Automatic Crop Classification Based on Optimized Spectral and Textural Indexes Considering Spatial Heterogeneity
Abstract
:1. Introduction
2. Study Area and Dataset
2.1. Study Area
2.2. Data Acquisition and Analysis
3. Methodology
3.1. Construction of Classification Indexes
3.1.1. Construction of Spectral Indexes
3.1.2. Construction of Textural Indexes
3.2. Construction of Environmental Variables
3.3. ACCSH Method
3.3.1. Spatial Heterogeneity Patterns Mining
3.3.2. Index Optimization
3.3.3. Classification Model Construction
3.4. Accuracy Evaluation
4. Results
4.1. Crop Classification of Wheat
4.2. Crop Classification of Corn
5. Discussion
5.1. Comparison Results of ACCSH with Classical Methods for Crop Classification
5.2. Analysis of the Spatial Heterogeneity Patterns of Crop Growth
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kuang, X.; Guo, J.; Bai, J.; Geng, H.; Wang, H. Crop-Planting Area Prediction from Multi-Source Gaofen Satellite Images Using a Novel Deep Learning Model: A Case Study of Yangling District. Remote Sens. 2023, 15, 3792. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, L.; Huang, C.; Wang, N.; Wang, S.; Peng, M.; Zhang, X.; Tong, Q. Crop classification based on the spectrotemporal signature derived from vegetation indices and accumulated temperature. Int. J. Digit. Earth 2022, 15, 626–652. [Google Scholar] [CrossRef]
- Song, W.; Feng, A.; Wang, G.; Zhang, Q.; Dai, W.; Wei, X.; Hu, Y.; Amankwah, S.O.Y.; Zhou, F.; Liu, Y. Bi-Objective Crop Mapping from Sentinel-2 Images Based on Multiple Deep Learning Networks. Remote Sens. 2023, 15, 3417. [Google Scholar] [CrossRef]
- Hao, Y.Y.; Luo, X.B.; Zhong, B.; Yang, A.X. Methods of the National Vegetation Classification Based on Vegetation Partition. In Proceedings of the 4th International Conference on Mechanical Materials and Manufacturing Engineering, Wuhan, China, 15–16 October 2016. [Google Scholar]
- He, P.; Xu, X.; Zhang, B.; Li, Z.; Jin, X.; Zhang, Q.; Zhang, Y. Crop Classification Extraction Based on Multi-temporal GF-1 Remote Sensing Image. J. Henan Agric. Sci. 2016, 45, 152–159. [Google Scholar] [CrossRef]
- Aparecido, L.; Rolim, G.; Moraes, J.; Rocha, H.; Lense, G.; Souza, P. Agroclimatic zoning for urucum crops in the state of Minas Gerais, Brazil. Bragantia 2017, 77, 193–200. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Zhang, W.; Wang, X.Z.; Di, X.D.; Qi, L.Q. A New Soybean Ndvi Data-Based Partitioning Algorithm for Fertilization Management Zoning. Appl. Ecol. Environ. Res. 2021, 19, 1391–1405. [Google Scholar] [CrossRef]
- Santos, S.G.; Melo, J.C.; Constantino, R.G.; Brito, A.V. A Solution for Vegetation Analysis, Separation and Geolocation of Management Zones using Aerial Images by UAVs. In Proceedings of the IX Brazilian Symposium on Computing Systems Engineering (SBESC), Natal, Brazil, 19–22 November 2019. [Google Scholar]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detector“ Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Zhu, L.; Meng, J.; Zhu, L. Applying Geodetector to disentangle the contributions of natural and anthropogenic factors to NDVI variations in the middle reaches of the Heihe River Basin. Ecol. Indic. 2020, 117, 106545. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Lei, J. Spatial and Temporal Characteristics of Vegetation NDVI Changes and the Driving Forces in Mongolia during 1982–2015. Remote Sens. 2020, 12, 603. [Google Scholar] [CrossRef]
- Han, Y.; Guo, X.; Jiang, Y.; Xu, Z.; Li, Z. Environmental factors influencing spatial variability of soil total phosphorus content in a small watershed in Poyang Lake Plain under different levels of soil erosion. Catena 2020, 187, 104357. [Google Scholar] [CrossRef]
- Nidamanuri, R.R.; Zbell, B. Use of field reflectance data for crop mapping using airborne hyperspectral image. ISPRS J. Photogramm. Remote Sens. 2011, 66, 683–691. [Google Scholar] [CrossRef]
- Gerstmann, H.; Möller, M.; Gläßer, C. Optimization of spectral indices and long-term separability analysis for classification of cereal crops using multi-spectral RapidEye imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 115–125. [Google Scholar] [CrossRef]
- Waldhoff, G.; Lussem, U.; Bareth, G. Multi-Data Approach for remote sensing-based regional crop rotation mapping: A case study for the Rur catchment, Germany. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 55–69. [Google Scholar] [CrossRef]
- Ciriza, R.; Sola, I.; Albizua, L.; Álvarez-Mozos, J.; González-Audícana, M. Automatic Detection of Uprooted Orchards Based on Orthophoto Texture Analysis. Remote Sens. 2017, 9, 492. [Google Scholar] [CrossRef]
- Numbisi, F.N.; Coillie, F.V.; Wulf, R.R.d. Delineation of Cocoa Agroforests Using Multiseason Sentinel-1 SAR Images: A Low Grey Level Range Reduces Uncertainties in GLCM Texture-Based Mapping. ISPRS Int. J. Geo Inf. 2019, 8, 179. [Google Scholar] [CrossRef]
- Kawamura, K.; Asai, H.; Yasuda, T.; Soisouvanh, P.; Phongchanmixay, S. Discriminating crops/weeds in an upland rice field from UAV images with the SLIC-RF algorithm. Plant Prod. Sci. 2020, 24, 198–215. [Google Scholar] [CrossRef]
- Xie, Q.; Lai, K.; Wang, J.; Lopez-Sanchez, J.M.; Shang, J.; Liao, C.; Zhu, J.; Fu, H.; Peng, X. Crop Monitoring and Classification Using Polarimetric RADARSAT-2 Time-Series Data Across Growing Season: A Case Study in Southwestern Ontario, Canada. Remote Sens. 2021, 13, 1394. [Google Scholar] [CrossRef]
- Akbari, E.; Boloorani, A.D.; Samany, N.N.; Hamzeh, S.; Soufizadeh, S.; Pignatti, S. Crop Mapping Using Random Forest and Particle Swarm Optimization based on Multi-Temporal Sentinel-2. Remote Sens. 2020, 12, 1449. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J.J.I.J.o.C. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Demarez, V.; Helen, F.; Marais-Sicre, C.; Baup, F. In-season mapping of irrigated crops using landsat 8 and sentinel-1 time series. Remote Sens. 2019, 11, 118. [Google Scholar] [CrossRef]
- Marais-Sicre, C.; Inglada, J.; Fieuzal, R.; Baup, F.; Valero, S.; Cros, J.; Huc, M.; Demarez, V.J.R.S. Early detection of summer crops using high spatial resolution optical image time series. Remote Sens. 2016, 8, 591. [Google Scholar] [CrossRef]
- Veloso, A.; Mérmoz, S.; Bouvet, A.; Toan, T.L.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using sentinel-1 and sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Jiang, M.; Xin, L.; Li, X.; Tan, M.; Wang, R. Decreasing Rice Cropping Intensity in Southern China from 1990 to 2015. Remote Sens. 2018, 11, 35. [Google Scholar] [CrossRef]
- Meero, F.v.d.; Bakker, W.H. Cross correlogram spectral matching: Application to surface mineralogical mapping by using AVIRIS data from Cuprite, Nevada. Remote Sens. Environ. 1997, 61, 371–382. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, Q.; Liu, G.; Huang, C. Research on extraction of planting information of major crops based on MODIS time-series NDVI. J. Nat. Resour. 2017, 32, 1808–1818. [Google Scholar]
- Park, Y.; Guldmann, J.-M. Measuring continuous landscape patterns with Gray-Level Co-Occurrence Matrix (GLCM) indices: An alternative to patch metrics? Ecol. Indic. 2020, 109, 105802. [Google Scholar] [CrossRef]
- Worku, T.; Khare, D.; Tripathi, S.K. Spatiotemporal trend analysis of rainfall and temperature, and its implications for crop production. J. Water Clim. Chang. 2019, 10, 799–817. [Google Scholar] [CrossRef]
- Toreti, A.; Belward, A.S.; Pérez-Domínguez, I.; Naumann, G.; Luterbacher, J.; Cronie, O.; Seguini, L.; Manfron, G.; López-Lozano, R.; Baruth, B.; et al. The Exceptional 2018 European Water Seesaw Calls for Action on Adaptation. Earth’s Future 2019, 7, 652–663. [Google Scholar] [CrossRef]
- Rabus, B.T.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Perrin, G.; Rapinel, S.; Hubert-Moy, L.; Bioret, F. Bioclimatic dataset of Metropolitan France under current conditions derived from the WorldClim model. Data Brief 2020, 31, 105815. [Google Scholar] [CrossRef]
- Vangansbeke, P.; Máliš, F.; Hédl, R.; Chudomelová, M.; Vild, O.; Wulf, M.; Jahn, U.; Welk, E.; Rodríguez-Sánchez, F.; De Frenne, P. ClimPlant: Realized climatic niches of vascular plants in European forest understoreys. Glob. Ecol. Biogeogr. 2021, 30, 1183–1190. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Et-taleby, A.; Boussetta, M.; Benslimane, M. Faults Detection for Photovoltaic Field Based on K-Means, Elbow, and Average Silhouette Techniques through the Segmentation of a Thermal Image. Int. J. Photoenergy 2020, 2020, 7. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, C.; Xu, A.; Shi, Y.; Duan, Y. 3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images. Remote Sens. 2018, 10, 75. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, J.; Xu, X.; Zhang, L.-p. Accessing the temporal and spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi’an County, Heilongjiang province, China. Comput. Electron. Agric. 2020, 176, 105618. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Wu, Z.; Wang, B.; Wang, S. Geographical detector-based stratified regression kriging strategy for mapping soil organic carbon with high spatial heterogeneity. CATENA 2021, 196, 104953. [Google Scholar] [CrossRef]
- Dong, Z.; Men, Y.; Liu, Z.; Li, J.; Ji, J. Application of chlorophyll fluorescence imaging technique in analysis and detection of chilling injury of tomato seedlings. Comput. Electron. Agric. 2020, 168, 105109. [Google Scholar] [CrossRef]
- Chen, L.; Xing, M.; He, B.; Wang, J.; Shang, J.; Huang, X.; Xu, M. Estimating Soil Moisture Over Winter Wheat Fields During Growing Season Using Machine-Learning Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3706–3718. [Google Scholar] [CrossRef]
- Elavarasan, D.; Vincent, P.M.D.R.; Srinivasan, K.; Chang, C.-Y. A Hybrid CFS Filter and RF-RFE Wrapper-Based Feature Extraction for Enhanced Agricultural Crop Yield Prediction Modeling. Agriculture 2020, 10, 400. [Google Scholar] [CrossRef]
- Reif, D.M.; Motsinger-Reif, A.A.; McKinney, B.A.; Crowe, J.E.; Moore, J.H. Feature Selection using a Random Forests Classifier for the Integrated Analysis of Multiple Data Types. In Proceedings of the IEEE Symposium on Computational Intelligence and Bioinformatics and Computational Biology, Toronto, ON, Canada, 28–29 September 2006; pp. 1–8. [Google Scholar] [CrossRef]
- Mahdianpari, M.; Mohammadimanesh, F.; Mcnairn, H.; Davidson, A.A.; Rezaee, M.; Salehi, B.; Homayouni, S. Mid-season Crop Classification Using Dual-, Compact-, and Full-Polarization in Preparation for the Radarsat Constellation Mission (RCM). Remote Sens. 2019, 11, 1582. [Google Scholar] [CrossRef]
- Xu, F.; Li, Z.; Zhang, S.; Huang, N.; Quan, Z.; Zhang, W.; Liu, X.; Jiang, X.; Pan, J.; Prishchepov, A.V. Mapping Winter Wheat with Combinations of Temporally Aggregated Sentinel-2 and Landsat-8 Data in Shandong Province, China. Remote Sens. 2020, 12, 2065. [Google Scholar] [CrossRef]
- Ge, X.; Wang, J.; Ding, J.; Cao, X.; Zhang, Z.; Liu, J.; Li, X. Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring. PeerJ 2019, 7, e6926. [Google Scholar] [CrossRef]
- Galvão, R.K.H.; Araújo, M.C.U.d.; José, G.E.; Pontes, M.J.C.; Silva, E.C.; Saldanha, T.C.B. A method for calibration and validation subset partitioning. Talanta 2005, 67, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, X.; Chen, Z.; Ren, F.; Feng, L.; Du, Q. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Int. J. Environ. Res. Public Health 2019, 16, 368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, H.; Wu, W.; Zhan, L.-Q.; Wei, J. Mapping Rice Paddy Based on Machine Learning with Sentinel-2 Multi-Temporal Data: Model Comparison and Transferability. Remote Sens. 2020, 12, 1620. [Google Scholar] [CrossRef]
- He, S.; Peng, P.; Chen, Y.; Wang, X.-m. Multi-Crop Classification Using Feature Selection-Coupled Machine Learning Classifiers Based on Spectral, Textural and Environmental Features. Remote Sens. 2022, 14, 3153. [Google Scholar] [CrossRef]
- Coltin, B.; McMichael, S.T.; Smith, T.; Fong, T. Automatic boosted flood mapping from satellite data. Int. J. Remote Sens. 2016, 37, 1015–1993. [Google Scholar] [CrossRef]
- Reyes, A.K.; Caicedo, J.C.; Camargo, J.E. Fine-tuning Deep Convolutional Networks for Plant Recognition. CLEF 2015, 1391, 467–475. [Google Scholar]
Indicator | Calculation Formula | Meanings |
---|---|---|
-NDVI | - | The NDVI value in month . |
-RED | - | The value of red band in month . |
-BLUE | - | The value of blue band in month . |
n-NIR | - | The value of NIR band in month . |
n-MIR | - | The value of MIR band in month . |
Similarity between sample and crop type in NDVI index, is the target crop. | ||
Difference between sample and crop type in the NDVI index, is the target crop. |
Index | Meaning |
---|---|
The value of textural index mean in month | |
The value of textural index variance in month | |
The value of textural index homogeneity in month | |
The value of textural index homogeneity in month | |
The value of textural index dissimilarity in month | |
The value of textural index entropy in month | |
The value of textural index second moment in month | |
The value of textural index correlation in month |
Index | Meaning |
---|---|
Slope | Degree of surface inclination |
Aspect | Orientation of the topographic slope |
Mean precipitation during phenological period | |
Mean temperature during phenological period |
Statistical Variable | Aspect | Slope | ||
---|---|---|---|---|
q statistic | 0.10 | 0.01 | 0.01 | 0.00 |
p-value | 0.00 | 0.14 | 0.43 | 0.94 |
Classes | Class 1 | Class 2 | Class 3 |
---|---|---|---|
class 1 | |||
class 2 | Y | ||
class 3 | Y | N |
Classes | Optimized Classes | Values | Spatial Homogeneous Zones |
---|---|---|---|
class 1 | A | between 43.0 and 57.0 | I |
class 2 | B | between 57.0 and 68.8 | II |
class 3 | B | between 68.8 and 109.6 | II |
Region | Index Type | Index Name |
---|---|---|
Global region | Spectral indexes | 1-NDVI, 5-NDVI, 7-NDVI, 8-NDVI |
5-BLUE, 8-BLUE | ||
7-NIR,12-NIR | ||
8-MIR | ||
, | ||
Textural indexes | 6-B4, 7-B4, 12-B4 | |
12-B5 | ||
7-B6 | ||
6-B7 | ||
Zone I | Spectral indexes | 3-NDVI, 4-NDVI, 5-NDVI, 7-NDVI, 8-NDVI |
10-RED | ||
4-NIR | ||
5-MIR | ||
, | ||
Textural indexes | 8-B1 | |
9-B2 | ||
10-B6 | ||
9-B8, 12-B8 | ||
Zone II | Spectral indexes | 5-NDVI, 7-NDVI, 8-NDVI |
7-RED, 8-RED, 9-RED | ||
8-BLUE, 9-BLUE | ||
8-MIR, 9-MIR | ||
, | ||
Textural indexes | 7-B1, 8-B1 | |
7-B4, 8-B4 | ||
7-B6, 8-B6 | ||
8-B7, 9-B7 |
Statistical Variable | Aspect | Slope | ||
---|---|---|---|---|
q statistic | 0.01 | 0.04 | 0.02 | 0.00 |
p-value | 0.02 | 0.02 | 1.00 | 0.83 |
Classes | Class 1 | Class 2 | Class 3 |
---|---|---|---|
class 1 | |||
class 2 | Y | ||
class 3 | Y | N |
Classes | Class 1 | Class 2 | Class 3 |
---|---|---|---|
class 1 | |||
class 2 | N | ||
class 3 | N | Y |
Classes | Optimized Classes | Values |
---|---|---|
1 | C | between 48.5 and 60 |
2 | D | between 60 and 71.8 |
3 | D | between 71.8 and 95.5 |
Classes | Optimized Classes | Values |
---|---|---|
1 | E | between 10.0 and 13.3 |
2 | E | between 13.3 and 14.2 |
3 | F | between 14.2 and 15.5 |
Classes | Class 1 | Class 2 | Class 3 | Class 4 |
---|---|---|---|---|
class 1 | ||||
class 2 | Y | |||
class 3 | Y | Y | ||
class 4 | Y | Y | Y |
Classes | Interaction Information | Values | Spatial Homogeneous Zones |
---|---|---|---|
1 | between 48.5 to 60 and between 10.0 and 13.3 | Zone I | |
2 | between 48.5 to 60 and between 14.2 and 15.5 | Zone II | |
3 | between 60 to 95.5 and between 10.0 and 14.2 | Zone III | |
4 | between 60 to 95.5 and between 14.2 and 15.5 | Zone IV |
Region | Index Type | Index Name |
---|---|---|
Global region | Spectral indexes | 5-NDVI, 7-NDVI |
7-RED, 8-RED | ||
5-BLUE | ||
9-NIR | ||
5-MIR | ||
, | ||
Textural indexes | 5-B1, 6-B1, 12-B1 | |
7-B3 | ||
7-B7 | ||
6-B8 | ||
Zone I | Spectral indexes | 5-NDVI, 7-NDVI, 8-NDVI |
5-RED, 8-RED | ||
5-MIR, 6-MIR | ||
Textural indexes | 1-NDVI, 2-NDVI, 3-NDVI, 7-NDVI, 11-NDVI, 12-NDVI | |
2-B6 | ||
7-B7 | ||
4-B8, 6-B8 | ||
Zone II | Spectral indexes | 5-NDVI, 6-NDVI, 7-NDVI, 8-NDVI |
7-RED | ||
7-BLUE, 8-BLUE | ||
7-NIR | ||
7-MIR | ||
Textural indexes | 2-B1, 5-B1, 6-B1, 12-B1 | |
1-B2 | ||
2-B4 | ||
1-B6 | ||
1-B7 | ||
Zone III | Spectral indexes | 11-NDVI |
5-RED, 7-RED, 8-RED | ||
4-BLUE, 5-BLUE, 8-BLUE | ||
7-NIR | ||
4-MIR, 5-MIR, 8-,MIR | ||
Textural indexes | 5-B1 | |
2-B2 | ||
Zone IV | Spectral indexes | 6-NDVI, 8-NDVI |
4-RED, 5-RED, 6-RED, 7-RED, 8-RED, 11-RED | ||
4-BLUE, 5-BLUE | ||
7-NIR | ||
5-MIR | ||
Textural indexes | 3-B1, 7-B1 | |
7-B3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, J.; Peng, P.; Chen, Y.; He, S.; Yang, K. Automatic Crop Classification Based on Optimized Spectral and Textural Indexes Considering Spatial Heterogeneity. Remote Sens. 2023, 15, 5550. https://doi.org/10.3390/rs15235550
Wang X, Liu J, Peng P, Chen Y, He S, Yang K. Automatic Crop Classification Based on Optimized Spectral and Textural Indexes Considering Spatial Heterogeneity. Remote Sensing. 2023; 15(23):5550. https://doi.org/10.3390/rs15235550
Chicago/Turabian StyleWang, Xiaomi, Jiuhong Liu, Peng Peng, Yiyun Chen, Shan He, and Kang Yang. 2023. "Automatic Crop Classification Based on Optimized Spectral and Textural Indexes Considering Spatial Heterogeneity" Remote Sensing 15, no. 23: 5550. https://doi.org/10.3390/rs15235550
APA StyleWang, X., Liu, J., Peng, P., Chen, Y., He, S., & Yang, K. (2023). Automatic Crop Classification Based on Optimized Spectral and Textural Indexes Considering Spatial Heterogeneity. Remote Sensing, 15(23), 5550. https://doi.org/10.3390/rs15235550