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Abstract: Total suspended solids (TSS) and chlorophyll-a (Chl-a) are critical water quality parameters.
Focusing on the Pearl River Estuary and its coastal waters, this study compared the performance
of XGBoost- and BPNN-based algorithms in estimating TSS and Chl-a levels. The XGBoost-based
algorithm demonstrated better performance and was then used to estimate TSS and Chl-a in the
Pearl River Estuary and coastal waters from 2000 to 2021. According to our results, TSS and Chl-a
were relatively high mainly in the northwest and low in the southeast. Furthermore, values were
high in spring and summer and low in fall and winter, with high values emerging near the estuary
of the Pearl River. In summer, a band zone with high Chl-a was observed from south of Yamen to
south of Hong Kong. In terms of trends, TSS and Chl-a concentrations in the area around the Hong
Kong–Zhuhai–Macao Bridge tended to decrease from 2000 to 2021. As the construction of the bridge
began, changes in water flow caused by the bridge piers and artificial islands were influenced, the
change in the rate of TSS in the west area of the bridge was greater than 0, and the TSS in the upstream
area of the west side changed from decreasing to increasing trends. Concerning Chl-a concentrations,
the change in the rate in the downstream area of the west side of the bridge was greater than 0. The
study may provide a helpful example for similar estuarine and coastal waters in other coastal areas.

Keywords: total suspended solids; chlorophyll-a; machine learning; Landsat; Pearl River Estuary;
Hong Kong–Zhuhai–Macao Bridge

1. Introduction

Estuaries are hubs between river runoff and the sea, and their ecosystems are fragile [1].
The Pearl River Estuary (PRE), an eminently crucial estuarine area [2], is located in a well-
developed and populous area; thus, human activities directly affect the water quality of the
surrounding waters [3–5]. The serious potential consequences underscore the urgent need
to study the water quality of the PRE and its coastal waters.

Total suspended solids (TSS) and chlorophyll-a (Chl-a) are significant water quality
parameters, as they are indispensable in the evaluation of estuarian water quality [6]. The
transport and accumulation of TSS may have many effects on navigation channels. For
example, high concentrations can reduce phytoplankton photosynthesis [7], adversely
affecting phytoplankton, fish, and benthic invertebrates [8]. For this part, Chl-a is relevant
to water eutrophication and algal blooms, which have the potential to inflict serious damage
upon the nearshore ecological environment [9–11]. Therefore, a scholarly examination of

Remote Sens. 2023, 15, 5559. https://doi.org/10.3390/rs15235559 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15235559
https://doi.org/10.3390/rs15235559
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-1167-3991
https://orcid.org/0000-0001-8733-6911
https://orcid.org/0000-0002-9086-3701
https://orcid.org/0000-0002-7682-4327
https://orcid.org/0000-0002-6986-7302
https://doi.org/10.3390/rs15235559
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15235559?type=check_update&version=2


Remote Sens. 2023, 15, 5559 2 of 17

the distribution pattern and change trend in TSS, Chl-a, and other water quality parameters
in estuarine areas is of paramount importance.

Due to its advantages, such as rapid information acquisition, low cost, and a broad
range, remote sensing has become the primary means for monitoring water quality in many
areas [12–15], as it can provide a large amount of data in real time. Another useful tool
is found in machine learning algorithms, which researchers appreciate for their powerful
data mining capabilities and abilities to explore deeper correspondences [16,17].

The increasing availability of remote sensing data has led to the wider use of machine
learning algorithms in water quality models, promoting the use of big data in the monitor-
ing of water quality [18–21]. Ma et al. [22] developed an algorithm based on an artificial
neural network (ANN) to obtain TSS and Chl-a concentration characteristics in the PRE
area from MODIS/Aqua data. Employing an algorithm based on a back propagation neural
network (BPNN), Wang et al. [23] explored the impact of suspended particulate matter,
orthophosphate phosphorus, and dissolved inorganic nitrogen on surrounding waters
during the construction of the Hong Kong International Airport. In addition to algorithms
based on neural network technology, support vector machine regression (SVR) [24–26],
random forest regression (RFR) [27,28], and XGBoost [29] algorithms have also been applied
to establish water quality models. However, further demonstrations of the feasibility of
using machine learning algorithms to determine TSS and Chl-a levels in the PRE and its
coastal waters from the images of different Landsat satellites are needed, as well as further
investigation into how the Hong Kong–Zhuhai–Macao Bridge (HZMB) affects the water
quality of the surrounding waters.

Accordingly, we set four goals in this study. Specifically, we aimed to (a) identify
input bands strongly correlated with TSS and Chl-a and then establish and compare water
quality models based on XGBoost and BPNN algorithms; (b) use the better performing
machine learning-based algorithm to measure TSS and Chl-a in the PRE from Landsat 5/8
images; (c) explore the spatiotemporal distribution characteristics of TSS and Chl-a in the
PRE from 2000 to 2021; and (d) scrutinize the influence of the HZMB on the surrounding
water quality.

2. Materials and Methods
2.1. Study Area

The Pearl River is the largest river system in southern China, with a total length of
2200 km. It has eight main estuaries, Humen, Jiaomen, Hongqimen, Hengmen, Modaomen,
Jitimen, Hutiaomen, and Yamen, from east to west [30]. The basin area is about
4.5 × 105 km2 [31], and its annual average flow can reach 3.5 × 1011 m3, with an an-
nual sediment transport of 8.87 × 107 t [32]. The PRE lies in the northern part of the South
China Sea and is influenced by subtropical monsoon climate [33]. The runoff in this area
changes significantly with the seasons. With the rapid development of cities such as Hong
Kong, Guangzhou and Shenzhen, the situation of water pollution in the PRE is serious.
There is a sea-crossing bridge–tunnel project in the PRE connecting Hong Kong, Zhuhai,
and Macao—the HZMB, a 55 km long construction, started in late 2009 and officially
opened in 2018 [34]. There is also a national nature reserve for Chinese white dolphins in
the PRE between Neilingding Island and Niutou Island [35], the core area of which covers
140 km2. In order to better analyze changes in water quality in certain areas, five specific
areas, a–f, are shown in Figure 1.

2.2. In Situ Data

Monthly measured TSS and Chl-a concentration data (20,791 lines) provided by the
Environmental Protection Department (EPD) of Hong Kong for the years 2000–2021 were
used in this study. The data were mainly measured by marine monitoring vessels equipped
with Differential Global Positioning System (DGPS) at 76 water quality sampling sta-
tions in 10 water control zones and 18 offshore sheltered sites in Hong Kong. TSS and
Chl-a were measured by internal analysis methods GL-PH-23 and GL-OR-34, respec-
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tively, and determined by weight method (APHA 20ed 2540D) and spectrophotometric
method (APHA 22ed 10200H 2) [36], respectively, with uncertainties of ±0.5 mg/L and
±0.1 mg/m3, respectively.

Figure 1. Introduction to the study area (Areas a–d are square areas with an area of 4 km2 on the
west side of the upper reaches, east side of the upper reaches, west side of the lower reaches and east
side of the lower reaches of the HZMB. Area e is a rectangular area covering the HZMB, and area
f represents the core area of the Chinese white dolphin national nature reserve in the PRE).

2.3. Satellite Data and Preprocessing

This study used L1-level satellite images of Landsat 5 TM and Landsat 8 OLI from
2000 to 2021 (bands are shown in Table 1). The data were downloaded from the official
website of the United States Geological Survey (USGS). In order to ensure the coverage of
the PRE and the adjacent Hong Kong region, we selected the images with the path/row
numbers 122/044, 122/045, 121/044, and 121/045 and screened the images with less than
30% cloud coverage out. Finally, 292 Landsat 5 TM images and 217 Landsat 8 OLI images
were retained. As shown in Figure 2, the seasonal distribution of remote sensing images
shows that the number of images in autumn is greater than that in summer, and the number
of images in winter is greater than that in spring, and the number of images in spring
is only half of that in other seasons. The atmospheric correction of all the images was
performed by ACOLITE (Generic Version 20220222.0). ACOLITE was developed by the
Royal Belgian Institute of Natural Sciences (RBINS) and can output a series of parameters
calculated from water reflectance [37]. In this study, non-water pixels were masked during
atmospheric correction, other parameters were kept at default settings, and remote sensing
reflectance (Rrs) was output.

The Landsat 8 OLI sensor added a coastal aerosol band and a panchromatic band with
a spatial resolution of 15 m, and a cirrus cloud band based on the Landsat 5 TM sensor.
The panchromatic band is primarily used to improve resolution [23]. The band ranges of
Blue, Green, Red, and NIR bands are basically the same for both sensors. To obtain a longer
time series dataset, this study matched bands with similar wavelength ranges (as shown in
Table 2).
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Table 1. Introduction of Landsat 5 TM and Landsat 8 OLI sensor parameters.

Sensor Band Reference Number Band Name Band Range (µm) Spatial
Resolution (m)

Revisit Cycle
(Days)

Landsat 5 TM

B1 Blue 0.45–0.52 30

16

B2 Green 0.52–0.60 30
B3 Red 0.63–0.69 30
B4 NIR 0.76–0.90 30
B5 SWIR 1.55–1.75 30
B6 LWIR 10.40–12.50 120
B7 SWIR 2.08–2.35 30

Landsat 8 OLI

B1 Coastal 0.43–0.45 30

16

B2 Blue 0.45–0.52 30
B3 Green 0.53–0.60 30
B4 Red 0.63–0.68 30
B5 NIR 0.85–0.89 30
B6 SWIR1 1.56–1.66 30
B7 SWIR2 2.10–2.30 30
B8 Pan 0.50–0.68 15
B9 Cirrus 1.36–1.39 30

Figure 2. The temporal distributions of all images used.

Table 2. The band numbers specified in this study.

Band Landsat 5 TM Landsat 8 OLI

B1(Blue) B1(Blue) B2(Blue)
B2(Green) B2(Green) B3(Green)
B3(Red) B3(Red) B4(Red)
B4(NIR) B4(NIR) B5(NIR)

2.4. Match-Up Analysis

Considering the small amount of measured data, remote sensing images within 3 days
before and after the measured date were selected as the images of measured sampling
during data matching. In these matching images, the pixel of the remote sensing image
that is closest to the measured site is found, and the other 8 pixels around it are found, with
this pixel as the center. For the sake of ensuring the validity of the data, the matching is
effective when at least 5 pixels in the 3 × 3-pixel box are valid, and the average reflectivity
of the 9 pixels is taken as the matching value of the measured data. Finally, 2158 sets of
measured and remote sensing matching data were obtained from 262 Landsat 5 TM images
and 185 Landsat 8 OLI images. The matching data sets ranged from 0.1 to 79 mg/L for TSS
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and 0.1 to 50 mg/m3 for Chl-a. The 2158 sets of matched data pairs were randomly divided
into three data sets according to the proportion of 70% training set (N = 1510), 15% testing
set (N = 324), and 15% verification set (N = 324). Characteristics of matched data pairs are
shown in Figure 3. The location-matched data pairs almost cover the entire sea area around
Hong Kong. The time of the matched data pairs is more in autumn and winter, especially
winter, but relatively less in spring and summer (December to February is winter, March to
May is spring, June to August is summer, and September to November is autumn). The
time of the matched data pairs can cover the four seasons of spring, summer, autumn, and
winter. The TSS and Chl-a concentrations of the training, validation, and testing sets are
distributed across the concentration ranges.

Figure 3. Characteristics of matched data pairs ((a): Spatial distribution of matched data pairs;
(b): The temporal distributions of matched data pairs; (c,d): Characterization of the concentration
distribution of TSS/Chl-a for paired data pairs).

2.5. Modeling

Due to the limited amount of matched data pairs, we calculated Pearson’s R coefficient
of dozens of combinations of B1–B4 bands and TSS and Chl-a concentrations when selecting
input bands and selected several bands with the highest correlation as input features of the
machine learning model to help improve the training effect of the machine learning model.
When estimating TSS, 7 band combinations with R values greater than 0.4 were selected as
inputs (Figure 4a). The correlation between each band combination and Chl-a was lower.
Five band combinations with R greater than 0.3, namely, B3/B12, B4/B12, B3/B1, B2/B1,
and B2/B12, were selected as inputs (Figure 4b).
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Figure 4. Pearson’s R coefficient of each selected band (a): TSS, (b): Chl-a.

In this study, XGBoost and BPNN are selected, which belong to the machine learning
algorithm based on decision tree and the machine learning algorithm based on neural
network, respectively [38]. XGBoost is an enhanced integrated algorithm composed of
multiple regression trees proposed by Chen and Guestrin. It reduces the complexity of the
model by introducing regularization terms, so as to prevent over-fitting from reducing the
computation amount [39].

When the algorithm based on XGBoost is used, estimators = 234, learning_rate = 0.03,
and max_depth = 8 are set when estimating TSS, and estimators = 61 and learning_rate
= 0.1 when estimating Chl-a. max_depth = 14. Retain the default values for other hyper-
parameters. BPNN is a multi-layer feedforward neural network trained based on error
backpropagation algorithm, which can make the mean square error between the actual out-
put value and the expected output value minimized based on gradient descent method [40].
When using BPNN-based algorithm, two BPNN algorithms with hidden layer neurons of
8 (transfer function of ‘tansig’) are constructed, respectively, when estimating TSS and
Chl-a. Levenberg–Marquardt method is selected for training algorithm, so as to avoid
overfitting. Set training to stop when the mean square error (MSE) curve of the verification
set does not decrease for 6 consecutive iterations, and the MSE of the training set is <10−5,
or the number of trainings reaches 1000.

2.6. Accuracy Evaluation

To evaluate the performance of the algorithm, this study applied the root mean square
error (RMSE), root mean square log-error (RMSLE), mean absolute error (MAE), and mean
percentage error (MAPE) of the water quality parameters calculated by the algorithm and
the measured water quality parameters [22,41]. The calculation formulas are as follows:

RMSE =

√√√√ 1
n

n

∑
i=1

(yi − ŷi)
2

(1)

RMSLE =

√
1
n

n

∑
i=1

(log10(yi)− log10(ŷi))
2 (2)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (3)

MAPE =
1
n

n

∑
i=1
|yi − ŷi

ŷi
| × 100% (4)

where yi represents the estimated values, ŷi represents the measured values, and n repre-
sents the number of the match data pairs.
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2.7. Summary

Figure 5 shows the flowchart for data processing. In summary, in this study, the
Landsat 5/8 images were atmospherically corrected, and the Rrs was matched with the
TSS and Chl-a data from the EPD to obtain matched data pairs, which were then divided
into training set, validation set, and testing set and used to develop two algorithms based
on the XGBoost and the BPNN. The better performing of the two algorithms was used to
investigate the spatial and temporal distribution characteristics of TSS and Chl-a in the
PRE and the impact of the HZMB on the water quality of its surrounding waters from 2000
to 2021.

Figure 5. Flowchart of data processing.

3. Results
3.1. Evaluation of Machine Learning Algorithms

The comparison between the estimated and measured concentration of TSS and
Chl-a based on XGBoost algorithm and BPNN algorithm for each data set is shown in
Figures 6a–h and 7a–h. The scatter between the estimated and measured concentration of
all data sets is near the 1:1 line, and both algorithms have certain underestimation when
estimating TSS and Chl-a. This may be due to the greater number of low values of TSS
and Chl-a in the matched data pairs. The specific evaluation data of each set are shown in
Table 3.

Figure 6. Correlation between estimates and in situ concentration of TSS ((a–d) for XGBoost-based
algorithm, (e–h) for BPNN-based algorithm, black dotted line for 1:1, black solid line for fitting line).
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Figure 7. Correlation between estimates and in situ concentration of Chl-a ((a–d) for XGBoost-based
algorithm, (e–h) for BPNN-based algorithm, black dotted line for 1:1, black solid line for fitting line).

Table 3. Statistical characteristics of all paired data sets, training sets, testing sets, verification sets, and
evaluation indexes of TSS (unit: mg/L) and Chl-a (unit: mg/m3) estimated by the two algorithms.

Parameter Algorithm Data Set Sample Size RMSE R MAE R2 Mean Median

TSS XGBoost All 2158 2.82 0.93 1.76 0.85 5.39 3.60
Training 1510 1.88 0.97 1.41 0.93 5.40 3.60

Validation 324 4.22 0.87 2.41 0.68 5.27 3.60
Testing 324 4.29 0.83 2.71 0.68 5.46 3.50

BPNN All 2158 4.38 0.80 2.64 0.63 5.39 3.60
Training 1510 4.08 0.82 2.58 0.67 5.40 3.60

Validation 324 4.35 0.84 2.60 0.66 5.27 3.60
Testing 324 5.57 0.70 2.97 0.46 5.46 3.50

Chl-a XGBoost All 2158 2.33 0.92 0.99 0.84 4.22 2.10
Training 1510 0.66 0.99 0.43 0.99 4.18 2.10

Validation 324 3.86 0.74 2.23 0.55 4.11 2.10
Testing 324 4.37 0.77 2.34 0.59 4.51 1.95

BPNN All 2158 4.41 0.66 2.54 0.44 4.22 2.10
Training 1510 4.41 0.63 2.56 0.40 4.18 2.10

Validation 324 4.37 0.65 2.43 0.42 4.11 2.10
Testing 324 4.47 0.78 2.56 0.57 4.51 1.95

For TSS estimation, XGBoost performed better than BPNN. The correlation coefficient
R between the estimated and measured concentration of all data in the matched data pairs is
0.93, which is better than that of BPNN (0.79). The RMSE of the training set, verification set,
and testing set of the XGBoost-based algorithm ranges from 1.88 to 4.29 mg/L, MAE ranges
from 1.41 to 2.41 mg/L, and R2 ranges from 0.68 to 0.93, whereas, for the BPNN-based
algorithm, the RMSE of these sets ranges from 4.08 to 5.57 mg/L, MAE ranges from 2.58 to
2.97 mg/L, and R2 ranges from 0.46 to 0.66. For Chl-a estimation, XGBoost also performs
better. When the algorithm based on XGBoost is used, the R between the estimated and
measured concentration ranges from 0.74 to 0.99, and the RMSE, MAE and R2 of each data
set range from 0.66 to 4.37 mg/m3, 4.24 to 4.88 mg/m3, and 0.55 to 0.99, respectively. The
BPNN-based algorithm produced Rs of 0.64–0.66, RMSEs of 4.37–4.47 mg/m3, MAEs of
2.43–2.56 mg/m3, and R2s of 0.40–0.57 for each data set.

Therefore, in this study, the XGBoost-based algorithms were selected to obtain the TSS
and Chl-a of PRE from Landsat 5/8 images and carried out the computational analysis of
the long time series.
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3.2. Long-Term Water Quality in the PRE
3.2.1. Spatial Distribution

Figures 8 and 9 show the average TSS and Chl-a in the PRE during 2000–2021, re-
spectively. Both TSS and Chl-a are high in the northwest and low in the southeast, and
generally decrease with the increase in the distance from the coastline. The maximum
concentration of TSS appears in the surrounding waters of eight major estuaries of the Pearl
River, especially in the west coast of Lingdingyang, the coastal waters south of Modaomen,
and the coastal areas west of Huangmaohai. Due to the influence of the Coriolis force,
the current tends to be skewed to the right, the large quantity of sediment brought by the
current at the sea inlet tends to the west coast, and the suspended matter brought by the
lateral inlet and the lateral shallow mouth is easy to be trapped [42]. The rapid current may
lead to re-suspension when the water depth is relatively shallow, which eventually leads to
the maximum TSS in these places. TSS is relatively low in the east coast of Lingdingyang,
but there are also a few areas with high TSS in Shenzhen Bay and the east coast of Humen,
which may be mainly related to human activities along the coast [2,43]. The spatial distri-
bution of Chl-a in Lingdingyang is basically similar to that of TSS, but a relatively high
chl-a appears in the sea area south of Yamen to the belt area north of Dandan Island south
of Hong Kong. This is mainly due to the fact that a large amount of sewage brought by
the Pearl River may contain a large amount of algae [44], resulting in a high Chl-a near the
estuary, whereas the area farther from the shoreline tends to have lower turbidity, which
enables the phytoplankton to receive more light, forming a high zonal Chl-a distribution.

Figure 8. Average TSS concentration for 2000–2021 period in the PRE.

Figure 9. Average Chl-a concentration for 2000–2021 period in the PRE.
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3.2.2. Seasonal Variations

The average of TSS and Chl-a in each season, dry season, and wet season in the PRE
are shown in Figures 10 and 11 (the dry season is from October to March of the following
year, and the wet season is from April to September). The spatial distribution of maximum
and maximum concentration of TSS in each season is the same as that of the annual average
concentration of TSS, and both decrease gradually from the estuary with the distance from
the coastline. The TSS in spring and summer is evidently higher than that in autumn and
winter, and the high TSS in spring and summer expands away from the shoreline, which
is mainly influenced by the flow of the Pearl River. In spring and summer, a large sum of
suspended sediment carried by the Pearl River is discharged from various estuaries, which
expands the influence range of the high TSS, which can also be verified by the comparison
between dry season and wet season. Chl-a also has different characteristics in different
seasons and is higher in summer than in spring and higher in autumn than in winter. With
the arrival of spring and summer, the upper sea temperature gradually increased, and
the growth of phytoplankton accelerated [45]. Moreover, the water flow could spread the
phytoplankton to further areas, making the high Chl-a distribution zone from the south
of Modaomen to the north of Dandan Island, south of Hong Kong, more evident. The
distribution of Chl-a in dry season and wet season also supports the influence of water
flow in the estuary on this phenomenon.

Figure 10. The average concentration of TSS in winter (a), spring (b), summer (c), autumn (d), dry
season (e), and wet season (f).

3.3. Impact of HZMB on Surrounding Water Quality

Figures 12 and 13 show the changes in TSS and Chl-a concentrations in areas a-e
from 2000 to 2021. For area e, which covers the whole HZMB, both TSS and Chl-a show
a decreasing trend as a whole. As the erection of the HZMB officially commenced in
December 2009, we divided the time into two time periods, 2000–2009 and 2009–2021.
Since 2009, the decreasing trend in TSS is weakened with a rate of change greater than
zero in region e, whereas the decreasing trend in Chl-a is enhanced with a rate of change
less than zero. This may be due to the change in water quality within 7 km upstream
and downstream of the bridge caused by the blockage of the bridge piers and artificial
islands [46]. The increase in TSS may be accompanied by the decrease in water light, which
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will weaken the photosynthesis of phytoplankton. Meanwhile, as people attach importance
to water quality, the control of sewage in this area is also an important influencing factor.

Figure 11. The average concentration of Chl-a in winter (a), spring (b), summer (c), autumn (d), dry
season (e), and wet season (f).

Figure 12. Annual average TSS concentration change in area a–e ((a) for area e, and (b) for areas a–d.
Areas a–d are square areas with an area of 4 km2 on the west side of the upper reaches, east side of
the upper reaches, west side of the lower reaches, and east side of the lower reaches of the HZMB.
Area e is a rectangular area covering the HZMB).

Comparison of areas a–d reveals that the TSS in the waters located on the west side
of the HZMB is significantly higher than that on the eastern side because the Pearl River
current will be deflected to the west. As the rates of the TSS in areas a and c on both sides of
the bridge abutment and the artificial island are greater than 0 while the rates of TSS in areas
b and d on both sides of the submarine tunnel are less than 0, we hypothesize that this is
due to the water-blocking effect of the bridge abutment and the artificial island, and that
this effect is more evident in the upstream area of the river. Moreover, areas b and d are
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located in the core area of the PRE Chinese White Dolphin National Nature Reserve, and the
TSS has always been maintained at a relatively stable and low level due to anthropogenic
environmental management measures.

Figure 13. Annual average Chl-a concentration change in area a–e ((a) for area e, and (b) for areas
a–d. Areas a–d are square areas with an area of 4 km2 on the west side of the upper reaches, east side
of the upper reaches, west side of the lower reaches, and east side of the lower reaches of the HZMB.
Area e is a rectangular area covering the HZMB).

As can be seen from Figure 13b, Chl-a is higher in areas a and c than in areas b and
d. This is consistent with 3.1.2 and is mainly due to the west side of the estuary. The rate
of Chl-a in areas a, b, and d were all less than 0, whereas the rate of Chl-a in area c was
greater than 0. This may be due to the fact that the obstruction of bridges and artificial
islands between areas a and c caused the slowing down of the water flow in area c and
the increase in the residence time of phytoplankton in area c, which promoted the growth
of phytoplankton. In contrast, areas b and d were not obstructed by bridges and artificial
islands, so the changes in Chl-a in the two areas were consistent, and the concentrations
were close to each other.

4. Discussion
4.1. Comparison of XGBoost-Based Algorithms with the Existing Algorithms

Figure 14b,c compares the estimated and measured concentration of TSS based on Liu
et al.’s two algorithms [5], as shown in Equations (A1) and (A2). A comparison between
the estimated and measured concentration of Chl-a based on the RTA_17 algorithm [47]
(Equation (A3)) and OC2 algorithm [48] (Equation (A4)) appears in Figure 14e,f. All four
algorithms used the remotely sensed reflectance obtained from Landsat images as their
input; the areas under consideration were either the PRE and its coastal waters or the
water around Hong Kong. From the comparisons in Figure 14, it can be observed that,
in estimating TSS and Chl-a concentrations, the estimated values’ deviation from the
1:1 line for the four algorithms was larger than that found in the results yielded by the
XGBoost-based algorithms; furthermore, the RMSE and MAE were much larger than those
associated with the XGBoost-based algorithms. Additionally, the RTA_17_algorithm and
OC2 algorithm’s estimations of Chl-a grossly overestimated the proportion of Chl-a at
low concentrations and, conversely, grossly underestimated it at high concentrations. In
contrast, the XGBoost-based algorithms performed well, in general, despite a relatively
small amount of overestimation or underestimation.
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Figure 14. Comparison of different algorithms estimated and in situ measured TSS and Chl-a for
all matched data pairs (a,d) XGBoost-based algorithm, (b,c) Liu et al.’s two algorithms, (e) RTA_17
algorithm, (f) OC2 algorithm.

4.2. Performance of the Algorithm at Different Concentrations

In this study, we divided the matched data set into four concentration intervals accord-
ing to the in situ data. In situ TSS ranged from 0 to 140 mg/L, whereas in situ Chl-a ranged
from 0 to 56 mg/m3. Due to the larger concentration range of TSS in situ, the setting of
the first concentration range of the two factors was different (see Table 4). The amount of
in situ TSS was similar in 0–2 mg/L, 2–5 mg/L, and 5–10 mg/L concentrations; however,
the amount above 10 mg/L was significantly lower than that in other ranges. Accord-
ing to RMSLE and MAPE, the algorithm performed best when TSS was in the range of
5–10 mg/L; in this case, MAPE was 23.97%. Conversely, the algorithm performed poorly
when TSS was in the range of 0–2 mg/L. More than half of the total amount of in situ Chl-a
data was found in the range of 1–5 mg/m3, whereas 17% of the total amount was in the
range of 0–1 mg/m3. In addition, 13% and 10% of the total amount were in the ranges of
5–10 mg/m3 and more than 10 mg/m3, respectively. The algorithm performed better when
in situ Chl-a > 10 mg/m3; furthermore, the error increased as the concentration of Chl-a
decreased. Both TSS and Chl-a had the largest error in their smallest concentration range,
explainable by the more sensitive performance in terms of the error smaller concentrations,
which was more likely to lead to a large MAPE.

Table 4. Performance assessment of XGboost-based algorithm of different TSS (unit: mg/L) and
Chl-a (unit: mg/m3) concentration.

Parameter Concentration N RMSE RMSLE MAE MAPE (%)

TSS

0 < TSS ≤ 2 550 1.71 0.54 1.44 133.23
2 < TSS ≤ 5 720 1.55 0.30 1.15 37.87
5 < TSS ≤ 10 592 2.26 0.31 1.78 23.97

TSS > 10 205 7.15 0.43 4.74 26.52

Chl-a

0 < Chl-a ≤ 1 341 1.55 0.48 0.92 147.18
1 < Chl-a ≤ 5 1357 1.14 0.25 0.59 29.58
5 < Chl-a ≤ 10 263 2.70 0.35 1.52 20.29

Chl-a > 10 189 6.15 0.34 3.24 15.21

5. Conclusions

In this study, we matched 262 Landsat 5 TM images and 185 Landsat 8 OLI images with
TSS and Chl-a data measured in situ, thus obtaining 2158 sets of matched data spanning
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21 years. The bands used for our calculation were selected from dozens of band combina-
tions with TSS and Chl-a correlation coefficients R. One algorithm used to estimate TSS and
Chl-a in the PRE region was constructed based on the XGBoost algorithm, whereas the other
featured a single-layer BPNN algorithm in its construction. In a comparison of the two
algorithms in terms of R, R2, RMSE, and MAE, the XGBoost algorithm demonstrated better
performance and was ultimately selected for our estimation of the spatial and temporal
distribution of TSS and Chl-a levels in the PRE region from 2000 to 2021. The results yielded
evident spatial and temporal characteristics. In terms of spatial distribution, high TSS and
Chl-a appeared near each inlet on the western side of the PRE, and high values of TSS and
Chl-a existed in Shenzhen Bay, reflecting human influence. Seasonally, the high values of
TSS and Chl-a mostly appeared in spring and summer but were relatively low in fall and
winter. TSS and Chl-a were significantly higher in the abundant water period than in the
dry water period; in particular, a band of high Chl-a distribution was observed in the area
from the south of Moujiamen to the south of Hong Kong, north of Tandang Island, during
the abundant water period.

Our analysis of the multi-year changes in TSS and Chl-a in five areas near the HZMB
revealed that since the beginning of the construction of the HZMB, the change in the rate
of TSS covering the whole bridge and the area on the bridge’s west side was greater than
0. In addition, TSS levels in the area on the west side of the bridge displayed an upward
trend, having changed from their original downward trend. Comparing the results for the
upstream area on the west side to those for the downstream area revealed a more evident
change in the west-side upstream area. The areas on the east side of the bridge on both
sides of the submarine tunnel demonstrated a change in the rate of TSS of less than 0; that
said, the changes in TSS and TSS in the upstream and downstream areas were very similar.
By comparison, the changes in the rate of Chl-a were all less than 0 in the entire bridge
coverage area, as well as the upstream area on the west side of the bridge, and the areas on
both sides of the submarine tunnel on the east side of the bridge, but, in the downstream
area on the east side of the bridge, the change in the rate of Chl-a was greater than 0.

Our study findings have positive implications for environmental management policies.
Our plans for future studies include using satellite data with higher temporal resolution,
incorporating new field studies, examining more modeling methods, and increasing our
understanding of the hydrodynamic situation in conducting further research.
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Appendix A

Equations (A1) and (A2) show two algorithms for the TSS concentrations estimated
by Liu et al. [5] Equation (A3) is the RTA_17 algorithm [47] used to estimate Chl-a

https://www.usgs.gov/
https://cd.epic.epd.gov.hk/EPICRIVER/marine/
https://cd.epic.epd.gov.hk/EPICRIVER/marine/
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concentrations, and equation (A4) is the OC2 algorithm [48] used to estimate Chl-a
concentrations, respectively.

Log10(TSS) =
0.0009155 + 2.443× Rrs(red)

Rrs(green)− 0.6735
(A1)

Log10(TSS) =
0.0009155 + 2.443× Rrs(red)

Rrs(green)− 0.6735
(A2)

Chl− a = 10(0.1977−1.8117X+1.9743X2−2.5635X3−0.7218X4) (A3)

Chl− a = −1.87 + 0.46× Rrs(red)

(Rrs(blue))2 (A4)

where X = log10(
Rrs(blue)

Rrs(green) ) in Equation (3).
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