Investigation on the Utilization of Millimeter-Wave Radars for Ocean Wave Monitoring
Abstract
:1. Introduction
2. Wave Height Measurements Using Millimeter-Wave LFMCW Radars
2.1. Ranging Principle of Millimeter-Wave Radars
2.2. Wave Height Information Extraction
3. Ocean Wave Spectrum and Wave Direction Spectrum Analysis
3.1. The Wave Spectrum Based on the Periodogram Method
3.2. The Wave Direction Spectrum Based on the BDM
3.3. Extraction of Wave Feature Parameters
4. Experimental Verification and Result Analysis
4.1. Introduction of the Experiments
4.2. Analysis and Verification of Experimental Results
4.2.1. Experiments in Planar Random-Wave Wave–Current Coupling Pool
4.2.2. Field Experiment in the Ocean
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Carrasco, R.; Horstmann, J.; Seemann, J. Significant wave height measured by coherent X-band radar. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5355–5365. [Google Scholar] [CrossRef]
- Zeng, Y.; Song, C.; Xu, Z. Wave height estimation based on the phase time series of millimeter-wave radar. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Cavaleri, L. Wave measurement using pressure transducer. Oceanol. Acta 1980, 3, 339–346. [Google Scholar]
- Liu, Q.; Lewis, T.; Zhang, Y.; Sheng, W. Performance assessment of wave measurements of wave buoys. Int. J. Mar. Energy 2015, 12, 63–76. [Google Scholar] [CrossRef]
- Allender, J.; Audunson, T.; Barstow, S.; Bjerken, S.; Krogstad, H.; Steinbakke, P.; Vartdal, L.; Borgman, L.; Graham, C. The WADIC project: A comprehensive field evaluation of directional wave instrumentation. Ocean Eng. 1989, 16, 505–536. [Google Scholar] [CrossRef]
- Benetazzo, A. Measurements of short water waves using stereo matched image sequences. Coast. Eng. 2006, 53, 1013–1032. [Google Scholar] [CrossRef]
- Wang, J.; Hou, G.L.; Liu, Y.; Jiang, H.L. Research on shipboard wave measurement instrument based on laser technology. Ocean. Technol. 2004, 23, 14–17. (In Chinese) [Google Scholar]
- Iovescu, C.; Rao, S. The fundamentals of millimeter wave sensors. Tex. Instrum. 2017, 1–8. Available online: https://www.ti.com/lit/pdf/spyy005 (accessed on 28 September 2023).
- Marcus, M.; Pattan, B. Millimeter wave propagation: Spectrum management implications. IEEE Microw. Mag. 2005, 6, 54–62. [Google Scholar] [CrossRef]
- Wang, X.; Kong, L.; Kong, F.; Qiu, F.; Xia, M.; Arnon, S.; Chen, G. Millimeter wave communication: A comprehensive survey. IEEE Commun. Surv. Tutor. 2018, 20, 1616–1653. [Google Scholar] [CrossRef]
- Vavriv, D.M.; Bezvesilniy, O.; Volkov, V.; Kravtsov, A.; Bulakh, E. Recent advances in millimeter-wave radars. In Proceedings of the 2015 International Conference on Antenna Theory and Techniques (ICATT), Kharkiv, Ukraine, 21–24 April 2015; pp. 1–6. [Google Scholar]
- Wu, X.; Zhang, N.; Zhang, H.; Hong, W. Frequency estimation algorithm for ranging of millimeter wave LFMCW radar. In Proceedings of the 2016 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), Nanjing, China, 16–19 October 2016; pp. 1–3. [Google Scholar]
- Stove, A.G. Linear FMCW radar techniques. IEE Proc. F (Radar Signal Process) 1992, 139, 343–350. [Google Scholar] [CrossRef]
- Beasley, P.; Stove, A.; Reits, B.; As, B. Solving the problems of a single antenna frequency modulated CW radar. In Proceedings of the IEEE International Conference on Radar, Arlington, VA, USA, 7–10 May 1990; pp. 391–395. [Google Scholar]
- Hymans, A.J.; Lait, J. Analysis of a frequency-modulated continuous-wave ranging system. Proc. IEE-Part B Electron. Commun. Eng. 1960, 107, 365–372. [Google Scholar] [CrossRef]
- Jaeschke, T.; Vogt, M.; Baer, C.; Bredendiek, C.; Pohl, N. Improvements in distance measurement and SAR-imaging applications by using ultra-high resolution mm-wave FMCW radar systems. In Proceedings of the 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar]
- Musch, T. A high precision 24-GHz FMCW radar based on a fractional-N ramp-PLL. IEEE Trans. Instrum. Meas. 2003, 52, 324–327. [Google Scholar] [CrossRef]
- Stelzer, A.; Diskus, C.G.; Lubke, K.; Thim, H.W. A microwave position sensor with submillimeter accuracy. IEEE Trans. Microw. Theory Tech. 1999, 47, 2621–2624. [Google Scholar] [CrossRef]
- Stelzer, A.; Diskus, C.; Weigel, R. Accuracy considerations and FMCW operation of a six-port device. In Proceedings of the APMC 2001. 2001 Asia-Pacific Microwave Conference (Cat. No. 01TH8577), Taipei, Taiwan, 3–6 December 2001; pp. 407–410. [Google Scholar]
- Zech, C.; Hülsmann, A.; Schlechtweg, M.; Reinold, S.; Giers, C.; Kleiner, B.; Georgi, L.; Kahle, R.; Becker, K.-F.; Ambacher, O. A compact W-band LFMCW radar module with high accuracy and integrated signal processing. In Proceedings of the 2015 European Microwave Conference (EuMC), Paris, France, 7–10 September 2015; pp. 554–557. [Google Scholar]
- Ayhan, S.; Thomas, S.; Kong, N.; Scherr, S.; Pauli, M.; Jaeschke, T.; Wulfsberg, J.; Pohl, N.; Zwick, T. Millimeter-wave radar distance measurements in micro machining. In Proceedings of the 2015 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), San Diego, CA, USA, 25–28 January 2015; pp. 65–68. [Google Scholar]
- Ayhan, S.; Scherr, S.; Pahl, P.; Kayser, T.; Pauli, M.; Zwick, T. High-accuracy range detection radar sensor for hydraulic cylinders. IEEE Sens. J. 2013, 14, 734–746. [Google Scholar] [CrossRef]
- Jaeschke, T.; Bredendiek, C.; Küppers, S.; Pohl, N. High-precision D-band FMCW-radar sensor based on a wideband SiGe-transceiver MMIC. IEEE Trans. Microw. Theory Tech. 2014, 62, 3582–3597. [Google Scholar] [CrossRef]
- Thomas, S.; Bredendiek, C.; Pohl, N. A SiGe-based 240-GHz FMCW radar system for high-resolution measurements. IEEE Trans. Microw. Theory Tech. 2019, 67, 4599–4609. [Google Scholar] [CrossRef]
- Bhutani, A.; Marahrens, S.; Gehringer, M.; Göttel, B.; Pauli, M.; Zwick, T. The Role of Millimeter-Waves in the Distance Measurement Accuracy of an FMCW Radar Sensor. Sensors 2019, 19, 3938. [Google Scholar] [CrossRef] [PubMed]
- Mahafza, B.R. Radar Signal Analysis and Processing Using MATLAB, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 22–24. [Google Scholar]
- Du, L.; Li, C.; Yin, G.; Lin, S. Wave monitoring array radar based on artificial intelligence algorithm. Mod. Radar 2022, 44, 41–48. [Google Scholar]
- Pierson, W.J.; Marks, W. The power spectrum analysis of ocean-wave records. Eos Trans. Am. Geophys. Union 1952, 33, 834–844. [Google Scholar]
- Blackman, R.B.; Tukey, J.W. The measurement of power spectra from the point of view of communications engineering—Part I. Bell Syst. Tech. J. 1958, 37, 185–282. [Google Scholar] [CrossRef]
- Fan, S. The evaluating method of wave power spectral density function with fast Fourier transform. Trans. Oceanol. Limnol. 1979, 2, 6–11. [Google Scholar]
- Barber, N.F. The directional resolving power of an array of wave detectors. Ocean Wave Spectra 1963, 357. [Google Scholar]
- Isobe, M.; Kondo, K.; Horikawa, K. Extension of MLM for estimating directional wave spectrum. In Symposium on Description and Modelling of Directional Seas; DHI and MMI, Copenhagen Publisher: Copenhagen, Denmark, 1984; pp. 1–15. [Google Scholar]
- Oltman-Shay, J.; Guza, R. A data-adaptive ocean wave directional-spectrum estimator for pitch and roll type measurements. J. Phys. Oceanogr. 1984, 14, 1800–1810. [Google Scholar] [CrossRef]
- Hashimoto, N.; Nagai, T.; Asai, T. Extension of the maximum entropy principle method for directional wave spectrum estimation. In Proceedings of the Coastal Engineering 1994, Kobe, Japan, 23–28 October 1994; pp. 232–246. [Google Scholar]
- Hashimoto, N. Estimation of directional spectrum using the Bayesian approach, and its application to field data analysis. Rept. PHRI 1987, 26, 57–100. [Google Scholar]
- Zhao, D.; Guan, C.; Wu, K.; Wen, S. Comparisons on estimating method of directional spectrum. Haiyang Xuebao 1999, 21, 119–125. [Google Scholar]
- Xu, D.; Yu, D. Random Wave Theory (Chinese); Higher Education Press: Beijing, China, 2001; pp. 255–256. [Google Scholar]
- Akaike, H. Likelihood and the Bayes Procedure; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Borgman, L.E. Directional wave spectra from wave sensors. In Ocean Wave Climate; Springer: Berlin/Heidelberg, Germany, 1979; pp. 269–300. [Google Scholar]
- Rice, S. Mathematical analysis of random noise. Bell Syst. Tech. J. 1944, 23, 282–332. [Google Scholar] [CrossRef]
- Longuet-Higgins Selwyn, M. The statistical analysis of a random, moving surface. Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Sci. 1957, 249, 321–387. [Google Scholar]
The Chirp Parameters | |
---|---|
Frequency start/GHz | 77 |
chirp duration/ | 114.4 |
ADC samples | 512 |
Chirp slope (MHz/) | 10 |
Sample rate/KHz | 5000 |
RF gain target/dB | 48 |
Working Parameters | Millimeter-Wave Radar | WG5-HT-CP |
---|---|---|
Frequency/GHZ | 76–81 | 9.319–9.831 |
Modulation | LFMCW | Triangular FMCW |
Half-power beamwidth/° | 3.5 | 5 |
Sampling rate/HZ | 20 | 10 |
Measuring range/m | 1–68 | 0–60 |
Accuracy level/cm | <1 | <1 |
Wave Parameters | Re013 | Re014 | Irre003 | Irre004 | Irre006 |
---|---|---|---|---|---|
SWH/m | 0.17 | 0.19 | 0.04 | 0.08 | 0.08 |
Tp/s | 2 | 2 | 1.6 | 1.6 | 2 |
Wave direction/° | 90 | 90 | 90 | 90 | 90 |
Capacitance Wavemeter Parameters | Re013 | Re014 | Irre003 | Irre004 | Irre006 |
---|---|---|---|---|---|
SWH/m | 0.174 | 0.205 | 0.035 | 0.073 | 0.076 |
Tp/s | 1.985 | 1.985 | 1.724 | 1.724 | 2.059 |
Radar Parameters | Re013 | Re014 | Irre003 | Irre004 | Irre006 |
---|---|---|---|---|---|
SWH/m | 0.153 | 0.176 | 0.034 | 0.084 | 0.064 |
Tp/s | 1.985 | 1.985 | 1.699 | 1.699 | 2.059 |
BIAS | BIAS | ||||
SWH/m | 0.025 | 0.008 | |||
Tp/s | 0 | 0.017 |
Hm0/m | Tp/s | Tm01/s | Tm02/s | |
---|---|---|---|---|
STD | 0.019 | 0.291 | 0.329 | 0.227 |
RMS | 0.026 | 0.279 | 0.312 | 0.232 |
BIAS | 0.022 | 0.223 | 0.253 | 0.210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Wang, Y.; Liu, F.; Zhang, Y. Investigation on the Utilization of Millimeter-Wave Radars for Ocean Wave Monitoring. Remote Sens. 2023, 15, 5606. https://doi.org/10.3390/rs15235606
Liu X, Wang Y, Liu F, Zhang Y. Investigation on the Utilization of Millimeter-Wave Radars for Ocean Wave Monitoring. Remote Sensing. 2023; 15(23):5606. https://doi.org/10.3390/rs15235606
Chicago/Turabian StyleLiu, Xindi, Yunhua Wang, Fushun Liu, and Yuting Zhang. 2023. "Investigation on the Utilization of Millimeter-Wave Radars for Ocean Wave Monitoring" Remote Sensing 15, no. 23: 5606. https://doi.org/10.3390/rs15235606
APA StyleLiu, X., Wang, Y., Liu, F., & Zhang, Y. (2023). Investigation on the Utilization of Millimeter-Wave Radars for Ocean Wave Monitoring. Remote Sensing, 15(23), 5606. https://doi.org/10.3390/rs15235606