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Abstract: Clouds are diverse and complex, making accurate cloud type identification vital in im-
proving the accuracy of weather forecasting and the effectiveness of climate monitoring. However,
current cloud classification research has largely focused on daytime data. The lack of visible light
data at night presents challenges in characterizing nocturnal cloud attributes, leading to difficulties
in achieving continuous all-day cloud classification results. This study proposed an all-day infrared
cloud classification model (AInfraredCCM) based on XGBoost. Initially, the latitude/longitude,
10 infrared channels, and 5 brightness temperature differences of the Himawari-8 satellite were
selected as input features. Then, 1,314,275 samples were collected from the Himawari-8 full-disk
data and cloud classification was conducted using the CPR/CALIOP merged cloud type product
as training data. The key cloud types included cirrus, deep convective, altostratus, altocumulus,
nimbostratus, stratocumulus, stratus, and cumulus. The cloud classification model achieved an
overall accuracy of 86.22%, along with precision, recall, and F1-score values of 0.88, 0.84, and 0.86,
respectively. The practicality of this model was validated across all-day temporal, daytime/nighttime,
and seasonal scenarios. The results showed that the AInfraredCCM consistently performed well
across various time periods and seasons, confirming its temporal applicability. In conclusion, this
study presents an all-day cloud classification approach to obtain comprehensive cloud information
for continuous weather monitoring, ultimately enhancing weather prediction accuracy and climate
monitoring.

Keywords: all-day cloud classification; XGBoost; CPR/CALIOP; Himawari-8; AInfraredCCM

1. Introduction

Cloudiness, a consequence of the presence of minuscule water vapor particles or ice
crystals in the atmosphere, is closely intertwined with numerous climatic phenomena [1].
According to the International Satellite Cloud Climatology Project [2,3], the global annual
average cloud cover covers two-thirds of the Earth’s surface. As the primary regulators of
the Earth’s radiation balance, the water cycle, and biogeochemical cycles [4,5], distinct cloud
types produce varying radiative effects. Therefore, the precise categorization of cloud types
and understanding of their distribution patterns hold significant practical importance [6,7].
The pursuit of effective and precise cloud classifications remains a prominent focus in
meteorological research [8].

In past decades, cloud classification has predominantly been carried out using tra-
ditional methods and machine-learning-based techniques. Traditional methods include
thresholds and statistical mathematical methods. However, these methods rely heavily
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on empirical knowledge when dealing with data, resulting in low classification efficiency.
With continuous developments in computer science, several machine learning methods
have emerged. Machine learning methods do not require extensive prior knowledge and
offer high computational efficiency and excellent classification performance [9]. Therefore,
conventional machine learning methods such as Random Forest (RF) and Support Vector
Machine (SVM) approaches have been widely used in cloud classification research [10].
Wohlfarth et al. [11] used data from three visible channels and one infrared (IR) channel
obtained from the Landsat-8 satellite. They classified clouds into nine different cloud classes
and four subsurface classes using the SVM algorithm, achieving an impressive classification
accuracy of up to 95.4%. Yu et al. [12] proposed a cloud classification method based on
an RF algorithm for FY-4A. This method was combined with CloudSat’s 2B-CLDCLASS
cloud product to classify 8 single-layer cloud types and 12 multilayer cloud types. As the
volume of data continues to increase, deep learning models such as deep neural networks
(DNN) and artificial neural networks (ANN) are increasingly being used in cloud classi-
fication research. Cai et al. [13] employed FY-2C’s infrared channel 1 (10.3–11.5 µm) data
in combined with a Convolutional Neural Network (CNN) model for cloud classification.
Their classification divided clouds into 5 types, achieving an impressive average recog-
nition rate of 90.6%. In addition, Gorooh et al. [14] proposed the Deep Neural Network
Cloud-Type Classification (DeepCTC) model that can classify clouds into 8 different types
with an overall classification accuracy of 85%. Machine learning techniques have surpassed
traditional cloud classification methods in terms of both classification speed and accuracy.
However, it is important to note that these methods are generally applicable to daytime
cloud classification. Nighttime visible light data are often noisy and cannot be used for
nighttime cloud classification. Therefore, one of the research questions addressed in this
study is how to achieve nighttime cloud classification.

Researchers have commenced extensive studies using infrared data to more accurately
monitor cloud evolution at night, eliminating the need for visible data and achieving
successful research outcomes [15]. Tan et al. [16] proposed a nighttime cloud classification
algorithm based on Himawari-8 satellite channel data and machine learning algorithms.
They utilized data from 5 infrared channels, 3 brightness temperature difference (BTD)
datasets, and latitude/longitude information as training features. By employing the RF
algorithm, this approach achieved an overall accuracy of 0.79, classifying clouds into
clear-sky, single-layer, and multilayer clouds. Li et al. [17] used infrared data from the
Himawari-8 satellite to classify clouds. Their classification scheme included five types:
clear, single-ice clouds, single-mixed clouds, single-water clouds, and multilayer clouds.
They achieved an impressive overall classification accuracy of 0.81. Despite significant
progress in nighttime cloud classification research, a critical analysis of existing research
results revealed a limited number of nighttime cloud classifications. Typically, cloud
classification is constrained to primary cloud categories without considering the finer
distinctions between clouds.

This study addresses the challenges of nighttime cloud classification and the limited
number of classifiers using the latitude/longitude, five brightness temperature differences
(BTD), and ten IR channels from the Himawari-8 satellite. The combined Cloud-Profiling
Radar (CPR) and Cloud-Aerosol LIDAR with Orthogonal Polarization (CALIOP) cloud-
type product 2B-CLDCLASS-LIDAR were used as labels, which classified clouds into nine
types: clear-sky (Clear), cirrus (Ci), deep convective (Dc), altostratus (As), altocumulus
(Ac), nimbostratus (Ns), stratocumulus (Sc), stratus (St), and cumulus (Cu). By compar-
ing various models using various metrics, such as overall accuracy, precision, recall, and
F1-scores, this study investigated the viability of all-day cloud classification and the se-
lection of optimal parameters. The goal was to improve both the quantity and accuracy
of cloud classification, thus providing valuable additional reference data for nighttime
meteorological observations.
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Section 2 introduces the experimental data and methodology used in this study. Section 3
presents the experimental results and their implications. Finally, Sections 4 and 5 present the
discussion and conclusion, respectively.

2. Materials and Methods
2.1. Data Collection

This study used Level-1 infrared channel data from the Himawari-8 satellite and
the cloud type product 2B-CLDCLASS-LIDAR, which is a joint project of CloudSat and
CALIPSO. Additionally, longitude, latitude, and solar zenith angle data were employed
for support.

(1) Himawari-8 data

The Japan Meteorological Agency’s Geostationary Meteorological Satellite, Himawari-
8, was launched on 7 July 2015. The data from this satellite can be accessed through the
Japan Aerospace Exploration Agency (JAXA) (http://www.eorc.jaxa.jp/ptree/index.html,
accessed on 15 May 2023) [18]. Compared with MTSAT-2 (Himawari-7), Himawari-8 is
equipped with an Advanced Himawari Imager (AHI) sensor that has expanded from
the original 5 bands to 16 bands, including 3 visible light bands, 3 near-infrared bands,
and 10 infrared bands [19,20]. It covers the area from 60◦S to 60◦N and from 80◦E to
200◦E (Figure 1). The observation frequency of Himawari-8 has been increased to once
every 10 min, providing abundant data for meteorological studies and continuous cloud
observations [21]. This study used 10 infrared bands from the Himawari-8 satellite. Table 1
displays the parameters of the 10 infrared bands of the Level-1 products of Himawari-8
and their main applications.
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Figure 1. Illustration of the observation area of the Himawari-8 satellite.

The Level-2 (L2) cloud product of the Himawari-8 satellite provides a comprehensive
set of cloud-related parameters, such as cloud type (CLTYPE), cloud top height, cloud top
temperature, and cloud optical thickness. However, it is important to note that this product
solely provides cloud information for observations made during the daytime period. The
spatial resolution is 5 km and the temporal resolution is 10 min. A more detailed description
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of AHI Level-1/2 data is available at https://www.eorc.jaxa.jp/ptree/userguide.html,
accessed on 20 June 2023.

Table 1. Himawari-8 band parameters and applications.

Bands Channel Type Center Wavelength
(µm)

Spatial
Resolution (km) Main Applications

7 Midwave IR 3.9 2 Natural disasters, low cloud (fog) observation

8
Water vapor

6.2 2 Observation of water vapor volume in the
upper and middle layers

9 6.9 2 Observations of water vaporization in the
mesosphere10 7.3 2

11

Longwave IR

8.6 2 Cloud phase identification and SO2 detection
12 9.6 2 Measurement of total ozone

13 10.4 2 Observation of cloud images and cloud top
conditions

14 11.2 2 Observation of cloud images and sea surface
water temperature

15 12.4 2 Observation of cloud images and sea surface
water temperature

16 13.3 2 Measurement of cloud height

This study used 10 infrared bands as basic data, ranging from band 7 to band 16. In
addition, auxiliary data, including longitude, latitude, sun zenith angle, and CLTYPE, were
incorporated. Figure 2 displays the cloud images of Himawari-8 satellite for its 10 infrared
channels at UTC 03:20 on 1 July 2019.
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Figure 2. Cloud data for 10 channels of AHI.

(2) CloudSat data

CloudSat and CALIPSO are part of the A-train that crosses the equator in the after-
noon [22]. Both satellites provide near global views of clouds from sun-synchronous orbits
and are available at https://www.cloudsat.cira.colostate.edu, accessed on 23 May 2023.
CloudSat’s onboard CPR and CALIOP (a vision and near-infrared LIDAR) are 2 powerful
onboard active instruments [23]. Currently, these are the only instruments capable of
accurately detecting the vertical structure of clouds [24]. Owing to the different working
wavelengths of CPR and CALIOP, they exhibit different sensitivities to different types of
clouds. The millimeter-wave radar CPR has the advantage of detecting optically thick

https://www.eorc.jaxa.jp/ptree/userguide.html
https://www.cloudsat.cira.colostate.edu
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clouds and precipitation systems [25]. Combining their advantages, a joint product of
CPR/CALIOP was developed to provide the most reliable vertical cloud information; this
was named 2B-CLDCLASS-LIDAR. This product provides information on up to 10 cloud
layers. These layers are characterized by a horizontal resolution of 1.4 × 1.8 km and a
vertical resolution of 0.24 km. This dataset contains valuable details, including cloud layers,
cloud heights, and cloud phases [26]. The CloudLayerType band elements range from
0 to 8 and represent different cloud types: Clear, Ci, As, Ac, St, Sc, Cu, Ns, and Dc. In this
study, CloudLayerType band data were utilized as the labeling criteria. For a more com-
prehensive understanding of 2B-CLDCLASS-LIDAR, please refer to the CloudSat product
brochure [27].

(3) Cloud type of this study

In this study, 130 days of data (Table A1) were selected from November 2018, January
2019, March 2019, June 2019, and July 2019. The Himawari-8 CLTYPE products encompass
10 types (0–9 represent Clear, Ci, Cs, Dc, Ac, As, Ns, Cu, Sc, and St, respectively) and
CPR/CALIOP products consist of only 9 types. To ensure consistency, the clouds were
finally classified into 9 types based on the one-to-one mapping between the CPR/CALIOP
and Himawar-8 clouds. Notably, in Himawari-8, Ci and Cs were merged into a one type
called Ci clouds. The classification criteria are listed in Table 2.

Table 2. Cloud type of this study.

Cloud Label Label of CPR/CALIOP Label of CLTYPE Name of Cloud

0 0 (Clear) 0 (Clear) Clear
1 1 (Ci) 1, 2 (Ci, Cs) Ci (Ci, Cs)
2 8 (Dc) 3 (Dc) Dc
3 3 (Ac) 4 (Ac) Ac
4 2 (As) 5 (As) As
5 7 (Ns) 6 (Ns) Ns
6 6 (Cu) 7 (Cu) Cu
7 5 (Sc) 8 (Sc) Sc
8 4 (St) 9 (St) St

2.2. Method

In this study, 10 different IR bands from Himawari-8 and 5 BTDs were used to select
potential donor pixels. Longitude and latitude were used as additional constraints. In
the following section, the proposed algorithm is referred to as the All-day Infrared Cloud
Classification Model (AInfraredCCM). Figure 3 shows a conceptual diagram of the method
used in this study and its comparison.

(1) Data collection and processing: This study utilized various sources, such as Cloud-
LayerType, Himawari-8 Level-1 IR, latitude and longitude, and solar zenith angle data from
the 2B-CLDCLASS-LIDAR product [26]. To obtain BTD information, pairwise differences
were calculated between all the infrared channels. Subsequently, feature selection was
performed using the feature analysis function within the machine learning module [28].
The final input feature set included 5 BTDs, 10 infrared channels, and latitude and lon-
gitude data. BTD (11.2–7.3 µm) can be employed to detect high- and mid-level clouds
over land during the night. BTD (3.9–11.2) is known as useful BTD to detect low-level
clouds. BTD (11.2–12.4 µm) is useful for distinguishing thin clouds from clear sky. BTD
(12.4–10.4 µm) can serve as a substitute for visible light to describe cloud optical thickness.
BTD (7.3–10.4 µm) is utilized for nighttime cloud detection by differencing the water vapor
channel and the infrared channel [10,29]. After obtaining the BTD data, a series of data
preprocessing steps were applied to both the Himawari-8 and CPR/CALIOP datasets.
These steps include spatiotemporal matching, label extraction, data resampling, and crop-
ping. Consequently, a training dataset consisting of 1,182,688 samples and a testing dataset
consisting of 131,587 samples were created following a random 9:1 split ratio. The specific
features contained in the dataset are listed in Table 3.
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Table 3. Information of dataset.

Dimension Number Variables

Predictor
BTs (10) BT (3.9 µm), BT (6.2 µm), BT (6.9 µm), BT (7.3 µm), BT (8.6 µm), BT (9.6 µm),

BT (10.4 µm), BT (11.2 µm), BT (12.4 µm), and BT (13.3 µm)

BTDs (5) BTD (11.2–7.3 µm), BTD (3.9–11.2 µm), BTD (11.2–12.4 µm),
BTD (12.4–10.4 µm), and BTD (7.3–10.4 µm)

Auxiliary data (2) Latitude and Longitude

Prediction 1 Cloud label from 2B-CLDCLASS-LIDAR and CLTYPE

(2) Label extraction: To obtain cloud type samples for training, Himawari-8 and
2B-CLDCLASS-LIDAR products were subjected to temporal and spatial matching. Each
pixel in the CloudLayerType dataset contained information on 10 cloud types, and each
Himawari-8 pixel corresponded to a cloud type. During data matching, the first step
was to compress the 10-layer data. If the CPR point corresponded to multilayer clouds
with different cloud types in each layer, it was defined as a multilayer cloud; otherwise,
it corresponded to the cloud type in the first layer. The second step involved a temporal
and spatial matching process due to the difference in the spatial and temporal resolutions
between AHI and CPR. This entailed selecting AHI data points within a 5 min time window
of the CPR scan point and within a 5 km radius of the CPR point location [30,31]. In the
third step, considering that the AHI observations did not include multilayer cloud types,
the CPR points corresponding to multilayer clouds were eliminated. Finally, cloud type
labels were assigned by majority rule based on the matching of AHI and CPR points [32,33].

(3) Model building: The processed dataset was used to train the XGBoost model,
and the optimal model parameters were determined by Bayesian optimization. This step
selection was made by sampling using the Bayesian optimization algorithm after estimating
the distribution of the objective function in the parameter space through a Gaussian process
model. It evaluated the overall classification accuracy of related models while searching for
the best parameter combination across a finite number of iterations. Finally, the parameter
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combination with the highest overall classification accuracy was obtained and represented
as the optimal model parameters.

(4) Model evaluation: The overall accuracy (OA), precision, recall, and F1-score were
calculated based on ten-fold cross-validation [34]. If the final model achieved sufficient
accuracy, it was selected; otherwise, the parameters were modified.

This study used the parameters shown in Table 4 as an example to better explain the
metrics used for accuracy assessment. Assume that a dataset C consists of T samples; here,
AS is the number of samples for class A clouds and BS is the number of samples for class B
clouds. Table 4 shows the specific classification results from dataset C, which were used for
model classification prediction.

Table 4. Classification results of the model on dataset C.

Number of Ever Category Total Number

Number of category
A clouds

Number of category
B clouds

Model classification
result

Number of category A clouds TA FB T1
Number of category B clouds FA TB T2

Total number AS BS T

The overall accuracy (OA) is a crucial measure, representing the proportion of correctly
classified samples to the total number of samples [12]. A higher overall accuracy indicates
a more reliable classification outcome. The overall accuracy is calculated as follows:

OA =
TA + TB

TA + FB + FA + TB
(1)

where TB represents an accurately classified cloud type B.
Precision is a metric that quantifies the proportion of correctly identified clouds in the

target class, indicating fewer classification errors. Precision can be expressed as follows:

Precision =
TA

TA + FA
(2)

where TA denotes correctly identified class A clouds and FA denotes the misdiagnosis of
class A clouds as class B clouds.

The recall pertains to the proportion of correctly identified class A clouds within the
total number of identified class A clouds [35]. Recall can be represented as follows:

Recall =
TA

TA + FB
(3)

where TA denotes the correct identification of class A clouds and FB denotes the misdiag-
nosis of class B clouds as class A clouds.

The F1-score combines precision and recall, with values ranging from 0 to 1. A
higher score indicated that the model was more accurate. Compared with that using only
precision or recall metrics, this score provides a more comprehensive evaluation of model
accuracy [36]. The F1-score can be written as follows:

F1 =
2PrecisionRecall

Precision + Recall
(4)

(5) The AInfraredCCM was conducted through all-day cloud classification for the
entire research area using the test data.

XGBoost is an ensemble learning method that employs boosting principles. Unlike
traditional boosting methods, XGBoost uses tree models (decision trees) as weak learners. It
combines multiple weak learners to create a strong learner, gradually improving the model’s
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performance. XGBoost is adaptive; in each iteration, it introduces a new weak classifier that
attempts to correct the errors of the previous round until the stopping condition is satisfied.
The key characteristic of XGBoost is the integration of multiple weak learners into a strong
learner, gradually improving the model accuracy through iterative error correction [37].

Bayesian optimization approach was employed to tune the model and identify the
optimal parameters of the AInfraredCCM model. The n_estimators parameter was set
within a range from 100 to 300, the learning_rate parameter was set within a range from
0.01 to 0.999, the max_depth parameter was set within a range from 10 to 100, and the
min_child_weight parameter ranges from 1 to 10 during optimization. After 100 iterations,
the AInfraredCCM was developed, and the model parameters are displayed in Table 5.

Table 5. Parameters of the AInfraredCCM.

Parameter Meaning Value

n_estimators Number of trees 204
learning_rate Magnitude of the iterative model update 0.2122
max_depth Maximum tree depth 26

min_child_weight Minimum number of samples required in a leaf node 3

3. Results
3.1. Comparison with Other Methods

The results are based on an independent test dataset of approximately 130,000 pix-
els, which is divided into clear sky and eight different cloud forms. Table 6 shows the
precision, recall, and F1-score of the AInfraredCCM for each form of cloud in the training
dataset. The confusion matrix for various types of clouds is shown in Figure 4, wherein the
vertical coordinate represents the true value and the horizontal coordinate represents the
predicted value.

Table 6. Precision, recall, and F1-score of the AInfraredCCM.

Cloud Type Precision Recall F1-Score

Clear 0.85 0.89 0.87
Ci 0.90 0.88 0.89
Dc 0.93 0.87 0.90
Ac 0.82 0.74 0.78
As 0.89 0.88 0.89
Ns 0.95 0.93 0.94
Cu 0.68 0.57 0.60
Sc 0.88 0.93 0.91
St 0.98 0.90 0.94

Based on the model’s classification results for the all-day data, the average overall
accuracy for all cloud types was 86.22%, with a precision of 0.88, a recall of 0.84, and an
F1-score of 0.86. Notably, Cu clouds exhibited considerably lower identification rates than
the other cloud types, and both recall and F1-score are significantly lower than those of
other cloud types (Table 6). The confusion matrix shown in Figure 4 graphically displays
that most of Cu is misclassified as clear sky (34.252%) and Sc (8.962%). These phenomena
can be attributed to the unique properties of Cu, which include two possibilities: one
resembles Cu in clear weather and appears as thin, fragmented clouds that closely resemble
clear in terms of reflectance, making them easy to misidentify; the alternative scenario is
continuous Cu, which is denser and more vertically developed than clear-sky Cu and is
frequently categorized as Sc.
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To enhance the credibility of the model, the cross-validation results were compared
with those obtained using various other models, including RF, LightGBM, AdaBoost, and
GradientBoost. RF is a conventional machine learning model known for its versatility in
handling both classification and regression tasks. LightGBM has been optimized for large
datasets, offering high processing speed and low memory usage. This makes it particu-
larly suitable for scenarios involving substantial amounts of data and high dimensional
features [38]. Gradient Boosting is a boosting-based integrated learning technique known
for its robustness to outliers and good performance in a variety of classification and re-
gression problems. Similarly, AdaBoost is an integrated learning method that employs
weighted voting to combine several weak classifiers. The weights are updated after each
iteration based on the outcome of the previous round, thereby reducing overfitting and
improving the management of sample imbalances. The best parameter combinations for
each model were obtained after running several Bayesian optimizations. Table 7 provides
more information about the optimal parameter combinations for the four models.

All models were trained using the selected parameters and tested for the classification
of the training data. As demonstrated in Table 8 and Figure 5, the AInfraredCCM achieved
the highest overall accuracy of 86.22% for the test datasets. Following was the AdaBoost
classification model, which attained an accuracy of 85.83%. However, the AInfraredCCM
outperformed AdaBoost across all three criteria, i.e., precision, recall, and the F1-score.
The four indices of overall accuracy outside precision, recall, and F1-score were highest
for the AInfraredCCM in the full analysis (OA—86.22%; precision—0.88; recall—0.84;
F1-score—0.86). Table 8 lists the categorization metrics of the test datasets for the models.
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Table 7. Optimal parameter combinations for the model.

Algorithm Parameted Range

Random Forest 1. max_depth = 73
2. n_estimators = 280

LightGBM

1. learning_rate = 0.095
2. max_depth = 22
3. n_estimators = 252
4. num_leaves = 35

AdaBoost

1. learning_rate = 0.4224
2. max_depth = 74
3. n_estimators = 458
4. min_samples_leaf = 1

GradientBoost
1. learning_rate = 0.4749
2. max_depth = 37
3. n_estimators = 10

Table 8. Evaluation for different models.

Algorithm Accuracy Precision Recall F1-Score

Random Forest 82.53% 0.83 0.76 0.79
LightGBM 74.60% 0.70 0.64 0.66

GradientBoost 80.96% 0.78 0.77 0.78
AdaBoost 85.83% 0.87 0.83 0.85

AInfraredCCM 86.22% 0.88 0.84 0.86
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Figure 6 illustrates the classification results of different models on 29 June 2019. A
comparison between the images in the figure reveals that Gradient Boosting yields better
classification results but with notable inconsistencies. The classification results of LightGBM,
AdaBoost, and RF contained a relatively large number of errors and were ineffective for
accurately classifying the Ci clouds. While all these models possess certain advantages,
they failed to fully harness the dataset’s features for precise cloud classification. In contrast,
the classification results derived from the AInfraredCCM exhibited relatively smooth
boundaries and accurate classification results.
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Figure 6. Classification results of different models at 05:00 UTC on June 29, 2019. (a) Visible data,
(b) thermal infrared data, (c) the brightness temperature map; (d–h) sequentially present the classifi-
cation results of GradientBoost, LightGBM, RF, AdaBoost, and AInfraredCCM, respectively.

Table 9 provides a statistical summary of the cloud classification models, featuring
columns for the employed model, the number and specific types of cloud classifications,
features, time, overall accuracy, sample size, and references. When comparing this study
with those of other researchers, the AInfraredCCM demonstrated superior cloud classifica-
tion performance (Table 9). While the CNN and the Backpropagation Neural Network (BP)
achieved higher overall accuracy (0.95 and 0.86, respectively), it is noteworthy that these
models were exclusively designed for daytime data and did not incorporate nighttime data.
Furthermore, the CNN and BP models covered only eight and six cloud types (including
clear sky), respectively, whereas nine cloud type classifications were retrieved in this study.
Considering both daytime and nighttime data, this study achieved an overall accuracy of
0.86. In contrast, Yu et al. also categorized clouds into nine types, but their approach was
exclusively applicable to the daytime, with a significantly lower overall accuracy compared
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to this study. Similarly, Tan and Li conducted research throughout the day; however, their
approach did not exceed the overall accuracy or number of cloud types in this study. In
summary, the AInfraredCCM has notable advantages in cloud classification.

Table 9. Cloud classification model statistical table.

Model Category Feature Time OA Sample Reference

RF Dc, Ns, Cu, Sc, St, Ac,
As, Ci, and multi

REF and BT of 13 channels, cloud top
height, cloud optical

thickness, cloud effective radius
Day 0.67 272414 Yu et al.

(2021) [12]

BP

Clear, low cloud,
middle cloud, thick
cirrus clouds, thin
cirrus cloud, deep

convective

IR1 (10.3–11.3), IR2 (11.5–12.5), WV
(6.3–7.6), IR1-IR2, IR1-WV, IR2-WV Day 0.86 2449 Zhang et al.

(2012) [39]

CNN Clear, Ci, Ac, As, Sc,
Dc, Ns, Cu All channel of FY-4A Day 0.95 15780 Wang et al.

(2023) [40]

RF

Clear, low cloud,
middle cloud, thin
cloud, thick cloud,
multilayer cloud,
cumulonimbus

R (0.64), R (1.6), BT (11.2 µm), BTD
(11.2–3.9 µm), BTD (11.2–7.3 µm), BTD

(11.2–8.6 µm), BTD (11.2–12.3 µm)
Day 0.88 127192 Wang et al.

(2023) [41]

RF

Clear, low cloud,
middle cloud, thin
cloud, thick cloud,
multilayer cloud,
cumulonimbus

BT (11.2 µm), BTD (11.2–3.9 µm), BTD
(11.2–7.3 µm), BTD (11.2–8.6 µm), BTD

(11.2–12.3 µm)
Night 0.79 72934 Wang et al.

(2023) [41]

RF Clear, single, multi

BT (3.9 um), BT (7.3 m), BT (8.6 µm),
BT (11.2 µm), BT (12.4 µm),

BTD (3.9–11.2 µm), BTD (8.6–11.2 µm),
BTD (11.2–12.4 µm), latitude, longitude

Day and
night 0.79 12553889 Tan et al.

(2022) [16]

DNN
Clear, single-ice,

single-mixed,
single-water, multi

BT (3.9–13.3 µm), cosine of satellite zenith
angle, simulated clear-sky radiances

Day and
night 0.81 1114591 Li et al.

(2022) [17]

AInfra-
redCCM

Clear, Ci, Dc, Ac, As,
Ns, Cu, Sc, St

BT (3.9–13.3 µm), BTD (11.2–9.6 µm),
BTD (3.9–11.2 µm), BTD (11.2–12.4 µm),
BTD (12.4–10.4 µm), BTD (7.3–10.4 µm),

latitude, longitude

Day and
night 0.86 1314275 This study

3.2. Comparison with Himawari-8 Cloud Classification Production

In this study, a comparative analysis approach was employed to compare the cloud
classification results of AInfraredCCM with CLTYPE using test data. To facilitate this com-
parative analysis in this study, the CLTYPE data were mapped to those of 2B-CLDCLASS-
LIDAR. Notably, since Himawari-8 products officially cover cloud daytime evaluations,
comparison and evaluation were limited to the daytime scenarios. The comparison was
conducted in three scenarios, and the results are summarized in Table 10.

Table 10. Accuracy rate of Himawari-8 CLTYPE and AInfraredCCM.

Himawari-8 CLTYPE AInfraredCCM

Full area 0.48 0.86
Cloudy area 0.36 0.87

Clear sky 0.77 0.85
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The three scenarios (all-sky, cloudy, and clear-sky) produced correct identification
probabilities of 0.48, 0.36, and 0.77, respectively. The results of AInfraredCCM are presented
in Tables 7 and 8. The model demonstrated superior performance, with overall accuracies
of 86.22%, 87%, and 85% for all-sky, cloudy, and clear sky, respectively, outperforming
the CLTYPE. The comparison data results are presented in Table 10; for further reference,
Figures S1–S130 illustrate the disk classification results in contrast to those of the CLTYPE.

3.3. Effects of Day and Night on Cloud Classification

The results were meticulously examined individually under both daytime and night-
time conditions to assess the classification performance. An analysis of the efficacy of the
AInfraredCCM during both the diurnal and nocturnal phases was carried out by assessing
the overall precision, recall, and F1-score. Pixels in the test dataset with a solar zenith angle
exceeding 80◦ were designated as nighttime, whereas the rest were designated as day-
time [42]. Table 11 displays cloud classification results of the AInfraredCCM for daytime
and nighttime.

Table 11. Cloud classification results of the AInfraredCCM for daytime and nighttime.

Time Cloud Type Clear Ci Dc Ac As Ns Cu Sc St

Accuracy = 85.82%

Daytime
Precision 0.85 0.90 0.92 0.82 0.89 0.95 0.68 0.89 0.98

Recall 0.89 0.88 0.86 0.72 0.88 0.93 0.54 0.92 0.90
F1-score 0.87 0.89 0.89 0.77 0.88 0.94 0.60 0.91 0.94

Accuracy = 91.45%

Nighttime
Precision 0.90 0.92 0.99 0.87 0.92 0.96 0.77 0.93 0.97

Recall 0.90 0.91 0.92 0.85 0.93 0.97 0.56 0.96 0.96
F1-score 0.90 0.91 0.95 0.86 0.93 0.96 0.65 0.94 0.96

Figure 7 presents the bar charts and provides a visual representation of the evalumet-
rics for the AInfraredCCM in daytime and nighttime. During the daytime, the AInfrared-
CCM achieved an average accuracy of 85.82% for all cloud types. All cloud classifications,
except Cu, had accuracy levels above 0.8, accompanied by high recall and F1 scores, which
indicated that the classification results were reliable. The AInfraredCCM performed better
in nighttime than in daytime, attaining an impressive accuracy of 91.45%. In contrast, Cu
had an overall accuracy of 0.77, whereas Dc, Ac, and As exhibited classification accura-
cies above 0.87. The confusion matrices presented in Figure 7 indicate that Cu was the
cloud type with the weakest classification performance during both the daytime and the
nighttime. This trend can be attributed to the presence of various types of Cu that exhibit
complex characteristics. Some fragmented Cu clouds possess limited thickness and area
along with high radiation transmittance, so their reflectance is very similar to that of the
ground surface. These properties make them easy to be misclassified as clear sky, thus
resulting in relatively low recognition accuracy for Cu throughout both during the daytime
and nighttime evaluations.
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On 15 May 2019, at 04:20 UTC, a cloud map covering southeastern Australia and the
South Pacific Ocean was classified using the AInfraredCCM. The data corresponding to the
CPR/CALIOP orbit are visually depicted in Figure 8a. The brightness temperature data
collected from the 10.4 µm channel of the CPR/CALIOP orbit are displayed in Figure 8b.
The AInfraredCCM classification results for this specific region are presented in Figure 8c.
The radar track for this scenario extends from the lower-right corner to the upper-left
corner of the cloud map, encompassing both daytime and nighttime hours. In this case, the
CLTYPE encompasses both daytime and nighttime data, with data in the latitude range from
−52.45◦S to −56.56◦S representing the nighttime region, as depicted in Figure 8d. As part
of this comprehensive study, nighttime data, in addition to daytime data, underwent cloud
classification. The classification results (Figure 8e) exhibit a significant degree of alignment
with the single-layer cloud data (Figure 8f) obtained from the 2B-CLDCLASS-LIDAR.
Figure 8f illustrates the outcomes of the combined cloud products of the CPR/CALIOP
and Himawari-8 data. Figure 8g provides an insight into the vertical profile of the cloud
types along the orbit for CPR/CALIOP.



Remote Sens. 2023, 15, 5630 15 of 25

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 25 
 

 

On 15 May 2019, at 04:20 UTC, a cloud map covering southeastern Australia and the 
South Pacific Ocean was classified using the AInfraredCCM. The data corresponding to 
the CPR/CALIOP orbit are visually depicted in Figure 8a. The brightness temperature 
data collected from the 10.4 µm channel of the CPR/CALIOP orbit are displayed in Figure 
8b. The AInfraredCCM classification results for this specific region are presented in Figure 
8c. The radar track for this scenario extends from the lower-right corner to the upper-left 
corner of the cloud map, encompassing both daytime and nighttime hours. In this case, 
the CLTYPE encompasses both daytime and nighttime data, with data in the latitude 
range from -52.45°S to -56.56°S representing the nighttime region, as depicted in Figure 
8d. As part of this comprehensive study, nighttime data, in addition to daytime data, un-
derwent cloud classification. The classification results (Figure 8e) exhibit a significant de-
gree of alignment with the single-layer cloud data (Figure 8f) obtained from the 2B-
CLDCLASS-LIDAR. Figure 8f illustrates the outcomes of the combined cloud products of 
the CPR/CALIOP and Himawari-8 data. Figure 8g provides an insight into the vertical 
profile of the cloud types along the orbit for CPR/CALIOP. 

   
(a) (b) (c) 

Remote Sens. 2023, 15, x FOR PEER REVIEW 16 of 25 

Figure 8. Plot of classification results at 04:20 UTC on May 15, 2019. (a) RGB; (b) bright temperature; 
(c) AInfraredCCM results; (d,e) CLTYPE, AInfraredCCM results, and label; (f) the combined cloud
products of the CPR/CALIOP and Himawari-8 data; (g) vertical profiles of the cloud types along the
orbit of the CPR/CALIOP.

3.4. Effects of Different Seasons on Cloud Classification 
The model was evaluated across all four seasons to determine its suitability. Table 12 

presents the performance of AInfraredCCM in different seasons. Figure 9 shows the con-
fusion matrices for the four seasons. The test dataset incorporates data from the four sea-
sons and includes samples from daytime and nighttime observations as well as diverse 
subsurface information. During spring, summer, autumn, and winter, the overall accu-
racy was consistently >85% (86.61%, 85.60%, 85.87%, and 87.27% for spring, summer, au-
tumn, and winter, respectively), which is consistent with the overall accuracy of the 
model. Ci, Dc, Ns, and St exhibited accuracies greater than 90%, coupled with recall and 
F1-scores of approximately 0.9. However, the classification of Cu remains challenging. 
Based on the characteristics of Cu, in subsequent experiments, we divided it into contin-
uous and fragmented forms to improve the detection rate of Cu. 

Table 12. Results of the four seasonal classifications. 

Season  Cloud Type Clear Ci Dc Ac As Ns Cu Sc St 
Accuracy = 86.61% 

Spring 
Precision 0.85 0.90 0.93 0.83 0.90 0.96 0.69 0.90 0.97 

Recall 0.90 0.87 0.87 0.75 0.87 0.94 0.56 0.93 0.90 
F1-score 0.88 0.88 0.90 0.79 0.89 0.95 0.62 0.92 0.93 

Accuracy = 85.60% 

Summer 
Precision 0.84 0.91 0.95 0.82 0.87 0.95 0.66 0.88 0.97 

Recall 0.88 0.89 0.89 0.74 0.88 0.93 0.50 0.92 0.93 
F1-score 0.86 0.90 0.92 0.78 0.88 0.94 0.57 0.90 0.95 

Accuracy = 85.87% 
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products of the CPR/CALIOP and Himawari-8 data; (g) vertical profiles of the cloud types along the
orbit of the CPR/CALIOP.
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3.4. Effects of Different Seasons on Cloud Classification

The model was evaluated across all four seasons to determine its suitability. Table 12
presents the performance of AInfraredCCM in different seasons. Figure 9 shows the
confusion matrices for the four seasons. The test dataset incorporates data from the four
seasons and includes samples from daytime and nighttime observations as well as diverse
subsurface information. During spring, summer, autumn, and winter, the overall accuracy
was consistently >85% (86.61%, 85.60%, 85.87%, and 87.27% for spring, summer, autumn,
and winter, respectively), which is consistent with the overall accuracy of the model. Ci,
Dc, Ns, and St exhibited accuracies greater than 90%, coupled with recall and F1-scores
of approximately 0.9. However, the classification of Cu remains challenging. Based on
the characteristics of Cu, in subsequent experiments, we divided it into continuous and
fragmented forms to improve the detection rate of Cu.

Table 12. Results of the four seasonal classifications.

Season Cloud Type Clear Ci Dc Ac As Ns Cu Sc St

Accuracy = 86.61%

Spring
Precision 0.85 0.90 0.93 0.83 0.90 0.96 0.69 0.90 0.97

Recall 0.90 0.87 0.87 0.75 0.87 0.94 0.56 0.93 0.90
F1-score 0.88 0.88 0.90 0.79 0.89 0.95 0.62 0.92 0.93

Accuracy = 85.60%

Summer
Precision 0.84 0.91 0.95 0.82 0.87 0.95 0.66 0.88 0.97

Recall 0.88 0.89 0.89 0.74 0.88 0.93 0.50 0.92 0.93
F1-score 0.86 0.90 0.92 0.78 0.88 0.94 0.57 0.90 0.95

Accuracy = 85.87%

Autumn
Precision 0.85 0.90 0.93 0.81 0.88 0.95 0.68 0.88 0.99

Recall 0.89 0.87 0.90 0.74 0.88 0.93 0.54 0.93 0.90
F1-score 0.87 0.89 0.91 0.77 0.88 0.94 0.60 0.90 0.94

Accuracy = 87.27%

Winter
Precision 0.87 0.91 0.86 0.84 0.91 0.95 0.69 0.89 0.99

Recall 0.91 0.89 0.88 0.75 0.88 0.93 0.55 0.93 0.87
F1-score 0.89 0.90 0.87 0.79 0.90 0.94 0.60 0.91 0.92

Figure 10 shows a comparative analysis of the results for all four seasons, with indi-
vidual cases (a)–(d) corresponding to spring, summer, autumn, and winter, respectively.
The three columns represent the brightness temperature for each case and the classification
results of the AInfraredCCM and the CLTYPE. In general, the brightness temperature
of a cloud is inversely proportional to its altitude, with lower brightness temperatures
indicating higher cloud cover.
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Figure 9. Evaluation metrics of the model across 4 seasons; (a–h) are the line graphs and confusion
matrix of precision, recall, and F1-score in 4 seasons.

Taking the spring scenario (a) as an example, the first image is a brightness temperature
map captured on 15 May 2019 at 02:50 UTC. In this figure, the AInfraredCCM effectively
classifies the entire cloud image into regions with lower brightness temperature values.
However, CLTYPE struggles to identify nighttime areas. In the summer scenario (b) taken
at the typhoon center at UTC 05:00 on 5 August 2017, the CLTYPE identified Ci and
Dc within the core of the typhoon but encountered difficulties in distinguishing these
clouds from clear skies over most of the region. This study is able to finely classify clouds
based on their brightness and temperature characteristics. It also categorized fill areas
in CLTYPE, thereby enhancing the coherence of the classification results. Owing to the
complex cloud composition during typhoons, the classification results of AInfraredCCM are
consistent with the actual conditions. In contrast, the CLTYPE exhibited inaccuracies such
as mislabeling as Ac in autumn (c). Similarly, the winter scenario (d) resulted in Cu being
erroneously classified as clear, with many small cloud structures being misclassified. This
study employed a pixel-level cloud classification method that facilitated the identification
of more fragmented clouds and cloud pixels that resemble clear skies.
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4. Discussion

This study utilized Himawari-8 satellite infrared data and CPR/CALIOP cloud prod-
ucts for conducting comprehensive research on all-day cloud classification. The input
features included latitude, longitude, brightness temperature, and brightness temperature
difference data derived from Himawari-8. Cloud type labels were extracted from the
CloudSat/CALIOP joint secondary product 2B-CLDCLASS-LIDAR. Following this, a cloud
classification model was developed to handle all-day observations by leveraging satellite
detection. Five machine learning models were employed for model development. The
results highlight the superior performance of the AInfraredCCM based on the XGBoost
model compared to that of the other models. It achieved impressive overall accuracy,
precision, recall, and F1 scores of 86.22%, 0.88, 0.84, and 0.86, respectively.
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The AInfraredCCM surpassed many previous models in terms of overall accuracy and
cloud classification diversity (Table 9). Unlike previous studies that primarily focused on
daytime data due to limited nighttime cloud product data, this study included both daytime
and nighttime data. The model performed well at night, yielding an overall classification
accuracy of 91.45%. Previous studies on nighttime cloud classification often had a limited
range of cloud types. In this study, satellite data were categorized into nine types—clear, Ci,
Dc, Ac, As, Ns, St, Sc, and Cu. Compared with other nighttime classification models, this
model achieved classification of a broader range of cloud types while maintaining a good
overall classification performance. However, due to the limited amount of nighttime data, it
may result in a more favorable classification performance. In future research, it is advisable
to increase the volume of nighttime data. Through the AInfraredCCM, continuous cloud
classification was realized throughout the day with a time resolution of up to 10 min. These
high-resolution and continuous cloud classification results provide a richer dataset for
exploring various cloud parameters and support all-day meteorological monitoring.

After conducting a comparative and analytical evaluation of the classification results
across all-day, daytime, nighttime, and four-season scenarios, it was evident that the
classification performance for Cu clouds was relatively subpar. The confusion matrix
(Figures 4, 7 and 9) clearly depicts that Cu clouds are predominantly misclassified as clear
skies and Sc. This phenomenon is closely related to the developmental stages of Cu. Cu
clouds were classified into two types: fragmented and continuous Cu. Fragmented Cu are
usually small, which makes their detection using satellite observations challenging. These
clouds are easily dispersed by wind and have a short lifespan. Consequently, satellite-based
systems may mistakenly identify clear skies as broken Cu clouds. Additionally, Cu clouds,
as a convective system forming in the lower atmosphere, can transition into Sc clouds.
Cu exhibited distinct characteristics when the convection intensified. If their convection
development is suppressed, then Cu clouds may transform into Sc, leading to frequent
misidentifications between the two cloud types.

There are some limitations that need to be further investigated. First, the cloud type
labels used in this research were derived from the 2B-CLDCLASS-LiDAR product, which
is based on data from CPR/CALIOP. During the label screening process, only pixels with
a single layer of clouds were selected for comparison with the CLTYPE. Moreover, the
majority principle was employed for cloud type screening during filtering labels. It is
important to note that this screening method may result in the omission of certain data
with limited feature information, particularly in the case of fragmented Cu and optically
thin Ci. To improve the quality of the dataset, more refined label-generation techniques
should be explored in future studies. Second, errors can arise when observing the same
object using the Himawari-8 and CloudSat satellites from different observation positions.
Spatiotemporal matching errors may be more pronounced, especially in regions with large
observation angles [43,44]. Therefore, error correction is vital. In future research, the
cloud positions in the AHI data could be computed using cloud information, including
longitude, latitude, and cloud top height, collected by CALIPSO satellites. The corrected
cloud positions can then be used to create a more accurate dataset [34,45].

5. Conclusions

This study describes an algorithm for all-day cloud classification, referred to as AIn-
fraredCCM, which is based on machine learning and utilizes Himawari-8 data. AHI and
CPR/CALIOP data collected in November 2018, January 2019, March 2019, and June–July
2019 were used to develop the algorithm. After preprocessing, the data were randomly
divided according to a ratio of 9:1. Of the data, 90% were allocated to the training and
validation datasets for algorithm development, while the remaining 10% were reserved for
testing. The predictors employed in this algorithm include 10 IR channels, 5 BTDs channels,
and latitude and longitude information. The conclusions of this study are detailed here:

(1) The overall accuracy, precision, recall, and F1-score of AInfraredCCM cloud classifica-
tion were 86.22%, 0.88, 0.84, and 0.86, respectively. Notably, the here-proposed model
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outperformed the other models selected for this study (Table 8) and those proposed
by other researchers (Table 9). These results indicate that it is an efficient all-day cloud
classification method.

(2) The model performed well when used for all-day cloud classification or when used
separately for daytime and nighttime classification, which suggests that the AIn-
fraredCCM provides continuous data for cloud classification research throughout
the day.

(3) The model was applied to both day and night scenarios as well as to four seasons
and produced good classification results. In addition to Cu, this study demonstrated
efficacy in classifying other cloud types. More emphasis should be laid on Cu in
future studies.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs15245630/s1, Figures S1–S130 represent the thematic map of Himawari-8’s
official cloud-type products and the classification results generated by the AInfraredCCM at UTC 4:00
for 130 days.
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Appendix A

Table A1 shows 130 images of the whole area of Himawari-8 from 2018 to 2019, which
is used to compare and verify the model classification results with Himawari-8 CLTYPE in
Section 3.2. The data are categorized into four folders based on the seasons.

Table A1. The statistics of AInfraredCCM classification results for the four seasons and corresponding
CLTYPE of Himawari-8.

Season No. Data ID No. Data ID

Spring

1 20190301_0400 17 20190317_0400

2 20190302_0400 18 20190318_0400

3 20190303_0400 19 20190319_0400

4 20190304_0400 20 20190320_0400

5 20190305_0400 21 20190321_0400

6 20190306_0400 22 20190322_0400

7 20190307_0400 23 20190323_0400

8 20190308_0400 24 20190324_0400

9 20190309_0400 25 20190325_0400

https://www.mdpi.com/article/10.3390/rs15245630/s1
https://www.mdpi.com/article/10.3390/rs15245630/s1
https://github.com/tpmao/cloud-classification-data
https://github.com/tpmao/cloud-classification-data
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Table A1. Cont.

Season No. Data ID No. Data ID

10 20190310_0400 26 20190326_0400

11 20190311_0400 27 20190327_0400

12 20190312_0400 28 20190328_0400

13 20190313_0400 29 20190329_0400

14 20190314_0400 30 20190330_0400

15 20190315_0400 31 20190331_0400

16 20190316_0400

Summer

32 20190601_0400 51 20190620_0400

33 20190602_0400 52 20190622_0400

34 20190603_0400 53 20190623_0400

35 20190604_0400 54 20190624_0400

36 20190605_0400 55 20190625_0400

37 20190606_0400 56 20190626_0400

38 20190607_0400 57 20190627_0400

39 20190608_0400 58 20190628_0400

40 20190609_0400 59 20190630_0400

41 20190610_0400 60 20190701_0400

42 20190611_0400 61 20190702_0400

43 20190612_0400 62 20190703_0400

44 20190613_0400 63 20190704_0400

45 20190614_0400 64 20190705_0400

46 20190615_0400 65 20190706_0400

47 20190616_0400 66 20190707_0400

48 20190617_0400 67 20190708_0400

49 20190618_0400 68 20190709_0400

50 20190619_0400 69 20190710_0400

Autumn

70 20181101_0400 85 20181116_0400

71 20181102_0400 86 20181117_0400

72 20181103_0400 87 20181118_0400

73 20181104_0400 88 20181119_0400

74 20181105_0400 89 20181120_0400

75 20181106_0400 90 20181121_0400

76 20181107_0400 91 20181122_0400

77 20181108_0400 92 20181123_0400

78 20181109_0400 93 20181124_0400

79 20181110_0400 94 20181125_0400

80 20181111_0400 95 20181126_0400

81 20181112_0400 96 20181127_0400

82 20181113_0400 97 20181128_0400

83 20181114_0400 98 20181129_0400

84 20181115_0400 99 20181130_0400
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Table A1. Cont.

Season No. Data ID No. Data ID

Winter

100 20190601_0400 116 20190617_0400

101 20190602_0400 117 20190618_0400

102 20190603_0400 118 20190619_0400

103 20190604_0400 119 20190620_0400

104 20190605_0400 120 20190621_0400

105 20190606_0400 121 20190622_0400

106 20190607_0400 122 20190623_0400

107 20190608_0400 123 20190624_0400

108 20190609_0400 124 20190625_0400

109 20190610_0400 125 20190626_0400

110 20190611_0400 126 20190627_0400

111 20190612_0400 127 20190628_0400

112 20190613_0400 128 20190629_0400

113 20190614_0400 129 20190630_0400

114 20190615_0400 130 20190631_0400

115 20190616_0400

References
1. Tapakis, R.; Charalambides, A.G. Equipment and methodologies for cloud detection and classification: A review. Sol. Energy

2013, 95, 392–430. [CrossRef]
2. Stubenrauch, C.J.; Rossow, W.B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Di Girolamo, L.; Getzewich, B.; Guignard, A.;

Heidinger, A.; et al. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation
Panel. Bull. Am. Meteorol. Soc. Bull. Am. Meteorol. Soc. 2013, 94, 1031–1049. [CrossRef]

3. Rossow, W.B.; Mosher, F.; Kinsella, E.; Arking, A.; Desbois, M.; Harrison, E.; Minnis, P.; Ruprecht, E.; Seze, G.; Simmer, C. ISCCP
cloud algorithm intercomparison. J. Appl. Meteorol. Clim. 1985, 24, 877–903. [CrossRef]

4. Zhuang, Z.H.; Wang, M.; Wang, K.; Li, S.; Wu, J. Research progress of ground-based cloud classification technology based on
deep learning. J. Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Ed.) 2022, 14, 566–578. [CrossRef]

5. Zhao, C.; Garrett, T.J. Effects of Arctic haze on surface cloud radiative forcing. Geophys. Res. Lett. 2015, 42, 557–564. [CrossRef]
6. Liu, Y.; Xia, J.; Shi, C.-X.; Hong, Y. An Improved Cloud Classification Algorithm for China’s FY-2C Multi-Channel Images Using

Artificial Neural Network. Sensors 2009, 9, 5558–5579. [CrossRef]
7. Chen, D.; Guo, J.; Wang, H.; Li, J.; Min, M.; Zhao, W.; Yao, D. The Cloud Top Distribution and Diurnal Variation of Clouds Over

East Asia: Preliminary Results From Advanced Himawari Imager. J. Geophys. Res. Atmos. 2018, 123, 3724–3739. [CrossRef]
8. Astafurov, V.G.; Skorokhodov, A.V. Using the results of cloudclassification based on satellite data for solving climatological

andmeteorological problems. Russ. Meteorol. Hydrol. 2021, 46, 839–848. [CrossRef]
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