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Abstract: The monitoring of mesoscale convective systems (MCS) is typically based on satellite
infrared data. Currently, there is limited research on the identification of MCS using true color
composite cloud imagery. In this study, an MCS dataset was created based on the true color composite
cloud imagery from the Fengyun-4B geostationary meteorological satellite. An MCS true color
composite cloud imagery identification model was developed based on the Swin-Unet network. The
MCS dataset was categorized into continental MCS and oceanic MCS, and the model’s performance
in identifying these two different types of MCS was examined. Experimental results indicated that
the model achieved a recall rate of 83.3% in identifying continental MCS and 86.1% in identifying
oceanic MCS, with a better performance in monitoring oceanic MCS. These results suggest that using
true color composite cloud imagery for MCS monitoring is feasible, and the Swin-Unet network
outperforms traditional convolutional neural networks. Meanwhile, we find that the frequency and
distribution range of oceanic MCS is larger than that of continental MCS, and the area is larger and
some parts of it are stronger. This study provides a novel approach for satellite remote-sensing-based
MCS monitoring.

Keywords: satellite observation; mesoscale convective system; Swin-Unet; transformer

1. Introduction

Severe convective weather refers to atmospheric conditions characterized by the rapid
ascent of unstable air masses, often accompanied by strong vertical wind shear. Atmo-
spheric instability can lead to brief yet intense occurrences of extreme weather such as
heavy rainfall, thunderstorms, hail, strong winds, and other extreme weather phenom-
ena [1–4]. The occurrence of severe convective weather is often associated with mesoscale
convective systems (MCS), making the prediction and monitoring of MCS a focal point of
research in the meteorological community [2,3,5,6]. The forecasting and monitoring of the
convective initiation and development of MCS can rely on numerical weather prediction
(NWP) [7,8], Doppler weather radars, and satellite observation [9,10]. Doppler weather
radars primarily rely on the Z-R relationship to identify convective initiation and MCS. Re-
gions with reflectivity values exceeding 35 dBZ are considered as areas of active convection,
and this threshold is used as an indicator of convection initiation [11,12]. Satellite remote
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sensing primarily relies on specific satellite channels designed for monitoring MCS [13,14],
making it one of the most commonly used methods for studying MCS in current research.

Compared to polar-orbiting meteorological satellites, geostationary meteorological
satellites offer the advantage of a high spatiotemporal resolution for forecasting [15],
monitoring [16–19], and tracking MCS [20,21]. Satellite remote sensing for monitoring
severe convective weather primarily relies on satellite cloud imagery to identify MCS. MCS
exhibit different characteristics in various spectral bands. In the visible light spectrum, they
appears as high reflectivity, while in the infrared spectrum, they are characterized by lower
brightness temperatures. Currently, MCS identification in research is primarily based on
the infrared spectrum (around 10.7 µm) due to the reliable physical basis provided by the
physical characteristics of this wavelength. Based on the survey results of MCS, they are
often classified into MαCS and MβCS based on brightness temperature and morphology
criteria [2,22,23]. Methods for monitoring MCS using satellite remote sensing include
single-channel threshold methods (e.g., 241 K, 221 K) [24–26] and the water vapor-infrared
channel approach [27,28], as well as deep-learning techniques like the deep belief nets
(DBN) employed by Zheng [29]. Geostationary meteorological satellites typically have a
range of spectral channels, including reflectance, near-infrared, shortwave infrared, and
longwave infrared channels. MCS exhibit distinctive texture and morphological features in
the reflectance channel that differentiate them from clear sky, cloud layers, cirrus clouds, and
thin clouds. However, few algorithms can directly identify MCS from true color composite
cloud imagery. True color composite cloud imagery typically relies on visual interpretation,
and using true color composite cloud imagery makes it challenging to accurately extract
MCS information. Many satellites carry the visible light band, which primarily measures
the reflectivity/albedo of atmospheric target objects. True color composite images more
closely resemble objects observed by the human eye, and provide information on the
shape of the object’s contours and internal texture relative to the infrared band. Limited
by the imaging characteristics of the bands, MCS monitoring from true color composite
cloud images requires the use of emerging computer vision techniques. The semantic
segmentation model is one of the current research hotspots; in the previous research, few
scholars directly identified MCS from true color composite cloud images, so the direct
identification of MCS from true color composite cloud images is a worthwhile exploration
of the research, which can enable many non-professional satellites used for meteorological
monitoring to also identify MCS, and improve the meteorological industry’s ability to
monitor and forecast MCS. Therefore, investigating MCS identification based on true color
composite cloud imagery is of significant importance, as it could enable non-meteorological
satellites to monitor MCS as well.

Due to the influence of the monsoon climate, the northwest Pacific region experiences
frequent convective weather during the summer season. Depending on the underlying sur-
face characteristics, convective cloud systems in this region can be classified into continental
convective systems and oceanic convective systems. Yang et al. [30] used data from FY-2E
and CloudSat/CALIPSO to study MCS in terms of non-penetrative (DCwo)/penetrative
convection (CO), infrared cloud top brightness temperature, cloud cluster characteristics,
cloud cluster area, eccentricity, and other aspects. They pointed out that there are significant
differences between continental MCS and oceanic MCS.

The Transformer model [31], initially developed for natural language processing,
has found extensive applications in the field of remote-sensing image processing. Many
researchers have proposed derivative models such as ViT [32], Swin-Transformer [33], and
TransUNet [34] based on this architecture. Unlike convolutional neural networks (CNNs),
which struggle to capture contextual information effectively, Transformer networks with
attention mechanisms have proven to be highly effective in addressing this issue. In
this study, we began by creating true color composite cloud imagery using data from
the Fengyun-4B geostationary meteorological satellite. We also supplemented this with
infrared and water vapor band data to construct a comprehensive true color composite
cloud imagery MCS dataset. We used the Swin-Unet network [35] to build a model for
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monitoring MCS in true color composite cloud imagery. Additionally, we compared the
performance of this model with three traditional convolutional neural networks (FCN-
8s, SegNet, and Unet). Furthermore, we conducted an evaluation and analysis of MCS,
distinguishing between continental MCS and oceanic MCS. The technical workflow of this
study is depicted in Figure 1.
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Figure 1. Research methodology.

This article is divided into seven sections. Section 1 provides an introduction to the
research background. Section 2 introduces the satellite data and study area. Section 3 eluci-
dates the research methodology and evaluation metrics. Section 4 explains the predictions
of the model and comparatively analyzes the continental MCS and oceanic MCS. Section 5
selects a case study and compares it with longwave infrared monitoring results. Section 6
is a discussion of our study. Finally, Section 7 is the conclusion of this article.

2. Data and Study Area
2.1. Fengyun-4B Geostationary Meteorological Satellite AGRI and GPM Precipitation Data

China’s geostationary meteorological satellites include the Fengyun-2 series and the
Fengyun-4 series. The Fengyun-4 series represents the new generation of geostationary
meteorological satellites [36,37], comprising Fengyun-4A and Fengyun-4B. Fengyun-4A
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serves as an experimental satellite, while Fengyun-4B is the operational satellite responsible
for high-frequency observations of the atmosphere and cloud layers. These satellites utilize
a three-axis stable attitude control method, enhancing data stability compared to the spin-
stabilized Fengyun-2 series meteorological satellites. The improved temporal and spatial
resolution of Fengyun-4 satellites allows for full-disk observations every 15 min and rapid
regional observations over China every 5 min. The spatial resolution for visible/infrared
channels is around 0.5–1 km, and for the infrared spectrum, it is approximately 2–4 km. This
enables the observation of meteorological elements such as typhoons, severe convective
weather, and sea fog [15,38–41].

The successful launch of Fengyun-4B on 3 June 2021, positioned it in geostationary
orbit over the equator at 133◦E longitude. This advanced satellite is equipped with the
next-generation AGRI (Advanced Geostationary Radiation Imager), boasting an exten-
sive spectral range spanning from 0.4 µm to 13.8 µm, covering visible and near-infrared
bands (C01, C02, C03), shortwave infrared bands (C04, C05, C06), midwave infrared bands
(C07, C08), water vapor bands (C09, C10, C11), and longwave infrared bands (C12, C13, C14,
C15). Notably, Fengyun-4B introduces the C11 channel, centered at 7.42 µm, enabling the
observation of lower-level water vapor (Table 1). Complementing its capabilities are addi-
tional payloads, including SEP (Space Environment Monitoring Instrument Package), GHI
(Geo High-speed Imager), and GIIRS (Geostationary Interferometric Infrared Sounder),
facilitating space weather monitoring, rapid cloud imaging, and high-frequency three-
dimensional atmospheric observations. Fengyun-4B’s data have been available to users
since 1 June 2022.

Table 1. Comparison of Fengyun-4A/B AGRI sensor band configurations.

Spectrum

Fengyun-4A Fengyun-4B

Main Application
Channel

Central
Wavelength

(µm)
Channel

Central
Wavelength

(µm)

VIS/NIR
1 0.47 µm 1 0.47 µm Aerosols, true color synthesis
2 0.65 µm 2 0.65 µm True color synthesis
3 0.825 µm 3 0.825 µm True color synthesis

SWIR
4 1.375 µm 4 1.379 µm Cirrus

5 1.61 µm 5 1.61 µm Distinguish low clouds and snow
Cloud phase separation

6 2.25 µm 6 2.25 µm Cirrus, aerosols

MIR
7 3.75 µm (High) 7 3.75 µm High-albedo targets, fire points
8 3.75 µm (Low) 8 3.75 µm Low-albedo targets, surface

Water Vapor
9 6.25 µm 9 6.25 µm High-level water vapor
10 7.1 µm 10 6.95 µm Middle-level water vapor

—— 11 7.42 µm Low-level water vapor

LWIR

11 8.5 µm 12 8.55 µm Clouds
12 10.7 µm 13 10.8 µm Clouds, LST
13 12.0 µm 14 12 µm Clouds, water vapor content, LST
14 13.5 µm 15 13.3 µm Clouds, water vapor

Global Precipitation Measurement (GPM) products were also utilized in this study.
The research made use of the GPM_3IMERGHH data available at https://disc.gsfc.nasa.
gov/datasets/GPM_3IMERGHH_07/summary (accessed on 10 November 2023). This
product belongs to the IMERG Level-3 category with a spatial resolution of 0.1◦ × 0.1◦

and a temporal resolution of 30 min. Level-3 data for GPM are generated based on GPM
IMERG (Integrated Multi-satellite Retrievals for GPM), which is mainly used to compare
the consistency of MCS locations with precipitation data.

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_07/summary
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_07/summary
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2.2. Study Area

The research focuses on the Northwestern Pacific region (90◦155′E, 0◦55′N), which
includes countries and regions such as China, Japan, the Philippines, the Indochinese
Peninsula, and the Korean Peninsula (Figure 2). This area falls within the coverage of the
AGRI sensor and encompasses both continental and oceanic areas. Satellite observations
have indicated an increasing frequency and intensity of mesoscale convective systems
(MCS) in this region [42,43]. Influenced by the monsoon climate, this area is one of the
globally high-frequency MCS occurrence regions. Over the land, particularly in the middle
and lower reaches of the Yangtze River plain, MCS formation is primarily associated
with the large-scale circulation patterns during the East Asian monsoon season [44]. It is
often linked to the mei-yu front, where warm and moist air is lifted along the front in the
presence of low-level wind shear, leading to the initiation of MCS. MCS events in this region
are frequently embedded within the mei-yu front or manifest as isolated thunderstorm
cells [45]. In contrast, over the ocean, strong convective activity appears in the form of
tropical cloud clusters. These clusters are commonly associated with the development
of tropical disturbances and easterly waves in the tropical convergence zone. Relative to
continental MCS, oceanic MCS typically exhibit a more uniform structure with vigorous
convection development [46,47].
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3. Method and Evaluation Metrics
3.1. The Characteristics of MCS (Mesoscale Convective Systems) in Different Spectral Bands

The discussion of MCS characteristics in this context is primarily based on two-
dimensional remote-sensing imagery and does not involve the three-dimensional structural
features of MCS. Reflectance band remote-sensing images primarily depict MCS reflectivity,
where MCS predominantly appear as high-reflectance features, thus appearing white or
gray in the images. The developing MCS exhibit loose, granular texture characteristics and
the mature MCS exhibit compact and uniform texture characteristics. Due to the vigorous
convective development, their central region is close to the top of the troposphere, showing
vertical development, with obvious height extension in the vertical direction of the MCS,
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characterized by a lower bottom and higher top of the cloud. This is manifested as the
lower bottoms and higher tops of cloud clusters. This structural feature also results in
distinct shadow effects, with relatively dark shadow areas typically found beneath MCS.
Influenced by internal particle collision and merging, cloud droplets and ice crystals within
MCS typically have larger particle radii, a characteristic that can be effectively detected in
optical bands, making it suitable for identifying optical thickness.

As shown in Figure 3, infrared band imagery characterizes the brightness temperature
of MCS, with areas of vigorous convection displaying noticeably lower brightness tempera-
tures than the surrounding cloud regions. There is also a distinct low-value area within the
MCS, typically representing deep convective regions. In research, a specific threshold is
often employed on infrared cloud imagery to identify MCS [48]. The grayscale distribution
on the water vapor channel can provide information about the water vapor distribution
as well as the concentration, and MCS are well represented on the water vapor map, with
features similar to infrared band imagery. Additionally, to enhance the visualization of
MCS, an infrared enhanced cloud image is commonly used to depict MCS cloud clusters
(Figure 3d). In the enhanced infrared cloud maps, meteorologists generally set a value
field on the original brightness grayscale map and use a “pseudo-color composite” in the
remote-sensing field to divide the image elements between certain brightness temperatures,
so that it is easy to distinguish the convective intensity, range, and height of cloud tops in
MCS areas.
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lines indicating the MCS boundary range. (a) True color composite image, (b) longwave infrared
channel image, (c) water vapor channel image, (d) enhanced longwave infrared image.

Satellite remote-sensing cloud imagery provides both cloud pixel characteristics and
cloud system features for MCS. In cases of severe convective weather, such as MCS develop-
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ment, temporal changes are rapid, necessitating continuous observational data. During the
initial formation of MCS, several thunderstorm cells may develop over small-scale terrain
features and convergence zones, giving rise to convective weather. In the mature stage of
the MCS, with the influx of moist and unstable lower-level air, the moist layer thickens,
leading to vigorous convective updrafts, and the thunderstorm weather transitions into
heavy rainfall.

3.2. Mesoscale Convective Systems (MCS) Label Dataset

The creation of the dataset involves the initial step of synthesizing true color images
based on the characteristics of convective cloud clusters in visible light imagery. The
Advanced Geostationary Radiation Imager (AGRI) was first deployed on FY-4A, and it has
spectral response functions that differ from FY-4B AGRI (Figure 4). Since there is no green
channel, a simulation of the green channel is required during the true color composite,
following commonly used algorithms for the true color composite from geostationary
meteorological satellite data [49,50].
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02, and Channel 03.

Due to the absence of a dedicated green channel in AGRI, it is necessary to reconstruct
three channels, namely NewB, NewG, and NewR, for generating true color images. The
red channel, centered at 0.65 µm, has a relatively wide spectral range that absorbs some
information from the green and near-infrared bands. This spectral characteristic can lead to
a reddish bias in the synthesized images. In contrast, the FY-4B AGRI spectral response
function has its peak in the red spectral band, somewhat attenuating the energy in the
green band. Therefore, adjustments to the coefficients of the three originally constructed
channels are required. After applying zenith angle correction to the original reflectance
images, the construction of NewB, NewG, and NewR is carried out using the following
method, followed by normalizing the data to a range of 0 to 255. Equations (1)–(3) adopt the
method proposed by Yan et al. [51] and adjust the coefficients according to the Fengyun-4B
spectral response function to generate similar “green” channels, where C01

AGRI represents
the reflectance value of the first channel of Fengyun-4B AGRI, i.e., the blue light channel
after radiometric calibration, and similarly, C02

AGRI and C03
AGRI represent the reflectance

values of the second and third channels, respectively.

NewB = C01
AGRI (1)
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NewG = 0.5× C01
AGRI + 0.35× C02

AGRI + 0.2× C03
AGRI (2)

NewR = C02
AGRI + 0.1× C03

AGRI (3)

To enhance the contrast of the true color composite cloud imagery, a color image
stretching process is applied. The pixel values are mapped from the input range [0, 30, 60,
120, 190, 255] to the output range [0, 110, 160, 210, 240, 255]. Additionally, a cubic spline
interpolation is performed. This stretching process is applied to the remote-sensing images
in the range of 0 to 255, resulting in an enhanced image. Figure 5 shows the effect before
and after stretching.
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Figure 5. Comparison of full-disk images from Fengyun-4B AGRI sensor. (a) Before stretching.
(b) After stretching.

Daytime cloud imagery is created using satellite images captured at higher solar zenith
angles. Nighttime data in the reflection channel have values of 0 and are not considered
in this experiment. It is important to note that during the label dataset creation process,
efforts should be made to mark the edges of MCS while minimizing the influence of other
cloud systems like stratocumulus and cirrus clouds. The labeled MCS categories include
isolated MCS, linear MCS, and composite MCS composed of multiple isolated MCSs. In our
study, Fengyun-4B satellite data from June to August 2022 were selected to create the MCS
dataset. The data from the last week of each month were used to create the test dataset,
while the data from other time periods were used for the training and valid datasets. The
temporal division of the dataset is shown in Table 2. This dataset partitioning helps avoid
interference from MCS with similar morphologies in adjacent data frames.

Table 2. Time division of the dataset.

Train/Valid Dataset Train Clip Number Test Dataset

1–22 June 2022
18,076 (512 × 512 pixels)

(Continental/Oceanic MCS)

23–30 June 2022
1–23 July 2022 24–31 July 2022

1–22 August 2022 23–31 August 2022

The generation of the dataset followed the following process:
(1) For the Fengyun-4B images at the same moment, the data are first preprocessed,

and the data are synthesized into a true color composite image (0.47/0.65/0.825 µm)
according to the above scheme, before separating the water vapor channel (6.25 µm) and
the longwave infrared channel (10.8 µm) in the data.
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(2) Based on the calculation of the water vapor-LWIR channel difference, a dynamic
threshold is set to obtain the rough extraction results of the MCS, and morphological
processing is performed.

(3) Compare the true color composite image, correct the errors in the rough extraction
results using GIS software (QGIS Desktop Version: 3.22.14), obtain the finely extracted
MCS, and complete the label production.

(4) Pair the true color composite image with the label to obtain the image and label of
the corresponding moment.

Finally, all the image sizes were set to 512 × 512 pixels. During the model training
process, both continental MCS and oceanic MCS were considered. It is important to note
that for validating the model’s ability to recognize continental and oceanic MCS, the test
dataset was divided into continental MCS and oceanic MCS categories.

3.3. Swin-Unet Model and Experimental Environment
3.3.1. Swin-Unet

The existing semantic segmentation models primarily rely on fully convolutional neu-
ral networks (FCNs) and architectures such as Unet. These networks are characterized by a
symmetric encoder–decoder structure with ‘skip’ connections. In the encoder, continuous
convolution and pooling operations, along with downsampling, are employed to capture
deep features with an extended receptive field. Subsequently, the decoder up-samples
the extracted deep features to the original resolution for pixel-level predictions. The skip
connections primarily serve to fuse high-resolution features from different scales in the
encoder, mitigating the spatial information loss incurred during the downsampling process.
The architecture of the Swin-Unet network model is illustrated in Figure 6. Differing
from traditional convolutional neural networks (CNNs), Swin-Unet is based on a pure
Transformer network. Its structure resembles that of the Unet, comprising four main
components: encoder, bottleneck, decoder, and skip connections. The encoder, bottleneck,
and decoder all consist of fundamental Swin-Transformer units. In the initial phase of
the network, images are transformed into sequential inputs. If each patch size is set to
4 × 4 and considering the three channels (R, G, B), each patch, after undergoing linear
embedding, results in a feature vector of dimensions 4 × 4 × 3 = 48.

Swin-Unet is organized as a four-level hierarchical structure, where each layer in the
encoder comprises a Swin-Transformer module and a patch merging module, facilitating
image downsampling. The Swin-Transformer module preserves the dimensions of the
image after passing through it. To ensure the recognition of multi-scale context (MCS) fea-
tures at different scales, traditional convolutional neural networks (CNNs) usually employ
convolution or pooling (max pooling, average pooling) for feature map downsampling.
In the encoder, patch merging accomplishes a similar operation, reducing the image size
by half and doubling the number of channels with each patch merging operation. In
contrast to downsampling in the encoder, the decoder reverses this operation through
patch expanding, performing image upsampling. In the patch expanding module, the
primary objective is to restore the downsampled images to their original size and reduce
the number of channels until the image matches the input image’s dimensions. During the
upsampling process, each Swin-Transformer block simultaneously receives inputs from
low-resolution features and skip connections, aiming to complement multi-scale features
between the encoder and the decoder. This effectively mitigates the impact of spatial
position information loss caused by downsampling during the process.

As shown in Figure 7, the Swin-Transformer consists of two concatenated modules
similar to the Transformer encoder module in Vision Transformer (ViT). In the Swin-
Transformer, the multi-head self-attention (MSA) is replaced with window-based MSA
(W-MSA) in the first structure and shifted window-based MSA (SW-MSA) in the second
structure. SW-MSA achieves feature fusion between patches and different regions of
patches by shifting the position of the patches. The shifting step size is typically half the
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size of a single window, allowing patches to interact with different neighboring regions for
global feature fusion.
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Figure 7. The Swin-Transformer architecture.

In the Swin-Unet network, a deep neural network with an encoder–decoder structure
similar to Unet is constructed based on the Swin-Transformer block. In the encoder, a local-
to-global self-attention mechanism is implemented, as defined by the self-attention formula
in Equation (4). Finally, in the decoder, global features are upsampled to the input resolution,
which corresponds to the size of the input true color composite images (512 × 512), enabling
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pixel-wise segmentation predictions. The Swin-Unet network incorporates patch expansion
layers to avoid the traditional convolution or interpolation methods for upsampling and
feature dimension augmentation. Experimental results demonstrate the effectiveness of the
skip connection structure, similar to that in the Unet network, for Transformer networks.
It accurately enables image segmentation, predicting the multi-scale context (MCS) from
input true color composite images.

Attention(Q, K, V) = So f tMax(
QKT
√

d
+ B)V (4)

In the formula, Q, K, and V represent the query, key, and value, respectively. The
SoftMax function is utilized to compute weights, and ‘d’ denotes the feature dimension.
Within the formula, the dot product operation is performed on the query and key. After
undergoing SoftMax processing, it yields weights for each value. These weights are then
used to multiply the corresponding values and subsequently summed to obtain the final
output. Leveraging the attention mechanism, the model has the capability to effectively
comprehend the aspects of the multi-scale context (MCS) within the input image, extract
pivotal features, and enhance the precision of semantic segmentation.

3.3.2. Experimental Environment

The computer hardware used in the study includes an Intel Core i9-12900K CPU and
an NVIDIA RTX A4000 GPU. The software stack consists of Python with a version of 3.8,
PyTorch version 1.13.1, and CUDA version 11.7. The hyperparameters were configured
with a batch size of 10, an initial learning rate of 0.001, and a total of 100 iterations.

3.4. Evaluation Metrics

The model’s predictions and ground truth results are represented as binary images,
where regions with a value of 1 represent MCS (mesoscale convective systems), and regions
with a value of 0 represent non-MCS areas. TP (true positive) indicates cases where both the
model and ground truth correctly classify an area as MCS, FN (false negative) represents
cases where the model erroneously classifies an area as non-MCS, but the ground truth is
MCS, indicating a missed detection. FP (false positive) represents cases where the model
incorrectly classifies an area as MCS, but the ground truth is non-MCS, indicating a false
alarm. TN (true negative) indicates cases where both the model and ground truth correctly
classify an area as non-MCS (Table 3).

Table 3. Confusion matrix for MCS prediction results.

Prediction MCS Prediction Non-MCS

Label MCS TP (True positive) FN (False negative)

Label non-MCS FP (False positive) TN (True negative)

Based on the definitions of TP, FN, FP, and TN, the model’s performance is evaluated
using the following Equations (5)–(9).

3.4.1. Recall

The recall rate measures the model’s ability to correctly identify MCS and represents
the model’s sensitivity in recognizing severe convective cloud clusters. It is defined in
binary classification as the ratio of the number of correctly predicted positive samples by
the model to the total number of actual positive samples:

Recall =
TP

TP + FN
(5)
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3.4.2. F1

The F1 score provides a comprehensive assessment of the model’s performance by
balancing both recall and precision. It is calculated as the harmonic mean of recall and
precision, aiming to strike a balance between the model’s sensitivity and accuracy in
MCS prediction.

F1 = 2× Precision·Recall
(Precision + Recall)

(6)

The formula to calculate precision is as follows:

Precision =
TP

TP + FP
(7)

3.4.3. IoU

Intersection over union (IoU) is one of the commonly used evaluation metrics in deep-
learning models. It calculates the overlap between the predicted region and the ground
truth region. When the prediction and the ground truth are identical, the IoU value is 1.

IoU =
TP

TP + FP + FN
(8)

3.4.4. FAR

The false alarm rate (FAR) refers to the ratio of the area in which the model predicts
MCS but there are no actual MCS to the total predicted area.

FAR =
FP

TP + FP
(9)

4. Results
4.1. Swin-Unet Model Prediction Results for Continental MCS

To demonstrate the model’s monitoring capability for MCS, we selected eight typical
convective weather processes from the test dataset for model test, including four conti-
nental MCS and four oceanic MCS. These satellite images were not involved in the model
training, which can objectively evaluate the model’s ability to monitor MCS. In addition to
showcasing the predictive capabilities of the Swin-Unet network, we also selected FCN-8s,
SegNet, and Unet as reference comparisons. After synthesizing the original data into true
color images and processing them into the required format for the model input, the output
results were ultimately concatenated to obtain the predicted result images.

Figure 8 illustrates the monitoring capabilities of deep neural networks for continental
MCS. The focus of the figure is on the East Asian region, particularly influenced by the
summer monsoon, encompassing mainland China, Mongolia, select regions of India, and
the northern part of the Indochina Peninsula. In the context of the four selected represen-
tative convective processes, Swin-Unet, SegNet, and Unet networks consistently capture
the MCS positions accurately. Although FCN-8s is capable of detecting MCS, its precision
is somewhat lower than the other three models, leading to more instances of both missed
and misidentified MCS. In Figure 8a, FCN-8s fails to recognize two MCS in the Central
Plains region and one convective cell in the South China region. SegNet and Unet exhibit a
better recognition accuracy than FCN-8s but introduce misjudgments in the southwestern
region. Notably, the Swin-Unet network accurately captures all four MCS in the mainland
area. Moving to Figure 8b, FCN-8s, SegNet, and Unet make erroneous identifications of
high-level clouds over the Shandong Peninsula. Swin-Unet, however, avoids this issue.
In Figure 8c, Swin-Unet consistently outperforms the other three networks, particularly
in correctly identifying the absence of MCS in high-latitude rainbands. Nevertheless, it
exhibits misidentifications within the Sichuan province. Lastly, in Figure 8d, Swin-Unet
provides predictions consistent with labels for sparsely distributed and relatively small-area
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MCS. In contrast, FCN-8s, SegNet, and Unet networks inaccurately identify MCS in the
South China region.
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Table 4 presents the evaluation metrics for these models, aiming to assess their ability to
monitor MCS. For binary classification networks, IoU stands out as a crucial metric. Among
the four models, Swin-Unet achieves the highest IoU at 57.46%, significantly outperforming
the FCN-8s network. In terms of the recall metric, Swin-Unet and Unet exhibit a similar
performance, both surpassing 0.83, indicating a high level of capability in MCS monitoring.
The F1 score, which integrates both accuracy and recall, highlights Swin-Unet’s superiority
with a considerably higher F1 score compared to the other three networks. Additionally,
Swin-Unet attains the lowest FAR. Taken together, the comprehensive analysis suggests
that Swin-Unet excels in the detection of continental MCS compared to the other three
network architectures.
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Table 4. The performance comparison of the Swin-Unet, Unet, SegNet, and FCN-8s networks for
continental MCS.

Recall F1 IoU FAR

Swin-Unet 83.37% 72.9% 57.46% 33.96%
Unet 83.19% 68.43% 52.09% 37.11%

SegNet 81.94% 62.39% 45.48% 45.24%
FCN-8s 59.93% 51.68% 36.37% 36.81%

4.2. Swin-Unet Model Prediction Results for Oceanic MCS

The distinction between continental and oceanic MCS lies in the distinct underlying
surfaces, leading to inherent mechanistic differences. The figures primarily showcase the
tropical oceanic region east of the Philippines, situated in a tropical convergence zone
known for frequent tropical cloud clusters. To explore the models’ monitoring capabilities
for oceanic MCS, three random time instances and a satellite image featuring the powerful
typhoon “Hinnamnor” were selected.

From the satellite remote-sensing images, it is evident that cloud systems over the
ocean are more continuous and cover larger areas compared to land regions. In Figure 9a,b,
Swin-Unet, Unet, SegNet, and FCN-8s all accurately monitor oceanic MCS. However, in
Figure 9b, FCN-8s detects a smaller area of MCS in the eastern waters of Mindanao Island,
Philippines, while the other three models accurately identify it. In Figure 9d, all four
models recognize the super typhoon “Hinnamnor”, but FCN-8s and Unet fail to identify
the convective cell on the southern side of the typhoon. In summary, except for the false
alarm rate (FAR) metric, the Swin-Unet network, as employed in our study, achieves the
best performance in oceanic MCS identification.

Comparing Tables 4 and 5, it is evident that the models exhibit a notable improve-
ment in the recall, F1, and IoU metrics for oceanic MCS recognition, indicating a stronger
capability in identifying oceanic MCS compared to continental MCS. In the binary classifi-
cation scenario, the IoU increases from 57.46% to 71.65%. Unlike the Swin-Unet network,
the FCN-8s, SegNet, and Unet networks are all based on a convolutional neural network
(CNN). In our study, the CNN focuses solely on local information extraction, lacking an
understanding of the global context of the target object. Moreover, CNNs exhibit trans-
lation invariance, contributing to the inferior performance of CNN-based networks in
MCS detection compared to the Swin-Unet network. Swin-Unet, utilizing the Transformer
architecture, possesses the ability of global relationship modeling, capturing connections
between objects in the satellite image. The attention mechanism in the Transformer struc-
ture allows for a more effective extraction of MCS features. Consequently, the Swin-Unet
network outperforms CNN-based networks in the recognition of both continental and
oceanic MCS, showcasing the advantages of leveraging Transformer structures for this task.

Table 5. The performance comparison of the Swin-Unet, Unet, SegNet, and FCN-8s networks for
oceanic MCS.

Recall F1 IoU FAR

Swin-Unet 86.1% 83.47% 71.65% 17.14%
Unet 81.74% 82.14% 69.69% 17.31%

SegNet 80.46% 82.76% 70.63% 14.73%
FCN-8s 73.29% 77.48% 64.18% 12.87%
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4.3. Comparative Analysis of Continental MCS and Oceanic MCS for the Test Dataset

According to the test dataset division described in Section 3.2, with Fengyun-4B’s time
resolution of 15 min and a total of 785 full-disk images, the data were interpolated to the
study area. We then fed the data into the pre-trained Swin-Unet network, resulting in the
model’s predicted MCS outcomes. Applying the MCS classification criteria [23], a total
of 168 continental MCS samples and 2702 oceanic MCS samples were identified. After
processing the MCS result data into binary images, we computed the MCS occurrence
frequency in the test dataset (Figure 10). The study reveals that MCS are widely distributed
in the East Asia region, with oceanic MCS showing higher occurrence frequencies compared
to continental MCS. High-frequency areas for oceanic MCS are mainly located in the
maritime region between 0◦ and 25◦N. This includes the western Pacific, the Philippines,
the South China Sea, and the waters east of Malaysia. Continental MCS, on the other
hand, are primarily found in southern and central China, corresponding to the monsoon
belt, but their frequency of occurrence is lower than that of oceanic MCS. Additionally,
continental MCS are also prevalent in the Indochina Peninsula, northwestern India, and
parts of Pakistan.
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As shown in Figure 11, the study divides MCS occurrence frequencies into different
categories for comparative analysis. These categories include regions with occurrence fre-
quencies higher than 30% (Figure 11a), frequencies ranging from 20% to 30% (Figure 11b),
frequencies ranging from 10% to 20% (Figure 11c), and frequencies ranging from 5% to
10% (Figure 11d). During the study period, the South Bay of Bengal is identified as a high-
frequency MCS occurrence region. Additionally, areas east and west of the Philippines
exhibit MCS occurrence frequencies exceeding 20%, making them significant regions for
future research on oceanic MCS. In Figure 11c, it is evident that oceanic MCS are distributed
in tropical convergence regions, forming an approximately equidistant pattern. The north-
ern regions of India, Pakistan, and northern Vietnam have MCS occurrence frequencies
similar to those of oceanic MCS. The study requires an analysis of MCS distribution, and
thus, a minimum threshold of 5% is set to ensure the presence of MCS in the specified
areas. In Figure 11d, it is observed that oceanic MCS exhibit a wider distribution compared
to continental MCS. Continental MCS are predominantly located around the northern
side of the subtropical high-pressure system, forming a belt-like pattern extending from
Chongqing to Jiangsu Province in China. Additionally, MCS activity is also evident in the
North Korean region.

We conducted a statistical analysis of specific continental MCS and oceanic MCS
cases, focusing on two main physical properties: the number of individual MCS pixels
and the average value of the coldest 25% of MCS pixels [52]. Figure 12 provides a detailed
comparison of these two properties between continental MCS and oceanic MCS. In terms
of the number of individual MCS pixels, oceanic MCS typically exhibit a larger area than
continental MCS. The number of pixels in the 25% high-value region for oceanic MCS
ranges from 620 to 1100 pixels (Fengyun-4B spatial resolution is 4 km), while the same
region for continental MCS contains 500 to 710 pixels. The median pixel counts for oceanic
MCS and continental MCS are 466 and 380 pixels, respectively. Additionally, representing
MCS intensity based on the 25% coldest pixel average value is a recommended method.
We calculated the brightness temperature for each MCS using AGRI Channel 13. As shown
in Figure 12b, continental MCS and oceanic MCS in the test dataset exhibit comparable
intensities, with median values of 228.51K and 227.18K, respectively. Due to the stronger
latent heat release over oceanic areas, the test dataset shows that the minimum brightness
temperature for oceanic MCS is 190.9K, while for continental MCS, it is 197K. In some cases,
oceanic MCS can achieve lower brightness temperatures compared to continental MCS.
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region for continental MCS contains 500 to 710 pixels. The median pixel counts for oceanic 
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5. Case Study

To verify the model’s practical applicability in MCS monitoring, we selected the contin-
uous time period from 00:00 to 02:00 UTC on 24 June 2022, to assess the model’s monitoring
capability for the movement of MCS cloud clusters. Figure 13 displays the positions of MCS
during this continuous time period, including the labels, Swin-Unet’s prediction results,
and the results obtained using the longwave infrared brightness temperature threshold
method with a brightness temperature threshold of 241 K. During the verification pro-
cess, we determined the MCS extent from the visible light synthetic cloud images and
calculated relevant features based on the 10.8 µm brightness temperature values. These
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features included the average brightness temperature of the coldest 25% of pixels within
individual MCS cloud clusters and the centroids of the cloud clusters. The results indicate
that the model’s prediction, the labels, and the results obtained from the longwave infrared
brightness temperature threshold method accurately identify the MCS positions within the
cloud system. When observing the true color composite cloud image, it is evident that this
convective system is embedded within a continuous cloud cover. In the visible light image,
it displays a unique texture structure and exhibits distinct hierarchical relationships with
the surrounding cloud regions.

In this study, we conducted parameter statistical analyses only on the target MCS. Dur-
ing the movement of the MCS, we calculated the centroids of the MCS regions monitored
by the three methods. The formula for calculating the centroid is referenced from Formula
(10), where x0 and y0 represent the longitude and latitude coordinates of the centroid
within the MCS, and Ti represents the brightness temperature at (xi, yi) for Channel 13. The
results indicated that the MCS exhibited a northwest-to-southeast movement trend. The
conclusions obtained from the three methods were similar, and after fitting the path data,
all three methods achieved an R2 value greater than 0.95 (Figure 14).

x0 =
∑n

i=1 xiTi

∑n
i=1 Ti

y0 =
∑n

i=1 yiTi

∑n
i=1 Ti

(10)

Cloud area and the brightness temperature values inside the cloud can be used to
measure the size and range of an individual MCS. In this study, we conducted statistical
analyses of the area and the average brightness temperature of the 25% coldest pixels
within the MCS for eight time periods. Given that the Fengyun-4B AGRI data have a
resolution of 4 km, the changes in MCS area and the average brightness temperature of the
25% coldest pixels are shown in Figures 15 and 16. In the area change analysis, the use of
different brightness temperature threshold ranges in the infrared temperature threshold
method can affect the recognition area of MCS. When using a threshold of 241 K, the
resulting area is greater than the results obtained from Label and Swin-Unet at various
time periods. This shows that the MCS area increased continuously and then decreased
at the final time period. However, the results from Label and Swin-Unet both indicate
that the cloud area underwent a process of maintenance, weakening, strengthening, and
weakening during the development process. It is important to note that the infrared
temperature threshold method has a limitation, where using a higher threshold value
results in a larger area and may be influenced by some high cloud types, including warmer
cloud parts. Therefore, selecting the appropriate threshold for monitoring MCS is a crucial
aspect of future research. In addition, regarding the change in the average brightness
temperature of the 25% coldest pixels, all three methods showed similar conclusions. The
brightness temperature increased in the initial stages, indicating a weakening of MCS
intensity. However, at the final time period, there was a decrease in brightness temperature,
indicating an increase in MCS intensity.
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Figure 13. The MCS-monitoring situation from 24 June 2022 00:00 to 24 June 2022 02:00 (UTC). In
the figure: (a) Label: Red boundaries represent the MCS extent. (b) Swin-Unet predictions: Blue
boundaries represent the MCS extent. (c) Brightness temperature threshold method at 241 K: Purple
boundaries represent the MCS extent.
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Figure 14. The movement path of the cloud cluster’s centroid calculated using the Label, Swin-Unet,
and the brightness temperature threshold method.
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The GPM 3IMERGHH data were also applied for precipitation analysis in this MCS
activity. This product represents precipitation intensity with units of mm/h, providing
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valuable verification information for identifying areas dominated by convective precipi-
tation. In Figure 17, the MCS positions at 00:15, 00:45, 01:15, and 01:45 were overlaid on
the GPM product. It can be visually observed from the figure that this MCS movement
process brought about a precipitation event, and the MCS positions are in strong agreement
with the GPM 3IMERGHH data. Within the target cloud clusters, the GPM data show that
the MCS brought precipitation intensity exceeding 10 mm/h, with a very small region
exceeding 25 mm/h. This indicates that the convective system within this MCS contributed
to precipitation in the area.
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6. Discussion

It is worth noting that the research on MCS identification based on true color composite
cloud imagery can be extended to other satellites and sensors, including meteorological
satellites and other satellites. Firstly, due to the one-year observation limitation of the
Fengyun-4B data, it is currently not possible to train the Swin-Unet network on a large-
scale dataset. In the future, further data collection and sample dataset creation will be
needed to achieve more accurate MCS identification. Secondly, this study has focused on
qualitative analysis, primarily investigating whether MCS can be identified from true color
composite cloud imagery. The results currently indicate that the method identifies MCS in
areas of vigorous convection, influenced by the labeling process. Additionally, to ensure
the reliability of research results, more retrieval data and comparisons with ground-based
weather radar and precipitation data are required for further analysis. This will help assess
the applicability and accuracy of this method in MCS-monitoring research and provide
more reliable data for future studies.

In this paper, we employed the Swin-Unet network to investigate the performance
of Transformer models in identifying MCS from true color composite cloud imagery. Af-
ter training the model using labels defined on a summer dataset, the Swin-Unet model
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achieved good results. However, for MCS operational needs, algorithms developed for the
infrared wavelength are still essential since they offer day and night observation capabili-
ties. In summary, applying Transformer models to the infrared wavelength and different
wavelength combinations in the future is a worthwhile direction to explore. Additionally,
Transformer models may perform similarly to CNN when dealing with small sample sizes.
With more data provided by Fengyun-4B, we can obtain a larger MCS sample dataset to
train the Swin-Unet network. Since the Fengyun-4B satellite’s Geostationary Hyperspectral
Imager (GHI) lacks a water vapor band, MCS monitoring is currently reliant on long-wave
infrared data. The method proposed in this paper can provide a reference for GHI-based
MCS monitoring.

7. Conclusions

In this study, we utilized remote-sensing data from Fengyun-4B, China’s latest genera-
tion of geostationary meteorological satellite, to create a manually annotated MCS dataset
with higher accuracy. We employed the Swin-Unet network, comparing it with other
convolutional neural networks, and found that the Swin-Unet network achieved the best
results in MCS recognition.

Monitoring MCS based on true color composite cloud imagery has been lacking in
computer pattern recognition methods, and there is currently debate on whether MCS
should be differentiated as continental MCS and oceanic MCS. Through experiments using
the dataset with Swin-Unet network training, we achieved an IoU of 57.46% for continental
MCS and 71.65% for oceanic MCS. The higher performance of oceanic MCS monitoring is
likely due to the relatively simpler structure of oceanic MCS, while continental MCS often
embeds within layered clouds, leading to a lower IoU. We also analyzed the distribution
frequency of continental MCS and oceanic MCS in the test set, and concluded that the
distribution range of oceanic MCS is wider and the distribution frequency is higher than
that of continental MCS. In the statistical analysis, the oceanic MCS are more likely to reach
a larger area, and some of the oceanic MCS are able to reach cooler brightness temperatures,
i.e., stronger convection. In the case study, we selected a single MCS for tracking and
monitoring, calculating cloud cluster area and the average brightness temperature of
the 25% coldest pixels at the corresponding moment, and there exists a good agreement
between the MCS location results predicted by the Swin-Unet network and the GPM
precipitation data. The research results indicate that the Swin-Unet network can recognize
MCS based on true color composite cloud imagery, providing a new approach for MCS
monitoring using visible light data when long-wave infrared data are unavailable. In future
research, we hope to develop a faster MCS-monitoring method based on the Fengyun-4B
Geostationary Hyperspectral Imager (GHI) sensor.
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