of warning scenes are correctly
detected, with an alarm notification time of 0.022 s for each image. Outcomes indicate that the
proposed integrated methodology provides an effective solution for ADAS, with promising results
for real-world applications, and can be suitable for running on mobility services or embedded
computing boards instead of the super expensive and powerful systems used in some high-tech
unmanned vehicles.

Keywords: measurements; videos; motorcycle detection; distance estimation; crash prevention;
YOLO; monodepth

1. Introduction

According to the National Highway Traffic Safety Administration (NHTSA), motorcy-
cle accidents were responsible for approximately 14% of all accident fatalities in the last
decade. Numerous studies have been conducted in an attempt to reduce the number of
accidents in transportation systems, with a focus on designing advanced driver assistance
systems (ADAS) that can detect danger and provide warnings to prevent dangerous car
accidents using a variety of sensors [1–4]. Although active sensors are effective for safe
driving [5,6], they remain expensive, often costing as much as the vehicle itself [1], and
can be easily damaged in small collisions. In contrast, cameras have gained popularity
due to their simpler image processing techniques, practicality, and lower cost for use in
ADAS applications [7].

However, motorcycles remain one of the most challenging objects on the road to
detect, as they have different shapes and sizes depending on the manufacturer, and their
appearance can vary depending on the country of use. For example, a report released by
the Tehran Police revealed that a significant number of motorcycle accidents on Tehran’s
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streets involve motorcycles with black windshields, as shown in Figure 1. Although this
type of windshield provides motorcycle drivers with better protection against the wind,
debris, bugs, and extreme temperatures, riding with it may create difficulties in steering
or decrease visibility, increasing the likelihood of accidents. Furthermore, the difference
in appearance can cause problems for existing motorcycle detection algorithms, leading
to inaccurate bounding box estimation and false detection results. Therefore, there is a
need to develop a methodology that can accurately detect this type of motorcycle, monitor
and track its relative location, and provide appropriate data and information for drivers to
promote safer driving.

Figure 1. An example of a motorcycle covered with a black windshield.

Existing methods of driver warning algorithms can use either one network or a combi-
nation of two different algorithms for object detection and depth estimation. DisNet [8]
is a one-network approach that combines YOLOv3 and a fully connected neural network
to detect bounding boxes with distances, although it is only calculated on specific static
scenes. In Dist-YOLO [9], the distance estimation task is integrated with the YOLO archi-
tecture and the heads predicting vectors are extended with appropriate information about
distances. These models require an enriched dataset that has label distance information
for each drawn bounding box, which is mostly obtained through LiDAR or on-site mea-
surement data. Therefore, most recent studies have focused on detecting motorcycles with
helmets [10–13] or license plates [14,15] and then calculating their distance based on the
size of the detected motorcycle [16,17]. Furthermore, ADAS systems bloomed specifically
in difficult and challenging situations such as motorcycle safety relying on warning systems
for motorcyclists by using YOLOv4 and machine learning techniques based on dual-lens
stereo cameras [18] or warning vehicle drivers using multi-camera data [19]. However,
these studies could not determine the distance between the camera and the vehicles with a
single camera.

In recent years, numerous studies have focused on using convolutional neural network
(CNN) algorithms for road vehicle detection applications from single-camera images [15,20].
CNN models are typically classified into two types: two-stage and single-stage methods.
In two-stage methods, the algorithm first identifies the proposed area of the object’s pres-
ence and then determines the class type of the identified object. Some common two-stage
methods are R-CNN [21], Fast-R-CNN [22], and Faster-R-CNN [23], which are gener-
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ally time-consuming for real-time object detection applications. In contrast, single-stage
approaches perform object localization and classification simultaneously in one step, mak-
ing them faster with respect to two-stage methods [24]. In the ADAS application, SSD
(Single Shot MultiBox Detector) [25] and YOLO [26–29] are state-of-the-art single-stage
algorithms for real-time helmeted and non-helmeted motorcycle detection [30]. In addi-
tion, combining YOLO and CNN techniques helps in achieving better automatic helmet
detection [12], face detection [31,32], license plate recognition [33], and vehicle [34] and
pedestrian detection [35] for vulnerable road user safety. Based on prior studies in detecting
cars, motorcycles, and pedestrians based on the VOC2012 database [36], the YOLOv2 [26]
achieved the same accuracy six and two times faster than Faster R-CNN and SSD, re-
spectively. To increase motorcycle detection accuracy, YOLOv2 was also used for human
detection as well as helmet detection [14]. However, there is evidence that due to the
small size and poor quality of the motorcycle images, YOLOv3 [27] was unable to detect
motorcycles in some situations [37]. Despite this, YOLOv3 is generally fast in performing
vehicle detection in complex scenes based on training on the VOC dataset compared to
other traditional object detection algorithms [24]. Furthermore, the refined YOLOv4 [38]
achieved an average accuracy of 67% and a speed of 38 fps in car, truck, and motorcycle
tracking applications. Finally, although the YOLOv5 [39] model was used for safety vehicle
detection mechanisms [40], reservations exist, as it was not developed by the original
author of YOLO and is less innovative than previous versions [41]. Tiny architectures for
the YOLO algorithm series were proposed in order to use fewer computational resources
than the full-scale YOLO series, allowing for higher-speed performance, even on mobile
devices or embedded systems [42].

In addition to object detection, a variety of information, such as depth maps and
distance values, can also be obtained from camera calibration and road objects by means of
different methods like linear regression and the pinhole algorithm [43–45]. Two other basic
approaches in the image depth map estimation field are SLAM (simultaneous localization
and mapping) [46] and SfM (structure-from-motion) [47], which use object and scene
movements to evaluate depth [48]. Although SfM regularly performs better than SLAM,
SfM is not applicable in ADAS applications because information regarding the camera’s
pose and movements is needed in all three directions for depth estimation [49]. Therefore,
deep learning methods may solve some of these problems in depth and pose estimation.
Deep learning methods in depth map estimation are broadly divided into two types:
supervised [50] and unsupervised learning methods [51]. Supervised models predict
depth by training them with massive amounts of corresponding ground-truth depth map
data [52], the real distances from the object in the KITTI dataset to the camera [53], or with a
combination of Video and RTK GNSS data [54]. Since this process is costly and training data
are difficult to obtain, unsupervised or self-supervised networks have been used for depth
estimation from a single image [51,55]. Compared to conventional stereo-based methods,
self-supervised depth estimators provide widespread availability of training sequences
of monocular video, but they need to simultaneously calculate depth and ego-motion by
minimizing the photometric reprojection loss [51,56]. For the purposes of resolving the
unknown scale factor through sequence input, a self-supervised learning network with a
new reconstruction loss function was used with an average inference time of 12.5 ms per
image [57]. As a faster state-of-the-art model, the Monodepth2 has acceptable results in
the depth estimation used in an autonomous vehicle or smart navigation [58], which was
enhanced from ResNet18. Due to the advantages of these models, another study [59] tried
to fine tune them using a transfer learning method from existing proposed models [60],
rather than building new models from scratch. EndoDepth [61] is a retrained model of the
Monodepth2, but this requires a one-time offline camera calibration for pose estimation,
which may cause some issues due to area occlusion and texture-copy artifacts [51], which
may require some improvement in generating a disparity map for better performance.

Despite these advances, most previous studies, related to the classification of motor-
cycle images, relied on identifying small objects such as helmets or license plates, which
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may not be visible in all situations and at long distances. Furthermore, there has been
a lack of research focused on real-time range estimation for moving motorcycles using
improved depth maps. Instead of estimating the relative distance (or depth), it needs to es-
timate accurate and reliable distances from motorcycles in a variety of scenarios, including
dynamic backgrounds.

Paper Contributions
To address the aforementioned challenges, the present study proposes an AI-supported

detection and measurement methodology from images (or videos) acquired from a moving
vehicle. The methodology refines and improves the performance of the original tiny-
YOLOv4 and Monodepth algorithms. We exploit advanced learning techniques to improve
range estimation for moving motorcycles in real time, regardless of the presence of small,
visually distinct components such as helmets or license plates. Furthermore, the high-speed
performance of the proposed MD-TinyYOLOv4 (Motorcycle Detection by tiny-YOLOv4) en-
ables it to run on small computers or embedded hardware in ADAS applications, allowing
drivers to be alerted of approaching motorcycles.

The main contributions of this paper are as follows:

1. The exploitation of state-of-the-art deep learning methods for detecting and estimating
the range of motorcycles from remote sensing data;

2. The use of different data augmentation techniques, such as rotation, changing light,
color space augmentation, mosaic images, and horizontal flip data augmentation, to
improve performance in terms of motorcycle detection;

3. The examination of the performance of eight variations of the YOLO algorithms for
object detection in images acquired from a car;

4. The proposal of the MD-TinyYOLOv4 algorithm, which uses data augmentation,
K-means++ clustering to optimize anchor box predictions, training with the Mish
activation function instead of current functions such as ReLU or Leaky-ReLU and the
addition of a dense SPP (Spatial Pyramid Pooling) network to accurately extract more
features for the better detection of motorcycles near cars;

5. The evaluation of the performances of Monodepth1 and Monodepth2 using our
dataset and refinement using a joint bilateral filter to generate a disparity map with
better visual quality and range value estimation;

6. The provision of sufficient visualization results in classifying the condition of a motor-
cycle in the image as a dangerous or normal situation.

The following section (Section 2) presents the details of the proposed architecture,
including the proposed MD-TinyYOLOv4 and Monodepth-based algorithms, as well
as the captured remote sensing data for the methodology development and evaluation
(Section 2.5). In Section 3, we provide a comprehensive description of the experimental
results, with an analysis of the proposed motorcycle detection and range estimation models
from monocular images. Finally, in the last section, the contributions and findings of this
paper are summarized and some potential directions for future research are suggested.

2. Materials and Methods

The proposed methodology consisted of three main steps (Figure 2): (i) motorcycle
detection, (ii) motorcycle depth estimation, and (iii) camera-to-motorcycle distance calcu-
lation. Finally, bounding boxes and computed distances were combined to provide (or
not) an alert. The methodology was applied to images of both moving and stationary
motorcycles acquired from a moving car.

For the motorcycle detection step (Section 2.1), several techniques were utilized to
improve motorcycle detection, particularly for those with black windshields. These tech-
niques include data augmentation, initial anchor box optimization, activation function
modification, and backbone architecture improvement. In addition, refinement was applied
to the disparity maps and the results were combined to estimate the range inside the
motorcycle bounding box, which was then checked against a selected threshold.
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Figure 2. An outline of the three steps of the proposed methodology for motorcycle range estimation:
a fusion is performed between object detection and depth estimation tasks using a single camera
installed in the back of a vehicle.

For the motorcycle depth estimation step (Section 2.2), a state-of-the-art unsupervised
monocular depth estimation model trained on a large-scale dataset was used to estimate
the depth map of the detected motorcycle.

Finally, in the camera-to-motorcycle distance calculation step (Section 2.3), the distance
between the camera and the motorcycle was calculated using the estimated depth map
and the camera’s intrinsic and extrinsic parameters. This step enabled precise distance
determination of the motorcycle from the camera in real-time.

The proposed methodology integrated object detection and depth estimation tasks to
estimate the range of a motorcycle in real-time, even under challenging conditions. This
approach addressed the limitations of previous studies and offered a promising solution
for improving motorcycle safety in autonomous driving and smart navigation applications.

2.1. Motorcycle Detection with MD-TinyYOLOv4

YOLOv4 [28] is an improvement upon YOLOv3 and is composed of multiple convolu-
tional layers, batch normalization, and activation functions. The tiny-YOLOv4 algorithm
is a lightweight version of YOLOv4, one-tenth its size, that can detect a wide variety of
objects in the MS-COCO dataset [62]. It includes twenty-two convolutional layers and three
max-pooling layers. Unlike other YOLO types, tiny-YOLOv4 uses the CSPDarkNet-29 for
feature extraction and C-IoU as a loss function during training. The Leaky-ReLU activation
function is applied throughout the training of the algorithm. Compared to other tiny vari-
ants, such as tiny-YOLOv1, v2, and v3, tiny-YOLOv4 is the fastest algorithm that produces
accurate detection results and is suitable for mobility services or embedded computing
boards. However, the tiny-YOLOv4 algorithm struggles with detecting distinct tight bound-
ing boxes and small objects. While some researchers have improved different types of
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YOLOv4 and tiny-YOLOv4 for vehicle detection [38] and bike recognition [63], regardless
of their speed and accuracy, small and distant motorcycles with a black windshield are still
challenging to detect. To address this challenge, we propose an MD-TinyYOLOv4 with a
similar head and backbone to the tiny-YOLOv4 (Figure 3).

Figure 3. The MD-TinyYOLOv4 architecture, with its flowchart and proposed refinements.

The initial dimensions of bounding boxes were calculated appropriately as part
of our proposed detection model. Anchor boxes or prior boxes are a group of initial
candidate boxes with a fixed value of width and height that directly affect the accuracy and
processing time of the detection. The YOLOv3 and YOLOv4 models use YOLO detection
layers that compute anchor box dimensions using K-means clustering [64]. However,
inaccuracies in this clustering method can lead to wrong data points being grouped in
a class, affecting the accuracy of the centroids chosen. To address this, we refined the
clustering by using the K-means++ method [65], which independently initializes centroids
and selects the optimum anchor box number to prevent network convergence during
training. In K-means++, K random boxes are first chosen as cluster heads and in each
repetition, anchor boxes are assigned around the nearest centroid. The next cluster center
is then updated based on the highest anchor box probability [66]. The probabilities are
computed based on Equation (1) [65]:

P =
d(x)2

∑n
i=1 d(xi)2 (1)

where d(x) is the direct distance obtained by evaluating the IOU (intersection over union)
between each anchor box and the intended centroid. The procedure continues based on an
IOU index as a threshold value until convergence. The full-scale YOLOv3 and YOLOv4
models use SPP [67] as an appropriate feature extraction network, which is not included in
the CNN architecture of the tiny-YOLOv4. To improve distant motorcycle detection with
more accurate bounding box estimation in our proposed MD-TinyYOLOv4, we added an
SPP composed of 4 max-pooling layers with sizes of 3 × 3, 5 × 5, 7 × 7 and 9 × 9. After
the 15th convolutional layer, the size of the produced feature map was converted from
13 × 13 × 512 to 13 × 13 × 2560 by the network.
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The proposed detection model replaced the Leaky-ReLU activation function with
the Mish function for better feature extraction in both the backbone and detection layers.
Compared to other activation functions such as Sigmoid, ReLU, Leaky-ReLU, RReLU,
ELU, GELU, SELU, SReLU, ISRU, and SoftPlus, the Mish function outperformed them
with superior results [68]. The Leaky-ReLU has some limitations, such as continuity at
zero, which can cause problems for gradient-based optimization [69]. Additionally, the
low precision of the sigmoid during learning may lead to suboptimal performance and
prevent the optimization from reaching local minimum values [70]. However, the Mish
function was specifically designed to address these limitations by pushing signals to the
left and right, making it easier to push feature creations toward their optimal point. Based
on Equation (2), the Mish function has better expressivity and information flow due to its
smooth and non-monotonic values.

f (x) = x.tanh (ln(1 + ex)) (2)

As shown in Figure 4, the Mish function has unbounded above and bounded below
properties that help to prevent saturation and result in strong regularization effects [28].
Furthermore, the infinite continuity of Mish is a significant advantage over ReLU and
Leaky-ReLU, which have an order of continuity of 0 and can lead to undesired problems in
gradient-based optimization. As reported in Section 3.2.1, the use of the Mish activation
function in MD-TinyYOLOv4 resulted in a 5.4% and 4.8% accuracy increase compared to
ReLU and Leaky-ReLU, respectively, in the detection of motorcycles.

Figure 4. Mish activation function [68].

Although YOLOv4 utilized various data augmentation techniques, none of them
were used in the training of tiny-YOLOv4. Therefore, during the training process of
MD-TinyYOLOv4, besides using some common augmentation methods, such as rotation,
changing light, color space augmentation, and horizontal flip, the Mosaic and SAT data
augmentation techniques were incorporated, enhancing the results. In this case, the combi-
nation of these techniques helps the model to become more robust to the surroundings of
the objects and precisely detect the mentioned motorcycles.

Mosaic augmentation [28], illustrated in Figure 5, is a composite image technique that
combines four images into one to improve training and identify objects at smaller scales.
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During the training, this method can help to avoid over-fitting and improve the optimal
speed [71]. SAT is a technique that finds the part of the image on which the network
relies most during training and is used to prevent overfitting in network training and
increase model generalization. This technique involves changing the image by creating
an oppositional attack on the current model, even if no objects are proposed in the image.
Then, the model is trained with new images with their original bounding boxes and class
labels. By incorporating these techniques, the MD-TinyYOLOv4 model is less likely to
overfit and more likely to be applicable to a wider range of scenarios.

Figure 5. Sample images for data augmentation.

2.2. Monodepth for Depth Estimation

Range estimation should be performed at the same time as motorcycle detection in
images from a monocular camera. Since collecting the ground truth depth data is a very
big challenge in a wide range of environments, in 2017, a method called Monodepth was
introduced [51]. In the Monodepth method, instead of using depth data or point cloud
data as ground-truth data, the model uses RGB images as inputs for training both types of
temporal images and the corresponding stereo pairs. For the purposes of training the mono
frames, pose information and the depth networks are used alongside each other to learn
the poses of the frames. However, this resulted in more errors compared to a stereo-pair
known for reprojecting all frames from camera calibration. In this paper, two variants of
the existing self-supervised approach, called Monodepth1 and Monodepth2 [51,60] were
trained on a custom stereo-pair dataset of the Mynt-Eye camera. Based on their comparison,
a relevant candidate for monocular depth prediction was chosen.

Monodepth1 is a 7-layer convolutional network for a single-image depth map esti-
mation, regardless of scene geometry and the types of available features. For the purpose
of predicting the depth, this network uses a multi-scale encoder–decoder through the
different depth maps at each scale of the decoder being up-sampled to the reference input
resolution [51]. The innovation of this method is in using the constraint related to the
connection between the disparity maps made by the left and right images of the same
scene. In the training phase, both the left image and the left disparity map are used for
reconstructing the right image. Also, the left image can be reconstructed using the right
image and its disparity map.

Monodepth2 [60] is an upgraded version of an unsupervised CNN-based approach
that results in accurate depth estimation. Compared to the previous version, this model
can better preserve the edges in the disparity map with a lower training time. This model
has also described a depth prediction network and joint training loss for both detecting
and looking at objects and predicting the final depth map from another viewpoint [60].
To predict a dense depth map (Dt) in this network, based on Equation (3), a combination
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of three main terms is used in the loss functions, namely the photometric reprojection
error (L

i
p), the enforcement of disparity smoothness (L

i
s), and the consistency between the

predicted left disparity map and right disparity map (L
i
c). As shown in Equation (4), the

final loss function (L) is defined as the sum value of each (L
i
) in each of four different scales

(I = 1, 2, 3, 4).
Ls

i
= L

i
p + L

i
s + L

i
c (3)

L = ∑4
i=1 L

i
s (4)

Here, the photometric reprojection error (pre) causes the network to predict a dense
depth map with a minimum of this error. Based on Equations (5) and (6) this loss function
is combined with the least absolute deviations (L1) [72] and the structural similarity index
(SSIM) [73] instead of a Gaussian function. Here, Iij is an input color image, Ĩij is the
reconstruction with respect to the target image Iij, and N is the total number of all pixels
in the image set to 0.85. Also, a significant improvement was applied to this reprojection
error to increase the quality of the predicted depth. Therefore, based on Equation (7), the
minimum photometric error among all images is used, which provides more accurate
results by reducing the number of artifacts at image borders and more distinct sharp
boundaries in occluded areas.

Lp =
1
N ∑

ij
pre
(

Iij, Ĩij

)
(5)

pre
(

Iij, Ĩij

)
=

α

2

(
1− SSIM

(
Iij, Ĩij

))
+ (1− α)‖Iij − Ĩij‖ (6)

Lp = min
t′

(pre
(

Iij, Ĩij

)
) (7)

The disparity smoothness loss tries to locally smooth the discontinuities of the disparity
map, which mostly occur at image gradients [74]. Therefore, d∗ is the predicted normalized
disparity map, Iij is the input image, and ∂x and ∂y are, respectively, gradients of the input
image in the x and y directions.

Ld =
1
N ∑

ij

∣∣∣∂xd∗ij
∣∣∣ e−‖∂x Iij‖ +

∣∣∣∂yd∗ij
∣∣∣ e−‖∂y Iij‖ (8)

d∗ =
d
d

(9)

According to the consistency loss (LC), the coherence between the two predicted
disparity maps dl

ij and dr
ij is, respectively, calculated for the left and right images in order

to better predict the disparity map.

Lc =
1
N ∑ij|d

l
ij − dr

ij

∣∣∣ (10)

The source code of this model was written to train different free datasets such as
Cityscape [75], ImageNet [76], and KITTI [77], which are accessible to all enthusiasts. The
study of deep learning models has shown that if the model is trained by a compatible and
rich database, an accurate depth map and relative distances of objects in the image will
be achieved [78]. In these methods, instead of requiring an large dataset of images with
known depth ground-truth data, a set of captured stereo images are used for the network
fine-tuning with Mynt-Eye camera calibration parameters. These parameters are defined in
Equation (11) within the K matrix as a camera intrinsic matrix in the training models. This
matrix was normalized by the image size w × h. Here, fx and fy are the two elements of
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the focal length of the camera (in pixels) in the horizontal and vertical directions. u0 and v0
are the optical centers expressed in pixel coordinates.

K =


f x/w 0 u0/w 0

0 f y/h v0/h 0
0 0 1 0
0 0 0 1

 (11)

2.3. Disparity Map Refinement

Errors and occlusion regions of the extracted disparity maps provided by Monodepth
have a direct effect on the precision of the final result. Therefore, a joint bilateral filter
was applied to rectify the error areas in the derived disparity map. This refinement
technique tried to close holes in the disparity map, although it preserved the boundaries
as the original image [79]. The equations of the joint bilateral filter are described in
Equations (12) and (13) [80]:

D′p =
1

Wp

n

∑
q∈s

Gσs(‖p− q‖) Gσr

(
Ip − Iq

)
Dp (12)

Wp =
1

Wp
∑n

q∈s Gσs(‖p− q‖) Gσr

(
Ip − Iq

)
(13)

where D’p is a generated pixel value when using a joint bilateral filter on the calculated
depth map (D) and the intensity image (I). Gσs and Gσr are Gaussian functions with the
mentioned parameters σs and σr, which define the size of the neighborhood. Also, s is a set
of pixels that neighbor the p, and Wp is a constant for normalizing the equation.

In Monodepth, the weight parameters in the network are trained according to the
camera calibration parameters [51]. Therefore, to achieve an accurate depth map on a single
image, each image must be captured by a camera with intrinsic parameters similar to the
camera parameters of the sensor used in the training dataset. To derive metric distances,
Equation (14) is applied to convert the refined disparity map:

D =
B× f

image_size× d
(14)

where D is the followed distance, B is a baseline, and f is the focal length (in pixels) of the
stereo images used for training. Also, in this model, the relative disparity output by the
model must be scaled by the original image’s width.

2.4. Combining Bounding Boxes and Disparity Maps

Finally, the refined disparity map is fused with the detected motorcycle boundary
boxes to determine a single distance-to-camera value. Since the points captured from
the front of the motorcycle are included as a set of points from the wheel to the upper
windshield, it is not possible to simply define these recorded points on a single and flat
surface. There are various models that can be used to select a single value as a candidate
for all depth pixels of the detected bounding box. In this paper, as shown in Figure 6, a
histogram of the pixel values is used to find the distance with the highest frequency and
choose the most optimal depth value of pixels assigned to the motorcycle class in the image.
If this distance value is lower than a chosen threshold, it will warn the driver about the
presence of an approaching motorcycle. We experimentally chose 4 m as the minimum safe
range threshold (Dt). If no danger is detected, the algorithm will jump to the next frame.
This threshold can be changed according to the conditions and the type of vehicle.
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Figure 6. The histogram diagram of the depth values of a detected motorcycle bounding box.

2.5. Proposed Dataset

Detection and range estimation models used separate datasets during fine-tuning and
training. Tehran (Iran) was chosen as the location for gathering images and collecting the
datasets, as its roads have many motorcycles with black windshields. A generalization and
extension of the datasets will be considered in the future.

2.5.1. Dataset for Motorcycle Detection

About 2000 images containing motorcycles with black windshields were captured as a
training dataset. All these images were taken using an iPhone 8 camera from both moving
and stationary motorcycles. This dataset was captured at different angles, distances, and
scales during the day. All the images were resized to 416 × 416 px as the input size of
the evaluation approach for the purposes of measuring the validity of the dataset. In the
fine-tuning process, these images were randomly separated into 70% for the training, 10%
for the validation, and 20% for testing. Flipping, rotating, mosaic, changing brightness,
saturation, and contrast were some of the data augmentation techniques used. This helped
object detectors to provide more features for better learning. Applying these techniques
enhanced the size of our dataset by approximately 25%, which improved training and
helped to avoid overfitting.

The LabelImg annotation tool [81] was used to annotate and extract distinct tight
bounding boxes for each of the images. It was necessary to convert the XML data annotation
files into VOC files first, which made a standardized image dataset for evaluating and
comprising other methods. For each image, a text file with the same name was created.
The class number, center coordinate of the bounding box (x and y), and image width and
height were among the five parameters in each row of the text document.

2.5.2. Dataset for Motorcycle Range Estimation

The distance between the motorcycle and the front car was calculated using fine tuning
and transfer learning from a Monodepth model. The images used in the training and testing
phases were taken with the same camera and focal length [60]. The Monodepth model is
trained using stereo images, while this model can ultimately estimate a disparity map from
a single-color input image. Therefore, the training dataset was created using stereo images
captured by the binocular Mynt-Eye camera (Table 1).

The dataset for depth estimation consisted of approximately 6000 pairs of rectified
images of synchronized left and right frames. Images were captured from Tehran streets
with varying traffic flows. Some preprocessing techniques, such as correcting radial and
tangential distortion at the time of capture, were considered. Figure 7 shows an example of
two pairs of these rectified images taken by the Mynt-Eye camera and used for network
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training. Images of different motorcycles with known distances between 0.3 and 7 m
were taken with the Mynt-Eye camera with an accuracy of 0.02 m to evaluate the final
alert results.

Table 1. Mynt-Eye camera parameters [82].

Camera Specifications Parameters

Mynt-Eye
D1000-IR-120/Color

Resolution 640 × 480 px

Pixel size 3.75 µm

Baseline 120 mm

Focal Length 2.45 mm

Visual Angle D:121◦ H:105◦ V:58◦

Radial distortion parameters * k1 = −0.3066, k2 = 0.00861

Tangential distortion
parameters * p1 = −0.0003, p2 = 0.0015

The radial distortion parameters * and the tangential distortion parameters * came from the camera calibration process.

Figure 7. Samples of a rectified pair of images taken by the Mynt-Eye camera.

3. Results

The proposed MD-TinyYOLOv4 and the existing Monodepth models were trained and
implemented using the Tensor Flow and PyTorch deep learning libraries. In the following
subsection, we describe the evaluation parameters (Section 3.1) as well as the proposed
model’s accuracy and prediction time (Section 3.2). All training and testing experiments
were performed on an Ubuntu18.04 system with one GPU (GTX-1060, 16 GB RAM, and
6 GB VRAM).

As the most recent NVIDIA kits have a RAM of between 8 GB and 16 GB [83], in some
existing autonomous vehicle applications, Jetson TX1 or Jetson Nano were used as accurate
and fast devices for inferencing [84]. Therefore, based on the results and computational
complexity of our model, the inference task can be run on these affordable devices instead
of the super expensive and powerful systems used in some high-tech unmanned vehicles.
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3.1. Evaluation Parameters

The results of the proposed algorithms are based on Equations (15)–(17), including
Precision, Recall, and F1 score:

Precision =
TP

FP + TP
(15)

Recall =
TP

FN + TP
(16)

F1 score = 2× Recall× Precision
Recall + Precision

(17)

RMSE =

√
1
T ∑T

i

(
dgt

i − di

)2
(18)

where TP indicates the true positive values, FP represents the false positive values and
FN presents the false negative values. Also, for testing depth and distance results, as in
Equation (18), the root means square error (RMSE) is obtained, which is almost a common
indicator for evaluating range estimation methods. Here, di

gt is the real distance and di is
the calculated distance of the motorcycle number i in the image.

3.2. Evaluation Results

According to the accuracies and speeds of different YOLO versions in detecting
motorcycles, the proposed MD-TinyYOLOv4 model was optimized based on the original
tiny-YOLOv4 model. Here, some of the key techniques were carefully hand-picked and
verified, such as using anchor box optimization, adding an SPP layer in dense feature
extraction, using data augmentation such as Mosaic and self-adversarial training (SAT),
and using the Mish activation function. On the other hand, for depth estimation, the existing
Monodepth models with a disparity map refinement were evaluated and compared based
on the proposed dataset.

3.2.1. Proposed MD-TinyYOLOv4

The proposed MD-TinyYOLOv4 algorithm was compared with other existing original
YOLO algorithms. For the purposes of testing the power and effectiveness of detecting
motorcycles, the proposed method was trained on the captured dataset comprising images
of motorcycles wearing black windshields on Tehran’s streets (Section 2.5.1). This training
was conducted by defining the hyperparameters and initial variables as an input size
of 416 × 416 px and a batch size value of 16. Also, the subdivision parameter and the
momentum were, respectively, set to 8 and 0.9, with a learning rate of 0.015. These
hyperparameters were handpicked, and we employed algorithms for training in 50 epochs
until the confidence threshold met 0.25 with the IOU threshold reaching 50%. The timing
procedure of this proposed model training took around 5 h for an appropriate 50 epochs.
Before starting the training, anchor box optimization using K-means++ helps tune the
object detector model to perform better detection of the small, large, and irregular objects in
a dataset. This ascertains different numbers of centroids to find the ideal trade-off between
the best IOU value and a sustainable training time. According to Figure 8, increasing the
number of K directly affected the accuracy. Through experiments, K = 10 achieved the most
optimal average IOU = 87.2%, considering a fine balance between model complication
and its performance. In Figure 9, the forms and dimensions of 10 predicted anchor boxes
based on the proposed dataset are shown. The values of these anchor boxes calculated via
K-means++ clustering are as follows: (12, 21), (15, 34), (20, 49), (30, 60), (35, 77), (40, 95),
(52, 117), (70, 155), (115, 250), (155, 352).
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Figure 8. K-means++ clustering results for the captured dataset.

Figure 9. Predicted dimensions of the anchor boxes based on K = 10.

The evaluation of the proposed MD-TinyYOLOv4 model and the comparison results
with the existing YOLO variants and SSD (Single Shot Detector) models are shown in
Table 2. Different SSD architectures may have varying levels of accuracy and speed [25].
There are several versions of SSD models, such as SSD300 and SSD512, each with various
compromises between speed and precision. The low-resolution SSD300 model was about
3% more accurate than SSD512. According to the proposed dataset and results obtained via
comparison with the YOLO variants, the SSD300 performed very similarly to YOLOv3 in
this case. On the other hand, in cases of hardware limitations, SSD300 could be a suitable
option, with a balance between speed and accuracy.

Table 2. Inference evaluation of different YOLO versions and SSD architectures based on our dataset.

Version Precision Recall F1 Score
Motorcycle Position Time

ForecastClose Far

YOLOv1 0.64 0.53 0.579 3 × 40 FPS

YOLOv2 0.67 0.61 0.63 3 × 40 FPS

SSD512 0.68 0.66 0.60 3 × 28

SSD300 0.71 0.78 0.77 3 × 25
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Table 2. Cont.

Version Precision Recall F1 Score
Motorcycle Position Time

ForecastClose Far

YOLOv3 0.69 0.75 0.77 3 × 30 FPS

YOLOv4 0.75 0.79 0.79 3 3 35 FPS

Tiny-YOLOv1 0.3 0.43 0.35 3 × 120 FPS

Tiny-YOLOv2 0.45 0.48 0.46 3 × 200 FPS

Tiny-YOLOv3 0.60 0.59 0.63 3 × 220 FPS

Tiny-YOLOv4 0.7 0.6 0.64 3 3 240 FPS

MD-TinyYOLOv4 0.81 0.79 0.79 3 3 240 FPS

However, the YOLOv4 model outperformed these results by achieving a precision of
75%, the highest precision among other original variants in detecting motorcycles with a
black windshield. This means that the prepared dataset is appropriate for the detection
of motorcycles with different appearances, as they have a variety of sizes based on their
location in the street. On the other hand, different variants of the tiny-YOLO algorithms
have lower computation resource requirements and a higher speed in object detection
because of having a smaller feature extraction network. However, when comparing original
tiny variants based on the proposed dataset, the original tiny-YOLOv4 also performed with
better accuracy, with the highest precision of 70%. Based on the importance of computation
resource limitations in ADAS applications and achieving better performance in using
existing tiny variants based on the proposed dataset, a refinement of tiny-YOLOv4 with the
name of MD-TinyYOLOv4 achieved accuracy values 11% higher than the accuracy of the
original tiny-YOLOv4 model. Although the proposed MD-TinyYOLOv4 model seems to
have similar results to YOLOv4, the prediction speed is approximately seven times that of
YOLOv4 when tested on the custom dataset. These improvements mean that the proposed
MD-TinyYOLOv4 is more capable of detecting distant and smaller motorcycles with higher
precision and sufficient processing speed, as in Figure 10, results of detecting motorcycles
in different distances and street congestion can be seen. Additionally, the MD-TinyYOLOv4
model can better detect distant or small motorcycles appearing in different road conditions.

Figure 10. Motorcycle detection with different distances and street congestion using the proposed
MD-TinyYOLOv4 model.
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3.2.2. Disparity and Depth Map Extracting

Monodepth1 and Monodepth2 had already been trained based on the ImageNet and
KITTI datasets. In our work, these existing pretrained weights were used as the initial
parameters for fine-tuning models in 100 epochs based on the proposed datasets. In
Figure 11, three samples from Image-net, KITTI, and the proposed datasets are shown.
Based on this comparison, KITII is more similar to the database prepared in this paper. The
results also proved that by fine-tuning the network with pretrained weights from the KITTI
dataset, the network performances increased by 43% in terms of accuracy compared with
fine-tuning with the existing pretrained weights of the ImageNet dataset.

Figure 11. Samples of images from Image-Net, KITTI, and the dataset used in this paper.

As shown in Figure 12, the disparity map produced by Monodepth2 has better and
sharper results in displaying motorcycle edges and narrower features in comparison with
Monodepth1. The improved results are due to the cost functions used in the training model
and also in upsampling the resolution of the disparity map, which was changed according
to the resolution of the original input image.

After the disparity map is obtained using the fine-tuned Monodepth model, the joint
bilateral filter is applied to obtain better disparity values. According to the results reported
in Table 3, the refined disparity map derived with the Monodepth2 model on the proposed
dataset achieved almost 20% less RMSE than the previous Monodepth1, which means that
the estimated distances were close to the actual values. Also, the time prediction of the
disparity map by Monodepth2 was almost 1.28 times faster than the previous Monodepth1
version. The mentioned refinement helps to rectify errors and the noise region around
the object boundaries. This filter achieves an RMSE of 0.323 m in the distances calculated
from a refined disparity map of Monodepth2, which used pre-trained weights of the KITTI
dataset in the training process.
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Figure 12. Comparing the colored disparity map produced by the fine-tuned Monodepth1 (left) and
Monodepth2 (right) models.

Table 3. The evaluation of different fine-tuned Monodepth2 models.

Disparity Map Model Disparity Filter Pretrained Weight Distance RMSE (m) Runtime

Monodepth1
None

ImageNet
0.8346

35 fps or 0.028 s
Joint bilateral filter 0.7739

Monodepth1
None

KITTI
0.4756

35 fps or 0.028 s
Joint bilateral filter 0.416

Monodepth2
None

ImageNet
0.6868

45 fps or 0.022 s
Joint bilateral filter 0.6061

Monodepth2
None

KITTI
0.3620

45 fps or 0.022 s
Joint bilateral filter 0.323

Figure 13 shows a sample of the proposed dataset with the improvements to the pro-
posed disparity map refinement. Because of some errors in disparity values, the occlusion
area and the boundary region of objects have problems with blurring and unclear shapes.

Figure 13. Example of disparity maps, before (a) and after (b) refining. The darker the color, the
larger the depth and camera-to-object distance.
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3.2.3. Evaluating the Proposed Algorithm at Different Distances and Conditions

The main aim of this work is to deliver a methodology for monitoring and alarming
drivers before reaching a dangerous distance from a motorcycle. The methodology was
tested and performed in different road conditions with different traffic flows. Different
images in different conditions, such as sunny, cloudy, and rainy weather, were also checked.
However, the weather directly affects the performance of both algorithms: the most accurate
results were achieved in a convenient lighting scene without too many shadows and
reflectance phenomena in the image. Also, the evaluation and the final results were
based on applying the algorithm to all scenarios where the motorcycle is fully seen in
the image. This algorithm specifically worked on a special set of images of motorcycles
with black windshields, and therefore in the case of partially covered motorcycles behind
other vehicles, the anchor box detection and the range estimation algorithms faced many
more problems and produced false results. This may need some extra inclusive data or
human input. However, YOLOv4 performed 12% better in detecting enclosed and partially
seen motorcycles compared to MD-TinyYOLOv4. To examine the proposed algorithm at
different distances and conditions, the ground-truth distance was collected and measured
in ranges between 0.3 m and 7 m, as shown in Figure 14.

Figure 14. Monodepth2 model’s RMSE of the computed distances at different camera-to-motorcycle
distances.

According to the achieved results, in the range under 4 m, a greater RMSE can be
seen in comparison to the range between 4 and 7 m. This happens because, at ranges
smaller than 4 m, the motorcycle is too close to the camera, and so a large part of the
image includes the motorcycle shape with an insufficient view of the background. In
this situation, the algorithm will not be able to properly estimate the depth. In addition,
the shorter distance of the motorcycle to the camera causes an increase in the parallax of
the motorcycle, which will increase the algorithm error. The average relative errors in
calculating distances below 4 m were estimated as being up to 0.36 m. However, in the
range of 4–7 m, the algorithm estimates the position and distance of the motorcycle with
an average RMSE of approximately 0.28 m at 46 fps for every single image, which is equal
to the processing time of some intelligent systems of traffic enforcement cameras. The
average time taken to process each region of interest was 71 ms for Siebert [11], 50 ms for
Deigmoeller et al. [85], 37 ms for Shine [86], and 22 ms for our method.

The contributions of the MD-TinyYOLOv4 model and Monodepth2 were examined
under normal conditions. Half of all these images captured motorcycles that were in
the dangerous ranges (distances below 4 m), and the other half captured motorcycles
further than 4 m from the camera. According to the results, the proposed tested model
correctly detected 86% of simulated alarm cases and recognized 92% of cases as true normal
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situations. This proposed alarm algorithm can be performed in real time with an average
speed of 40 fps on a custom dataset, promising to be suitable as a real-time method.

Figure 15 shows the detection results for motorcycles that are estimated as being too
close with respect to warning conditions. In these warning cases, the motorcycle bounding
box color changes to red to attract more attention. Contrarily, results for normal situations
are shown with green bounding boxes, i.e., the detected motorcycles are at a safe distance
from the camera.

Figure 15. Motorcycle detection and range estimation results for the proposed MD-TinyYOLOv4
model which (a,d,e) are shown as a dangerous situation, and (b,c,f) are illustrated as a safe situation.
Metric distances are also provided for each box.

4. Discussion

The study of existing visual ADAS models indicates that using single models for
both detection and range estimation is not effective in estimating distances due to the
supervised learning methods and the difficulties in recording training data with different
devices such as RTK-GNSS, LIDAR, etc. On the other hand, based on their published
results, they were unable to achieve the level of precision and speed required in this article.
Therefore, the best way to solve this problem was to investigate and refine the detection and
distance estimation as two consecutive separate methods. In this case, prior to estimating
distances, it is essential to establish accurate knowledge of the location and bounding
box of the motorcycle. As we only wanted to detect one class (as a motorcycle with a
black windshield) and then perform subsequent distance estimation, a refined model, MD-
TinyYOLOv, was the best choice among SSD and all other YOLO versions. The proposed
model improved the detection accuracy while maintaining the appropriate time taken and
accurate detection input for the rest of the distance estimation model. Among other famous
distance estimation methods using single images, such as linear regression, pinhole, and
deep learning models, the refined Monodepth2 model was used as the best algorithm in
this application due to its consistency in prediction and its independence from changes in
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camera calibration parameters and road conditions. This model identifies all non-linear
relations between the input image and the estimated depth map with a reasonable standard
deviation, which is impossible to achieve in other linear regression or pinhole methods.
The assessment of the detection output revealed that on occasion, either the entire or a
portion of the estimated depth map was unreliable and false, which might be related to
motorcycle occlusion or adverse weather conditions and ambient lighting.

5. Conclusions

This joined remote sensing and AI-based study proposed an integrated methodology
for motorcycle detection and range estimation using a single camera installed on the
back of a vehicle. Since motorcycles are small objects in these images relative to other
road objects like vehicles or buses, the YOLO object detectors were considered a priority.
This study provides a dataset of motorcycles in different scenarios and conditions and
presents the MD-TinyYOLOv4 model for motorcycle detection. The proposed method
outperforms the original tiny-YOLOv4 by 10.8%. The work also refines the architecture of
the tiny-YOLOv4 model with different modifications for distant and small motorcycles. For
range estimation, a comparative study is carried out between two state-of-the-art models,
Monodepth1 and Monodepth2, using a stereo dataset captured using a Mynt-Eye camera.
The proposed integrated methodology has great implications for motorcycle safety, as
experiments showed that 86% of simulated situations where motorcycles were closer than
4 m were correctly recognized as alarm situations. The methodology’s code and datasets
will be shared with the community upon the acceptance of this paper.

Future studies will improve the proposed method by applying object detection and
depth estimation models to other road users, with other windshields, and with vehicle
behavior prediction and movement. Further investigation should generalize the methodol-
ogy based on images from different types of camera parameters as, so far, the methodology
derives metric distances only from calibrated cameras. Finally, since our approach is not ca-
pable of handling nighttime scenes, detection and distance estimation in (partly) nighttime
scenarios should be considered.
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