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Abstract: The Huashan Creek watershed is the largest water source and the main production area
of honeydew in Pinghe County, whose extensive cultivation of honeydew has exacerbated soil and
water pollution. However, the spatial application of remote sensing ecological index (RSEI) in this
watershed and key driving factors are not clear considering the applicability of data quality and
the diversity of methodological scales. To explore the RSEI and driving factors at distinct scales in
Huashan Creek watershed, this study constructed the RSEI based on the environmental balance
matrix at seven scales in 2020, revealed its spatial response characteristics at different scales, and
analyzed the key drivers. The results show that the 240 m grid as well as rural and watershed scale
convergence analyses satisfy the assessment of RSEI, whose Moran indexes are 0.558, 0.595, and 0.146,
respectively. The RSEIs at different scales have significant spatial aggregation characteristics, but the
overall status is moderate. The central town–riparian area with poor RSEI contrasts with the western
mountainous area, which has comparatively better quality. Population has a major influence on RSEI
at multiple scales (0.8), with elevation and patch index acting significantly at the village and grid
scales, respectively. These findings help to identify the spatial distribution of quality and control
mechanisms of RSEI in the Huashan Creek watershed and provide new insights into key scales and
drivers of ecological restoration practices in the watershed.

Keywords: remote sensing ecological index (RSEI); Huashan Creek watershed; spatiotemporalchange;
geographically weighted regression

1. Introduction

Assessing the ecological quality of watersheds is paramount in assessing the health
of natural ecosystems and understanding the effects of human activities on vital compo-
nents of ecosystems, such as vegetation, water, soil, and climate [1]. This understanding is
essential for scientific research and effective watershed management, providing valuable
insights into ecological processes, ecosystem services, environmental risks, and conserva-
tion strategies [2]. However, the rapid growth of socioeconomic activities and population
expansion has led to increased human intervention, resource degradation, and unsustain-
able exploitation [3,4]. Approximately 40% of land on Earth suffers from degradation or
desertification, 70% of freshwater resources are overused or contaminated, and 60% of wet-
lands are degraded or have disappeared in the past century [2]. These challenges not only
harm human well-being but also jeopardize the Earth’s life-support systems. Therefore,
studying the ecological quality of rapidly developing watersheds and the factors affecting
them are urgent requirements.

The Huashan Creek watershed is highly typical, hence its proposed rational manage-
ment measurement. The honeydew industry and town expansion in the watershed will
generate a series of ecological and environmental problems, exerting an impact on the
ecological quality of the region.
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The Huashan Creek watershed in southeastern coastal China presents unique chal-
lenges and opportunities due to its agricultural activity, coastal proximity, and diverse
land use patterns. This region is emblematic of the challenges faced by rapidly developing
coastal areas, where ecological status directly impacts local communities and essential
ecosystem services [5]. Cai [6] studied the measures used for water environment protection
in Huashan Creek in Pinghe County. Moreover, Huang et al. [7] reported that in recent
decades, anthropogenic production activities, the loss of native vegetation in the Huashan
Creek watershed, and the massive loss of the soil surface layer have severely constrained
the development of local agricultural production. Furthermore, Han [8] reported that the
only drinking water source for 80,000 people in Pinghe County is Huashan Creek, which is
under honeydew cultivation that endangers the water quality.

In recent years, models and statistical techniques based on remote sensing data have
gained prominence for assessing ecological environmental quality across diverse land-
scapes [9–13]. Remote Sensing Earth Satellite Unity, with its high-resolution, long-term
data series, and extensive monitoring capabilities, can observe different ecosystems in their
radiometric bands as a means of constructing a remotely sensed ecological index (RSEI)
and revealing spatial distribution and drivers of different landscapes [14,15]. The indicator
system and method selection are key to assessing RSEI.

Currently, commonly used indicator systems include land use/cover type; vegetation
cover; leaf area index; primary productivity; soil organic carbon content, which reflects the
watershed subsurface elements and ecosystem structural characteristics [16]; precipitation;
evapotranspiration; surface runoff; groundwater level; and hydrological connectivity,
which reflects the input, output, and storage of moisture in the watershed [11,12,15].
Among these systems, the use of principal component analysis (PCA), the construction
of a comprehensive remote sensing index based on greenness, humidity, dryness, and
warmth; the determination of weighting coefficients of ecological indicators; as well as the
quantitative characterization of RSEI have become popular methods for assessing ecological
environmental quality [11,13,17].

Measurement and statistical techniques usually include the single or composite index
method, model-based simulation method, and statistical analysis method based on remote
sensing data. Among these methods, the data analysis strategy of using spatial autocorrela-
tion analysis to determine the spatial distribution of RSEI based on remotely sensed data of
ecological indicators combined with geodetectors and geographically weighted regression
to determine driving factors has been widely used [18,19]. Comprehensive remote sensing
indices amalgamate multiple indicators to effectively assess ecological conditions [16]. For
instance, Xu et al. [20] employed PCA to derive RSEI based on factors such as greenness,
humidity, dryness, and warmth. Moreover, RSEI has found wide-ranging applications in
regional ecological monitoring [21–25], reflecting environmental changes driven by hu-
man activities, shifts in vegetation cover, and climate fluctuations. RSEI offers scalability,
comparability across scales, and high reliability [20].

While existing research primarily addresses the distribution of RSEI at a single spa-
tial scale, long-term trends, and driver evaluation, it often overlooks spatial variations at
different scales. Assessments at large scales can obscure differences between ecological
subsystems, while small scales may not be suitable for broad ecological regulation appli-
cations. Hence, the selection of an appropriate assessment scale unit is critical [26]. This
selection enhances the objectivity, credibility, and practicality of results, thereby facilitating
decision-making in ecological quality regulation and security [27]. Most RSEI studies focus
on single scales and static analyses but lack a systematic exploration of suitable scales for
regional assessments and their underlying mechanisms.

Geographically weighted regression (GWR) is a spatial analysis technique that is
widely used in geography and related disciplines involving the analysis of spatial patterns.
GWR explores the spatial changes of a study object at a certain scale and related drivers by
creating local regression equations at each point in the spatial scale and can be used for the
prediction of future results [19].
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Since GWR considers the local effects of spatial objects, it has the advantage of high
accuracy. In the Huashan Creek watershed in Pinghe County, GWR can be used to study
soil and water environmental pollution. For example, GWR can be utilized to explore
how honeydew cultivation, fertilizer use, soil erosion, and other factors affect changes in
water quality in the watershed by establishing local regression equations at each point.
This approach can be borrowed and applied to the assessment of ecological quality drivers
to clearly understand the impact of these factors in different geographic locations, thus
providing a basis for developing targeted management strategies [28].

A key feature of GWR compared to other data analysis techniques is that it considers
the effect of spatial location. While traditional global regression models usually assume that
the effect of an explanatory variable on the dependent variable is the same in all locations,
GWR allows for this effect to differ across locations [29]. In addition, GWR allows the
computation of local parameter estimates for each explanatory variable at each location,
thus revealing the characteristics of the spatial distribution of the effect of the explanatory
variable on the dependent variable [30]. Therefore, the application of GWR in assessing
factors and mechanisms of ecological quality at different scales is crucial for conservation
and sustainable development.

This research concentrated on the agriculturally disturbed Huashan Creek water-
shed in southeastern China. Using the RSEI model, we assessed ecological quality at
different grid resolutions, including the administrative village level and sub-watershed
level. We employed spatial correlation (Moran index) and GWR to analyze ecological
quality across these scales. The objectives of this study were to (1) characterize ecological
quality at an appropriate watershed scale, (2) explore spatial responses across scales, and
(3) quantitatively assess the impact of various driving forces. By achieving these goals, this
study aimed to provide insights into ecological changes that support conservation and
sustainable development.

2. Materials and Methods
2.1. Study Area

A comprehensive multiscale remote sensing approach was used to evaluate the quality
of the ecological environment and to identify its associated driving factors in the Huashan
Creek watershed, which is in Pinghe County, Zhangzhou City, Fujian Province, China
(24◦11′–24◦31′N; 117◦05′–117◦25′E; shown in Figure 1). The watershed, which covers an
area of approximately 864 km2 and includes 158 administrative villages has a subtropical
monsoon climate, with an average annual temperature of approximately 20.9 ◦C. Rainfall
in the region is highly variable, ranging from 980 mm to 2100 mm per year. The region
experiences sunshine and solar radiation for a moderate amount of time, the temperature
difference between spring, fall, and winter is small, while the climate is warm and is
suitable for growing various agricultural crops and making industrial investment. The
region is abundant in water resources and is mainly characterized by subtropical broadleaf
evergreen forests.

The landscape of the Huashan Creek watershed is characterized by mountains, valleys,
and urban areas. The soil types in the creek are representative of subtropical soils such
as humid-thermo ferralitic, lateritic red earth, red earth, and yellow earth, which are
gradually acidified and sloughed under the influence of human activities such as honeydew
production. The total length of the catchment is approximately 88 km, and the catchment
boasts an average gradient of 2.8‰. This watershed, which is geographically located
in the hilly areas of southeastern Fujian Province, plays a critical role in soil and water
conservation and the preservation of biodiversity for the southwestern portion of Fujian
Province and the Taiwan Strait.
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Figure 1. Digital elevation model (DEM)-based map of Huashan Creek Watershed in China. (a) The
location of Fujian Province in China. (b) The location of Huashan Creek Watershed in Fujian Province.
(c) The boundaries of Huashan Creek Watershed.

Notably, Pinghe County, which is within this watershed, is the primary producer
of China’s Guanxi honey pomelo and contributes significantly to the region’s economy,
which has an annual GDP of CNY 17.6 billion, of which 67% is attributed to agricultural
output. Pomelo orchards cover approximately 60% of the total land area in the Huashan
Creek watershed. In 2020, Pinghe honey pomelo production reached 2.1058 million tons,
accounting for 21.1% of the national total for citrus fruits. The Huashan Creek watershed
is the only drinking water source for nearly 80,000 people in Pinghe County, supplying
approximately 42,500 t/d of drinking water. In 2019, 10.44 million m3 of domestic water
and 4.99 million m3 of industrial water were supplied, and most of the remaining water
was used to supply the 700,000-acre honeydew growing area. Over the past three decades,
the expansion of agricultural land and the growth of the Guanxi honey pomelo industry
in Pinghe have increased the vulnerability of the Huashan Creek watershed ecological
environment to human activities [31].

Given this context, our study focused on the ecological environment quality of the
primary Guanxi honey pomelo region, namely the Huashan Creek watershed. The objec-
tives of our research were to investigate spatial variations in ecological quality within this
watershed and to identify the key driving forces responsible for these variations.

2.2. Data Collection and Processing

In this investigation, we harnessed the capabilities of the Google Earth Engine (GEE)
platform to access Landsat 8 OLI series satellite imagery from the year 2020. This selection
of imagery was predicated on the minimal cloud cover of the Huashan Creek watershed,
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which does not exceed 10%, rendering GEE our primary data source. Subsequently, this
acquired imagery was leveraged to facilitate the computation of RSEI. Notably, the satellite
remote sensing images presented an average temporal resolution of 24 days.

The potential driving factors under consideration encompassed a comprehensive suite
of land use indices, population density, road network density, landscape pattern indices,
elevation, and proximity to water bodies. To ensure uniformity and facilitate comparative
analysis, we standardized these diverse factors to a spatial resolution of 500 m, employing
ArcGIS 10.8 as our tool of choice for this purpose. A comprehensive summary of our
principal data sources is furnished in Table 1 for reference.

Table 1. List of products in the catalog of remote sensing data used in this study.

Data Name Data Source Website Date Resolution

Landsat8 OLI United States Geological
Survey https://earthexplorer.usgs.gov/ Accessed on 1 May 2020. 30 m

Landcover data GlobeLand30 Dataset https://www.globallandcover.com/ Accessed on 1 May 2020. 30 m

Population density data Socio-economic Data and
Applications Center https://sedac.ciesin.columbia.edu/ Accessed on 1 May 2020. 1 km

DEM Geospatial Data Cloud https://www.gscloud.cn/sources/ Accessed on 1 May 2020. 30 m
Scope of Huashan Creek

Watchment
Resource and Environment

Science and Data Center https://www.resdc.cn Accessed on 1 May 2020. -

The software instruments enlisted for processing these data included SPSS 25 [32],
ArcGIS 10.8 [33], and Fragstats 4.2 [34]. The deployment of this comprehensive suite of
tools was undertaken with a deliberate objective: to augment the precision and resilience
of our subsequent analytical endeavors.

2.2.1. Options for Different Scales

This study addressed the prevailing limitations of singularity and staticity inherent in
the selection of evaluation units within RSEI investigations. Leveraging ArcGIS 10.3 grid
sampling and magnitude transformation techniques, we systematically delineated a com-
prehensive framework comprising three distinctive categories of evaluation units, spanning
a total of seven hierarchical levels. These units encompassed a range of isotropic scales
(480 m × 480 m, 240 m × 240 m, 120 m × 120 m, 60 m × 60 m, and 30 m × 30 m). The
selection of sample unit magnitudes within this range, spanning from 30 m to 480 m, is
primarily influenced by data resolution parameters and the typical area dimensions of
township administrative units within the Huashan Creek watershed.

Leveraging this diversified array of assessment units, we conducted a multifaceted
assessment of RSEI within the Huashan Creek watershed. This holistic approach enabled us
to conduct a comparative analysis of the spatial distribution of RSEI, discerning variations
in heterogeneity across different scales within the study region. Additionally, this analysis
unveiled the distinctive attributes characterizing the responsiveness of RSEI to alterations
in spatial scales, shedding light on the underlying mechanisms influencing RSEI within the
Huashan Creek watershed. By adopting this multifaceted approach, we aimed to mitigate
against potential errors arising from a singular scale-centric perspective and ameliorate
the issue of inadequately addressing spatial heterogeneity in the subjective delineation of
evaluation units. See Figure 2 below for details.

https://earthexplorer.usgs.gov/
https://www.globallandcover.com/
https://sedac.ciesin.columbia.edu/
https://www.gscloud.cn/sources/
https://www.resdc.cn
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2.2.2. RSEI

RSEI is a recently introduced comprehensive ecological assessment tool tailored to
examine ecological conditions exclusively through remote sensing techniques [20]. RSEI
comprises four distinct metrics, namely greenness, humidity, dryness, and heat (see Table 2),
each of which plays a critical role in ecological quality and can be directly perceived by hu-
man observers [35–38]. These metrics are derived from remote-sensing data, thereby ensur-
ing a unified data source and minimizing the potential for errors stemming from disparate
data sources. Prior research has substantiated the consistency, reliability, interpretability,
and scalability of RSEI across diverse spatial and temporal scales [20]. Consequently, the
computation of these metrics serves as a valuable tool for assessing ecological status based
on readily available remote sensing data, often with minimal human intervention [39]. The
formulas and significance of these indicators are presented in Figure S1.

Table 2. Formulas and explanations for the four eco-quality indicators WET, NDVI, NDSI, and LST.

Index Formula Explanation

WET β1Bblue + β2Bgreen + β3Bred +
β4Bnir + β5Bswir1 + β6Bswir2

Bblue, Bgreen, Bred, Bnir, Bswir1, Bswir2represent the blue (0.45–0.51 µm), green (0.53–0.59 µm), red
(0.64–0.67 µm), near-infrared (0.85–0.88 µm), short-wave infrared 1 (1.57–1.65 µm) and
short-wave infrared 2 (2.11–2.29 µm) bands of Landsat 5 TM and Landsat 8 OLI/TIRS,

respectively. βi is the corresponding band parameter [35,36];NDVI (Bnir − Bred)/(Bnir + Bred)
NDSI (SI + IBI)/2 SI and IBI represent soil index and building index respectively [37];
LST K1/ln(K1/D(t) + 1) K1 and D(t) represent Planck’s constant and the radiative luminosity of a blackbody [38];

In the initial step of the analysis, Landsat 8 satellite imagery underwent preprocessing
involving removing clouds and identifying water bodies, accomplished through the GEE
Platform. Concurrently, the four ecological indicators were subjected to wavelet transfor-
mation to derive normalized proxies. Ultimately, RSEI was obtained through PCA, which
synthesized the contributions of each component. This comprehensive evaluation function
ascertains the weighting of individual principal components, reflecting the proportion of
information contributed by each component relative to the total information contained in
the original dataset. This approach effectively mitigates the pitfalls associated with arbi-
trary weighting assignments and circumvents the impact of correlations among indicators,
leading to a rational and objective determination of weights.

Moreover, the load weight of Principal Component 1 (PC1), as extracted from each
indicator in the database through PCA, indicates significant changes. This method dispels
the subjectivity inherent in conventional weighting approaches, yielding results that objec-
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tively, reliably, and expeditiously monitor and appraise the quality of the regional ecological
environment. The functional expression of RSEI can be formulated as follows [40]:

RSEI = PC1[ f (NDVI, Wet, LST, NDSI)] (1)

The applicable range of RSEI is [0,1] [33]. The proximity of the RSEI value to 1 signifies
a high level of environmental quality. Within the context of this research, a comprehensive
classification of the RSEI was conducted to gain deep insights into the spatial distribution
patterns associated with remote sensing of ecological and environmental quality within
the Huashan Creek watershed. This classification framework enables a quantitative and
visually informative analysis [11]. To clarify, the RSEI of the Huashan Creek watershed
was classified into 5 distinct grades at 0.2 isometric intervals, namely, “poor” (0–0.2), “fair”
(0.2–0.4), “moderate” (0.4–0.6), “good” (0.6–0.8), and “excellent” (0.8–1) [23,33].

2.2.3. Characterization of RSEI

In the context of our investigation, PCA showed that the cumulative variance ex-
plained by PCA1 and PC2 accounted for 65.84% and 91.21% of the total variance, respec-
tively. Deconstructing the contributions of the four constituent indicators within PC1, it
was observed that the Green Index (NDVI) and the Wetness Index (WET) made positive
contributions, while the Dryness Index (NDBSI) and the High-Temperature Index exhibited
negative influences [41]. These findings affirm that enhanced greenness and wetness fa-
vorably impact ecosystem integrity, whereas increased dryness and elevated temperatures
exert detrimental effects, aligning with real-world observations [37]. Conversely, the inter-
pretation of positive and negative signals within the other principal components (PC2, PC3,
and PC4) proved to be volatile and challenging to ascribe to ecological phenomena [33].
Given that PC1 encapsulates the majority of pertinent features and that the loadings of
each indicator on the first principal component were uniformly distributed, the utilization
of information extracted from PC1 for the characterization of RSEI in our study is a logical
and sound approach.

2.2.4. Spatial Autocorrelation Analyses

The primary objective of Exploratory Spatial Data Analysis (ESDA) is to unveil the
spatial configurations and associations among geographical entities, wherein geospatial
location and arrangement play pivotal roles in determining the correlation among attribute
values of these entities. ESDA elucidates geographical phenomena spatial distribution
patterns and traits by employing diverse statistical metrics and analytical tools, including
spatial autocorrelation, aggregation, and discrete indicators. Consequently, exploratory
spatial statistics serve as a means to identify and investigate the clustering distribution
pattern, spatial heterogeneity, and the presence or absence of spatial spillover effects within
the realm of RSEI.

(1) Global spatial autocorrelation (Global Moran’s I: MI)

The MI index measures the overall extent of global autocorrelation, encompassing
the degree of spatial correlation heterogeneity and the differentiation in the distribution of
RSEI. The vector formula for calculating Moran’s Index is presented below [3]:

MI =
n

∑i ∑j Gij
∗

∑i ∑j Gij(xi − x)
(
xj − x

)
∑i(xi − x)2 , (2)

In this equation, MI denotes the global index, n is the total number of grid cells;
Gij signifies the (i, j) element of the spatial weight matrix G (based on the variable K
nearest neighbors, K = 4), following the principles of the first law of geography and inverse
distance weighting. The values xi and xj correspond to the RSEI values of samples i
and j, respectively, with x denoting the average RSEI values across the study area. MI
is normalized by the spatial weight matrix G, yielding values within the range of [–1,1].
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Regarding confidence levels, positive MI values indicate spatial clustering of RSEI in the
province, with varying degrees of similarity and typicality. A close proximity to +1 signifies
a positively correlated, significant clustering pattern, while a distant proximity from +1
implies a substantial divergence in atypical clustering, denoting a significant negative
correlation with dispersion. Notably, MI values approximating or equal to zero signify
a spatial distribution characterized by randomness, with no discernible correlation [42].
Additionally, the significance of the MI index was assessed using the Z-Score standardized
statistic [42]:

Z =
MI − E(MI)

SD(MI)
, (3)

where E(I) and SD(I) represent the theoretical mean and standardized variance, respec-
tively, and MI signifies the global index. Specifically, when MI > 0 and Z-Score > 1.96, a
considerable value indicates a vital and significant spatial positive correlation; conversely,
a small value indicates a strong negative correlation and significant spatial variability [43].

(2) Local spatial autocorrelation (Local Moran’s I: LI)

The RSEI MI solely captures the collective degree of divergence apparent within the
broad spatial distribution of its density: it fails to elucidate localized disparities or pinpoint
areas of concentration, as previously noted [44]. While LI is the decomposition of MI, the
combination of LISA (local spatial association index to measure the level of significance)
and the Moran scatterplot can reveal the scale or intensity of RSEI at the local, regional scale
and its spatial autocorrelation with its neighboring places and its degree of significance.
The formula for the LI is as follows [45]:

LIi = Zi∗∑n
j=1 Gij ∗ Zj, (4)

Zi =
xi − x

S2 , (5)

Zj =
(
xj − x

)
, (6)

where S2 is the discrete variance of province i; Zi and Zj are the standardized mean values
of RSEI for grids i and j, respectively, and the other variables have the same meanings as in
Equation (2).

The Moran scatterplot form, which describes the correlation between variable Ai and
its spatial lag vector B(Ai), is dissected into distinct quadrants and categorized into five
typologies [46], namely: random distribution of the origin (non-significant), clustering of
high values (H–H type), low values surrounded by high values (L–H type), clustering of
low values (L–L type), and high values surrounded by low values (H–L type). Among
these values, under the given confidence level, if LIi significantly > 0 and Zi > 0, grid i is in
the H–H quadrant; if LIi significantly > 0 and Zi < 0, grid i is located in the L–H quadrant; if
LIi significantly < 0 and Zi > 0, grid i is located in the H–L quadrant; if LIi significantly < 0
and Zi < 0, grid i is located in the L–L quadrant [46].

2.2.5. Driver Analysis

(1) Driver selection

The dynamics of RSEI are subject to a multifaceted interplay of factors encompassing
natural attributes, land utilization, and socio-economic influences [47,48]. In this complex
framework, natural determinants are paramount over extended time scales. Therefore, our
investigation primarily highlights the pivotal role of specific natural elements affecting
ecological traits within the focal area, which serves as the primary area for honeydew
production. Among these salient natural determinants are elevation, which embodies
considerations related to terrain, and proximity to water bodies, reflecting the importance
of water sources.
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Altitude significantly modulates the illumination, thermal conditions, hydrologic pa-
rameters, and nutrient status within the study domain, thus exerting a dominant influence
on the distribution patterns of the landscape [49]. Simultaneously, rivers function as vital
hydrologic conduits, attracting and reshaping nearby distributions of biodiversity, hu-
man activities, and ecosystem services, thus exerting a notable influence on the ecological
milieu [50,51].

On the other hand, anthropogenic forces exert immediate and pronounced impacts at
short temporal scales, ultimately directing the trajectory of local ecosystems in the long term.
This study relies on indicators such as patterns of land use, socioeconomic parameters, and
the spatial configuration of the landscape to gauge anthropogenic disturbance [14,52–55].
Among these indicators, changes in land use—manifested through shifts in structure,
composition, and management practices—exert a pivotal influence on the functional and
spatial balance of RSEI [56,57].

Socioeconomic factors such as the density of the population (an underlying deter-
minant of human activities) and gross domestic product (GDP; acting as a visual gauge
of ecosystem service value influenced by anthropogenic actions), tend to precipitate al-
terations in patterns of RSEI depletion as well as the quantity and quality of ecological
amenities. This displacement results from social policies and developmental processes,
further exacerbating the disruption of RSEI [58–60]. On the other hand, alterations in the
spatial configuration of landscapes give rise to specific and discernable consequences by
influencing the composition, structure, and ecological processes of ecosystems [61], thus
molding RSEI [62,63].

In this study, we select indicators of landscape patterns designed to characterize
landscape heterogeneity and levels of fragmentation, with the detailed meaning of these
indicators elucidated in Figure S1. Therefore, a composite index consisting of land-use
extent (La), population density (Pop), road distance (Disroad), aggregation index (AI),
maximum patch index (LPI), patch density (PD), Shannon’s diversity index (SHDI), distance
from water (Diswater), and elevation (DEM) is adopted, while its components serve as
independent variables driving the factors in the RSEI model.

All data are normalized to a uniform spatial resolution of 500 m prior to analysis. In
order to mitigate issues arising from collinearity between factors, we perform a correlation
analysis and principal components analysis and select relevant scales (at the basin level
and village level, covering an area of 240 km × 240 km) in order to ensure robust findings
that are not affected by covariance between factors.

(2) GWR

GWR is a valuable extension to the technique of local linear regression, designed
to characterize spatially varying relationships within a given geographic region. This
approach results in a regression model that elucidates local associations in discrete locations
within a study area, effectively capturing localized spatial relationships and the inherent
heterogeneity of variables. Finally, it should be noted that GWR has the distinct advantage
of accounting for spatial dependence as well as variability within data, which is a departure
from conventional global parameter estimation [3].

Another distinguishing feature of GWR is the inclusion of a weighting function, as
it minimizes sample redundancy compared to traditional least squares methods, thereby
increasing the accuracy of regression results and allowing spatially non-stationary relation-
ships to be examined simultaneously [64,65]. The calculation model of GWR is

yi = β0(ui, vi) + ∑m
k βk(ui, vi) ∗ xik + εi (7)

where yi represents the dependent variable’s value at position i, k stands for the total
number of grid cells, xik (k = 1, 2,..., m) signifies the value of the kth independent variable
at point i, while (ui, vi) denotes the spatial coordinate of sampling point i. Furthermore,
β0 (ui, vi) corresponds to the intercept term of sample i, and βk (ui, vi) embodies the
regression coefficient for the k-th independent variable, xik, at sampling point i. This
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coefficient is a function of geographic location, ascertained through a weighted function
method in the estimation process, and εi is the error term.

The accuracy of the GWR model is highly dependent on the choice of kernel function
and bandwidth. We adopt the AIC method to determine the optimal bandwidth in this
study given the ability of AIC to address accuracy quickly and efficiently. It is imperative
to point out that a low AIC value in the model corresponds to a superior fit to the observed
data, which indicates superior performance [66]. The degree to which various factors influ-
ence RSEI diverges across different spatial scales. Therefore, we use RSEI as a dependent
variable and each influencing factor as an independent variable by building GWR models
on three representative scales, which were selected based on the similarities and differences
observed through spatial clustering, the availability and precision of the driving factors,
the specificity of the administrative villages, the natural characteristics of the watershed,
and the economy of the overall effort. The regression coefficients from these GWR models
offer insights into the magnitude of influence exerted by the influencing factors on RSEI.

3. Result
3.1. Patterns of Spatial Differentiation in Ecosystem Quality at Multiple Scales

In order to elucidate the characteristics of ecological quality responses within the
Huashan Creek catchment in relation to variations in spatial scale, we meticulously examine
RSEI values across three separate scale units encompassing seven gradations in total.
Correspondingly, we undertake a comprehensive analysis of the magnitude and inherent
trends within these values. Figure 3 reveals distinctive spatial patterns in the distribution
of RSEI across a variety of scales while retaining overall similarity. It should be noted that
across scales, the predominant proportion of the surface exhibits a state of moderate RSEI,
with favorable conditions seen in the eastern and western regions, juxtaposed with poorer
quality conditions in the central region. As the scale decreases from 480 km to 60 km, the
spatial granularity of the RSEI information within the grid cell types becomes finer, with
relatively marginal differences exhibiting some degree of similarity. Regions characterized
by excellent and good RSEI are scattered in the extreme east and west of the study area,
respectively, creating a spot-like pattern.

The moderate RSEI region assumes a pentagram-like shape that is roughly positioned
in the center of the region although areas showing poor RSEI concentrations are notably
located in the north–central part of the study area, mainly at sub-rural scales, with sporadic
occurrences in the north-western and south-central areas. At the rural and catchment
scale, the distribution of RSEI occurs predominantly within the central core and periphery,
showcasing moderate to high-quality performance. The extreme low zones (0–0.2) lie in
the central watershed, which is in the core area of Pinghe County. Furthermore, taking
advantage of the increased resolution of the 240 m grid, this study conducts an assessment
of ecological environment quality scores at this scale, classifying them into 5 separate
grades based on the size of the area: excellent (41.1%), good (43.7%), moderate (8.4%), fair
(6.7%), and poor (0.1%). The results in Figure 4 reveal that the quality of the ecological
environment within the Huashan Creek watershed predominantly occupies the moderate
rating category at 8.4%, which is indicative of an overall moderate ecological status. To
summarize, the overall distribution pattern of RSEI, whether at the administrative village
level (Figure 4f) or at the grid scale (Figure 4a–e), highlights a prevalence of moderate and
good conditions in contrast to a concentration of poor conditions in the urban center.

The magnitude of moderate RSEI coverage at the catchment scale (Figure 4g) exceeds
that at the administrative village scale, with a noted concentration in the west–central part
of the study area. Furthermore, the grid-scale delineates fine-scale areas with inferior RSEI
distribution.
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3.2. Spatially Dependent Characterization of Ecosystem Quality at Multiple Scales
3.2.1. Global Spatial Correlation Multi-Scale Spatial Response Characteristics of Remotely
Sensed Ecological Quality

To analyze the spatial distribution differences of RSEI at three types of seven scales,
this study describes the equilibrium pattern of RSEI using statistical parameters. Therefore,
global indices of spatial autocorrelation derived from the Spatial Data Exploration and
Analysis Methodology (SDEAM) are used as described in Equation (3). As illustrated in
Figure 5, Moran’s I values for RSEI, computed at seven different scales over the course
of 2020, showed a fluctuating pattern described as “increasing–decreasing–increasing” as
the scale was decreased, revealing the presence of two scales characterized by indices of
dissimilar spatial autocorrelation.
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The overall pattern of fluctuations with respect to scale reduction follows a “bottom-
up” pattern, indicating the existence of two scale cutoffs at the 480 km × 480 km scale (the
lower limit) and the village scale (the steepest). Note that the transition from a grid scale of
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30 m to 240 m results in a gradual decrease in the Moran I value, accompanied by minimal
variations in its amplitude, which remained persistently greater than 0.6, indicative of a
conspicuous spatial clustering. Then when the scale reached 140 m, the Moran I value
showed a steep decline to 0.1 followed by a rapid rise to 0.6 at the village scale and finally
decreasing to approximately 0.15 at the basin scale.

Overall, global Moran’s I values for RSEIs at the various scales consistently exceeded
zero, with p values mostly below 0.001, with the Z-Score clearly exceeding 1.96, which
clearly means the prevalence of highly significant positive spatial clustering in the spatial
distribution of RSEIs across the seven separate scales of varying magnitudes. However,
it is pertinent to note that the positive correlation features of agglomeration within the
same grid scale type and across different scale types (grid, village, and watershed) manifest
discernible differences.

In particular, when comparing the eigenvalues of the 5-level RSEI scale within grid
scale types, there is a gradual increase in the overall Moran’s I value from 0.086 for the
480 m × 480 m case to 0.825 for the 30 km × 30 km case, with the former approaching mini-
mum values near 0 and the latter approaching unity. Correspondingly, the Z-Score displays
a rising trajectory as the range of scales decreases (ranging from 8 to 3379). This progression
accentuates the significance and strength of the clustering of positive correlations within the
RSEI at the grid scale, which becomes pronounced as the scale decreases. In addition, there
is a remarkable jump in the Moran’s I value during the transition from 480 m × 480 m to
240 m × 240 m, while subsequent shifts between the remaining scales experience a change
of roughly an order of magnitude, albeit with Moran’s I value dropping below 0.69 beyond
120 m × 120 m, indicative of decreasing significance in the clustering of positive spatial
correlations.

Additionally, when contrasting village and watershed scale-type 2 scales, the global
Moran’s I value for the former RSEI (0.595) substantially exceeds that of the latter (0.146),
while the Z-Score exhibits a 13-fold increase (14.319 > 1.426). This divergence highlights
the increased and statistically significant clustering of positive correlations evident at the
village level. In addition, compared to the grid scale, the RSEI at the village scale displays
similar Moran’s I values and Z-Scores to those observed at 240 m × 240 m, while the
largest catchment scale stands out as unique, characterized by a Z-Score of less than 1.96,
signifying clustering by weakly significant spatial correlation of RSEI.

With a Moran’s I value of 0.146, the watershed scale demonstrates a lack of statistically
significant spatial clustering across cells, diverging from the pattern observed in the other
assessments. As a result, it is discernible that within assessment cells of the same grid type,
at microscopic scales of assessment, high Moran’s I values correspond to a great degree
of spatial clustering in RSEI. In contrast, spatial clustering at the macroscopic catchment
scale, similar to the case of 480 m × 480 m, lacks statistical significance. On the other
hand, the mesoscopic scale of the village, analogous to the case of 240 m × 240 m, exerts a
noteworthy influence on the spatial clustering of RSEI. Thus, the next section will focus on
characterizing and analytically exploring the spatial distribution of RSEI at the microscale
of 240 m × 240 m, at the meso-village scale, and at the macroscale of the watershed.

3.2.2. Local Spatial Correlation Multi-Scale Spatial Response Characteristics of Remotely
Sensed Ecological Quality

To further elucidate the local spatial autocorrelation and multiscale response charac-
teristics of RSEI, this study employed a cross-scale assessment approach. In particular, the
240 m × 240 m grid scales, village administrative districts, and catchment scales exhibiting
similar Moran’s I values are carefully chosen. The indices of local spatial autocorrelation
derived from Equation (4) were then used to assess and analyze heterogeneity in the spatial
correlation of RSEI across the study region as it experienced changes in the scales of the
geographical unit types. Finally, it should be noted that there were both shared patterns
as well as significant disparities in the local spatial differences in RSEI observed across
varying scales.
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As illustrated in Figure 6, except at the meso-village and macro-catchment scales, the
spatial clustering pattern of RSEI at the grid scales was characterized by a non-random
spatial distribution, while the non-significant regions increased in extent as the scales
expanded. In addition, areas characterized as L–L and H–H types showed variation
between scales. It is interesting to note that L–L and H–H regions consistently covered larger
areas than those of the H–L type, and no regions exhibited the L–H type. Specifically, at the
macro watershed scale, a multi-region spread displayed a combination of southwestern
H–H and northern L–L types.
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Similar distribution patterns were observed at a range of scales. On a meso-village
scale, H–H continuous villages were prominent in the north–central region. At the
480 m × 480 m scale, there were few H–L types in the north–central region, with scat-
tered H–H types in the SE and NW regions. At the 240 m × 240 m scale, there was a
scattered H–L distribution, with a gradual concentration of H–H types in both the SE
and NW. At the 120 km × 120 km scale, the H–L pattern was absent, with the central L–L
pattern becoming continuous and the H–H pattern notably present in the NW, SW, and
eastern parts of the country. At the 60 m × 60 m scale, an alternating pattern of H–H and
L–L was observed in the east, center, and west. The alternating pattern between H–H and
L–L was most distinct at the fine scale of 30 m × 30 m, especially in the upper, middle,
and lower regions of the west. The H–H type was mainly located in the mountainous
and vegetation-rich areas of the east and west, while the L–L type was prevalent in the
central plains.

3.3. Response and Difference Analysis of Multiscale Drivers of Remotely Sensed Ecological Quality

A 240 m × 240 m grid was chosen for the identification of extraction points, informed
by the ability of the grid to effectively mitigate outcome bias arising from covariance
effects between factors as determined by correlation analysis and principal component
analysis. A total of 11,141 sample points were then identified, each associated with specific
driver values. Through an extensive filtering process employing correlation analysis, five
independent variables were identified as suitable drivers, namely, distance from road
(DisRoad), population density (POP), density of patches (PD), distance from a water body
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(DisWater), and elevation (DEM). We then meticulously evaluated the impact of these
variables on the RSEI dependent variable through GWR, which was conducted at multiple
spatial scales. In order to provide deep insights into the factors that influence the local
spatial distribution of RSEI, 3 separate geospatial cell scales: micro (240 m × 240 m), meso
(village administrative district), and macro (watershed)-based were selected on the basis of
their similarity in Moran’s I values. We then used the local GWR spatial coefficients derived
from Equation (5) in order to dissect the variations in the effects of these five drivers across
these diverse scales of geospatial cells.

3.3.1. Local Spatial Correlation: Multi-Scale Spatial Response Characteristics of Remotely
Sensed Ecological Quality

Overall, the GWR results revealed a corrected R2 of 0.42 and a condition number that
was less than 0. These findings reflect the robustness of the model, which successfully
withstood rigorous evaluations for multiple covariance considerations. The corrected R2

surpasses the threshold of 0.6, indicating a relatively strong model fit. The regression
coefficients within the GWR model provided insights into the individual indicators’ re-
spective impacts on RSEI. We conducted a comparative assessment of these regression
coefficients, focusing on the primary driving variables for RSEI within the Huashan Creek
catchment at various spatial scales (i.e., watershed, village, and 240 m × 240 m) (see
Figure 7). The driving variables for RSEI were observed to have positive influences at all
three scales, with values greater than 0 indicating substantial positive effects. Among these,
the socioeconomic variable POP displayed the most significant influence, consistently
exceeding 0.7.
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In addition to POP, the variables DEM and PD demonstrated noteworthy influences on
RSEI. However, disparities emerged when comparing the magnitudes of these influences
across different spatial scales. Notably, DisRoad and POP maintained consistent coefficients
across watershed scales, with approximate values of 0.4 and 0.8, respectively. Conversely,
DisWater had the least impact at the village scale, registering a coefficient of 0.2 while
displaying intermediate effects at other scales (0.5). In contrast, DEM exhibited its highest
influence at the village scale (0.7) and intermediate impacts at other scales (0.5).

3.3.2. Analysis of Spatial Differences in Multi-Scale Remote Sensing Ecosystem Quality
Drivers Based on GWR

Figure S1 depicts the spatial distribution of the five drivers, highlighting significant
spatial variability in the relationship between RSEI and these factors, contingent on the
analysis scale. Given this spatial layout, we categorized the regression coefficients into
five distinct levels of intensity: 0 to 0.2 (low), 0.2 to 0.4 (low), 0.4 to 0.6 (medium), 0.6 to
0.8 (high), and 0.8 to 1 (high). In the same scale, specifically at the micro-grid level of
240 m × 240 m, DEM exhibited a systematic distribution of coefficient classes, with a
concentration of coefficients ranging from moderate to high intensity extending from the
central area of low-intensity coefficients to the periphery.
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Approximately two-thirds of the area was dominated by moderate and high-intensity
classes, with river valleys, characterized by lower topography, making a smaller contri-
bution to RSEI at the grid scale. POP displayed four classes of coefficients above the
low-intensity range, with the high and medium intensities being widespread and the high
intensity contiguous. Moderate, weak, and strong intensities were mostly clustered in the
southwestern corner of the study area. Both DisRoad and DisWater methods covered all coef-
ficient classes. The distribution of DisRoad appeared patchy, primarily in the north–central
to south–central areas, with the moderate intensity area predominating. On the other hand,
DisWater exhibited an alternating cluster-band pattern, with the moderate intensity area
being the most extensive and the lower intensity low appearing as scattered spots.

The high-intensity area was primarily located to the northwest and south. PD extended
across all gradient levels, with coefficients increasing toward the southeast in the northwest
corner. In the rest of the region, the high-intensity center retreated outward, with the
moderate area mostly in the southwest-to-eastern margins. At the rural mesocosmic scale,
DEM exhibited three high-intensity coefficient classes, covering most of the region in an
east-west and south-north direction, while the moderate-intensity class dotted the edges
from east to west. On this scale, POP had four coefficients lower than the high intensity,
with the low-intensity class spanning the region, and the moderate to high-intensity classes
primarily found in the southwest corner.

DisRoad, DisWater, and PD showed the full range of classes. DisRoad featured a sub-
stantial area of high intensity that was contiguous to the west, with intensity gradually
increasing from south to the northeast. DisWater displayed a gradual increase in intensity
from the southwest to the northeast, with an area of high intensity to the northeast. PD
showed a distinct increase in intensity from north to south, with a notable presence of aver-
age intensity in the northeast corner. At the macro watershed scale, each factor consisted
of five classes and displayed a more even distribution. DEM, DisWater, and PD showed a
gradual increase from the west to the east, with DisWater showing the most pronounced
increase. DEM showed a high-intensity region in the southeast-northeast corner, while PD
displayed a high-intensity area in the southeast-northeast corner. On the other hand, POP
demonstrated an increase in intensity from the south to the north, whereas DisRoad showed
an increasing distribution from east to west.

With respect to the impact of the same driver at different spatial scales, the influence of
DEM on RSEI increased as the scale transitioned from the microgrid scale to the meso-grid
scale, subsequently exhibiting a slight attenuation at the macroscale of the watershed. The
impact of POP on RSEI was most pronounced at the micro-scale and minimized at the meso
scale, with relatively uniform contributions observed at the macro-catchment scale and
within sub-catchments. The strength of the effects of DisRoad and DisWater also intensified
as the scale broadened, whereas the spatial distribution shifted from a pattern of dispersed
clusters to a hierarchical east-west distribution. Of note, the range of PD’s high-intensity
impacts steadily decreased with the increase in scale.

4. Discussion
4.1. RSEI Response to Spatial Scales

For the three scale categories, as the scale resolution increases from 60 m to the
catchment scale, the response of the ecological environmental suitability scale at seven
distinct levels primarily shifts in attributes related to RSEI, ranging from complex and
detailed spatial distributions to more straightforward and clearer models. However, there
is a risk that the perception of a shift might obscure critical information [28]. Notably, RSEI
spatial correlation reaches its lowest point as the scale expands to 480 m. Moreover, at
the village scale, the spatial distribution results diverge markedly from those at the earlier
scale, with the disparity growing significantly at the catchment scale (see Figure 3).

The study area was examined using the same research methods and data. The spatial
distribution characteristics exhibit distinct patterns due to variations in the scale of the
assessment units. This behavior reveals significant variability between scale categories
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but limited variability within each category. This variability occurs because evaluations of
differences in environmental quality are sensitive to changes in the size of the assessment
units involved. Large units reflect the local composition of the landscape or specific
terrestrial ecological subsystems. Furthermore, as the unit size increases, RSEI evaluations
tend to minimize differences in landscape elements within the unit [28].

In summary, this study highlights the importance of conducting RSEI response anal-
yses at various spatial scales. Reliance on single-scale assessments alone often fails to
accurately assess regional ecological quality since it does not comprehensively represent
the true state of an area and desired outcomes. Thus, employing RSEI to analyze responses
at different spatial scales is advantageous. Such an approach can mitigate errors arising
from single-scale divisions and address issues related to the incomplete consideration of
spatial heterogeneity in the division of assessment units. The choice of scale, however,
should reflect analytic goals, available information, and decision-making requirements [67].

In this study, the alteration of spatial scope yields distinct characteristics in the global
autocorrelation spatial analysis of ecological quality and functional control across three scale
levels: sample grid, administrative boundary, and watershed scales, all based on natural
ecosystems. The Moran’s I value of the RSEI exhibits a fluctuating “decreasing-increasing-
decreasing” pattern as the scale expands, revealing notable variations. In particular, as the
scale of the grid increases, the information becomes less detailed, resulting in a gradual
decrease in Moran’s I.

The most significant difference in Moran’s I value of RSEI was observed between
the 240 m scale and the 480 m scale. This is because, at the 240 m scale, RSEI’s spatial
performance is similar to that calculated in rural areas, resulting in a higher spatial auto-
correlation of 0.6. This result is much higher than the spatial autocorrelation of 0.15 at the
watershed cell scale and 0.1 at the 480 m grid sample scale. Therefore, the 240 m and rural
scales are useful for identifying spatial differences in ecological quality within the Huashan
Creek watershed as well as for further analysis. The central valley examined in this study,
characterized by poor drainage, has a more significant influence than elevation alone, pri-
marily due to population growth and socio-economic development. Original forested areas
and water bodies were cleared for agriculture and construction, increasing the amount of
land used for these purposes. The change led to the fragmentation of once-contiguous
forests and the formation of only a few isolated forested patches and small lakes. The
actions exacerbated fragmentation, affecting the RSEI of the watershed and contributing to
the land’s unsuitability for honeydew cultivation. The western and eastern areas are closer
to transportation routes that fragment the original forest cover and water bodies, resulting
in areas that are at a greater distance from water bodies. However, the highly impacted
area in the northwest corner may be used as a nature reserve, creating an ecological barrier
that fosters biodiversity, raising the RSEI.

At the 480 m scale, spatial correlation is lowest because of its masking effect on finer
ecological features, such as small lakes and vegetation. In the Huashan Creek watershed,
where a significant portion of the land is used for honeydew production, the rural and
the watershed scales are both appropriate for RSEI assessments. The approach is justified
by the practicalities of collecting data and establishing ecological control models within
administrative units, making it more feasible than utilizing larger watershed units spanning
multiple regions. Administrative data at the village level offers greater accuracy for higher-
level units and, when combined with grid-scale data, provides detailed support for village
and catchment planning and protection efforts [68].

We utilized 240 m, rural, and watershed scales to assess RSEI within the district
because we recognized the importance of natural catchment boundaries for the assessment
of land use impacts and water quality change. Local autocorrelation spatial analysis was
used to examine RSEI clustering. At larger scales, the finer grid scales fail to establish
spatial correlation because they average high RSEI values across the eastern and western
portions of the district.
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Analysis using the 240 m, the village, and catchment scales revealed areas of excellent
ecological quality (H–H), which are clustered in mountainous areas with dense vegetation
cover, notably in the south-west. In contrast, poor ecological quality (L–L) areas are in the
central–northern region, marked by low relief, degraded vegetation, urbanization, and
high population densities. Mixed ecological quality areas are found in flat areas where
urban and natural ecosystems co-exist. The central area, marked by low elevation and high
population density, exhibits moderately poor ecological quality [23].

4.2. Response of RSEI Drivers to Spatial Scales
4.2.1. Key Drivers of RSEI

RSEI within the Huashan Creek watershed is influenced by various factors, including
DEM, POP, DisRoad, DisWater, and PD. However, the extent of these influences and their
spatial distribution varies across scales and locations. Collectively, POP, DEM, and PD
determine the magnitude and spatial pattern of RSEI at all scales, with POP having the
most significant impact (approaching 0.8). Natural population growth and migration
can result in urban expansion, reduced vegetative cover, and frequent changes in land
use. Anthropogenic activity contributes to increased water use and elevated greenhouse
gas emissions, affecting urban climate factors such as temperature, humidity, and arid-
ity [69–71]. Elevation has a significant influence on factors such as rainfall distribution,
temperature, radiation intensity, soil quality, plant ecology, growth, and overall ecological
quality. It shapes human activities, including agriculture, industry, and transportation,
with lower elevations generally experiencing a greater human impact, which increases
the RSEI. Specifically, areas at lower elevations usually have higher population densities,
road densities, patch densities, and distances to water bodies. Areas with these types of
integrated landscapes are more susceptible to soil erosion and pollutant transport from
upstream areas, which can reduce ecological quality [69]. The areas where DEM had the
highest influence primarily consisted of those at lower elevations that were suitable for
honeydew cultivation, where greenness, temperature, humidity, and desiccation had a
significant influence. As Xiong et al. [33] indicate, ecological restoration or agro-industrial
planning at the larger scale of the Minjiang River should first be done on steep north-facing
slopes at low elevations. Shao et al. [72] also demonstrated that the combination of topo-
graphic superimposition of conditions such as humidity and greenness and anthropogenic
activities is the key factor influencing the ecological quality of Qingdao city.

Regarding the other variables, there was significant spatial heterogeneity in the in-
fluencing factors in different regions and at different scales [73]. Li et al. [34] suggest that
human activities contribute to the improvement of eco-environmental quality by reducing
the degree of landscape fragmentation and the intensity of land use. Xiong et al. [33] indi-
cate that the relationship between NDVI and topography is scale-dependent. Wu et al. [74]
reveal that precipitation and land use are the main factors affecting the Sichuan-Yunnan
Ecological Barrier Area, but they have different interpretations at different unit scales. Ling
et al. [75] pointed out that vegetation, anthropogenic disturbances, and aridity index were
the main factors influencing ecosystem services in the Manas River basin.

Furthermore, changes in landscape patterns, such as fragmentation, have implications
for functions such as productivity, connectivity, climate regulation, and ecosystem health.
Comparing key drivers at different scales, it is clear that proximity to roads and water bodies
has a relatively similar impact on catchment scales, highlighting the rivers’ vital role as
water conduits. At the village level, proximity to water bodies has a more substantial effect
than road distance because of the importance of irrigation, which affects water quantity
and quality [20]. The construction of government road networks in rural areas highlights
the importance of road distances to the characterization of an ecological environment. The
performance of the 240 m grid scale is similar to that of watershed scales. Overall, the
quality of an ecological environment is shaped by natural factors and changes in land
use. Therefore, at lower elevations, anthropogenic activities will outweigh the effects of
elevation. The increase of cultivated land, transportation, and construction land exacerbates
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the fragmentation of existing landscape patches such as forests and water bodies, whereas
the establishment of nature reserves restores the environmental characteristics. These
impacts will inevitably alter the RSEI.

4.2.2. Driven Response of RSEI at Different Scales

At the microgrid scale, regions with smaller contributions to RSEI are clustered in
the central lowlands. Areas with higher populations and diverse land-use patches extend
outward from the central region, forming a “pentagram” pattern. This pattern arises
because of the significant influence of human activity, especially in poorly drained areas.
Although drainage is limited, the central valleys provide an environment conducive to
development. The increase in population and economic development leads to the expansion
of agriculture and construction in the core areas, fragmenting the landscape and affecting
the measured ecological quality. The transformation of forests and aquatic ecosystems into
cultivation land leads to the fragmentation of forests and small lakes, thereby negatively
impacting the ecological quality of watersheds.

Furthermore, the proximity of transportation routes to the western and eastern regions,
facilitated by external links, intensifies the reduction of forest cover and the fragmentation
of water bodies [76]. Factors associated with dispersed clusters of water bodies at varying
distances are observed, with many areas showing negligible impact due to water resource
depletion caused by human activity. In contrast, specific high-impact regions in the north-
west corner play a crucial role because water bodies function as ecological obstacles and
biodiversity reserves. Villages at the meso-rural level were influenced by the composition
of rural populations and the fragmentation of land, reducing local human disturbances by
minimizing the impact of rural out-migration on RSEI at larger scales. Additionally, villages
in environmentally sensitive areas, especially at higher elevations in the southwest, may
have a substantial influence on RSEI. At this scale, natural factors such as elevation and
water bodies dominate. The “Y”-shaped area in the northern and central regions, which is
close to water bodies and roads, provides ample resources for honeydew production and
attracts residents.

Unsustainable practices and chemical inputs can contaminate and harm biodiversity
and ecosystems [77]. At the macro watershed scale, the five influencing factors show a
more even spatial distribution because watershed analysis smooths the impact of subtle
features such as slope, water masses, and patch density. As we move eastward into the
Huashan Creek drainage basin, decreasing elevation and increasing water masses result in
the fragmentation of patches, intensifying the combined effect of these factors. Significant
differences can be observed in the northern region, which houses a central urbanized
catchment area where anthropogenic disturbance is more pronounced. Conversely, the high-
elevation, sparsely populated western region features minor human activity in vulnerable
mountainous areas, particularly in less developed regions such as Xiazhai Town and
Guoqiang Town. In more isolated regions, the expansion of roadways can lead to the
depletion of resources, permanently damaging the natural environment.

Notably, the smaller and larger scales of POP influence have a more pronounced effect
on the spatial distribution of RSEI. However, the spatial pattern of the influence of DEM
is apparent at larger rural scales [33], indicating that the higher the elevation, the more
pronounced the spatial spread of RSEI. When the grid size employed in the analysis is
smaller than typical micro geomorphic unit sizes, the finding highlights the importance
of regional landscape, population density, and patch fragmentation. In contrast, when
the grid size employed in the analysis is larger than the mean grid size, this approach is
more likely to identify the impact of broader topographic patterns, water masses, and the
distribution of transport routes while potentially neglecting finer-scale subtleties [78,79].
Overall, conducting a multi-scale driver analysis is more beneficial to our understanding of
the mechanisms driving RSEI, offering valuable information on selecting environmental
motivators at various levels.
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4.3. Selection of Scale

This study examines the spatial response patterns of RSEI at different scales, such
as 30 m, 60 m, 120 m, 240 m, 480 m, rural, and watershed scales. Previous research has
demonstrated that the Huashan Creek watershed, where human activities and natural
elements affect each other, is subject to considerable ecological strain [80,81]. Significantly,
the spatial patterns of RSEI exhibit incongruous regional disparities in scale and location.
Although detailed micro-level research can provide exact information, a more thorough
examination may be needed [82]. Although administrative village scales effectively pro-
vide information on overall distribution and they may help decision-makers in precise
management based on administrative boundaries, they may need to identify micro-spatial
intricacies to make better decisions. Huang et al. and other researchers note the need for
deeper understanding when evaluating the Chengdu-Chongqing Urban Agglomeration on
a larger scale, indicating it is common for assessments to fail to acknowledge the variations
in small-scale landscape components and structures [67].

Consequently, depending solely on a single-scale evaluation provides an inadequate
approach for identifying varied ecological characteristics, suggesting there is no universally
applicable scale for comprehensive assessments. Instead, it is essential to employ global
and local spatial autocorrelation to assess attribute values and spatial discrepancies among
geographic units that are created while paying attention to the unique qualities of various
sizes [83,84]. Figure 6 highlights the substantial influence of spatial clustering at the scale
of the mesocosmic village, such as the 240 m × 240 m scale, exhibiting a relatively large
Moran’s I of 0.6. This observation is important in both grid and administrative scale
evaluations. The watershed-scale also demonstrates distinctive representativeness, with
natural ecosystems delineating watershed boundaries, providing a more intuitive and
scientifically sound basis for assessing land use and water quality change. It is worth
noting that the Huashan River, a major tributary of the West Creek of the Jiulong River that
is located in an area that engages primarily in honeydew production, has been the focus of
significant local government efforts relating to economic development and environmental
management [31].

By examining the similarities and differences in the observed spatial clustering, the
availability and precision of the driving factors at different scales, the social specificity
of the administrative areas, the overall typicality of the Huashan Creek Watershed, the
variability of Moran’s I, and the economy and sustainability of the overall workload, the
240-metre grid, the villages, and the watershed scales were used as the criteria for assess-
ment. Moran’s I at 240 m was found to be relatively high and close to 0.6 at the village
scale (Figure 5), reflecting more information spatially than at the village scale. This com-
prehensive assessment methodology facilitates the examination of spatial discrepancies in
geographical characteristics, topography, and administrative area size within the district.
Additionally, the assessment approach supports the development of ecological manage-
ment and compensation strategies, the extraction of accurate village-level data, and the
production of individual watershed maps. Ultimately, this method can help researchers
create an all-encompassing database containing both natural and socio-economic data. In
summary, it is essential to ensure that the scale chosen for RSEI management policies is
in line with analytical objectives, available information, and scale-related data, meeting
stakeholders’ decision-making needs to achieve maximum relevance.

4.4. Policy Implications

Gaining insight into the elements contributing to disparities in ecological quality
in the Huashan Creek watershed is critical for formulating plans to manage ecosystem
operations and coordinate efforts to ensure ecological preservation and enhance economic
activities suitable for local circumstances. Examining the factors influencing RSEI spatial
differentiation using geographically weighted regression across different scales demon-
strates that considering the collective impacts of human activities, natural elements, and
landscape patterns significantly enhances our ability to identify RSEI spatial disparities.
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Landscape fragmentation can have a multitude of impacts on the ecological quality of the
Huashan Creek watershed, influencing population dynamics, elevation, watershed water
management, and honeydew production zones. These impacts can have cascading effects
on the water, air, land, soils, and biological diversity of the environment.

The idea of ‘patches’ illustrates how land-use changes can drastically alter the ecologi-
cal balance of a given area, which is frequently linked to the numerous honeydew gardens
that constitute almost 60% of the Huashan Creek watershed. To ensure the successful man-
agement of ecological services, it is essential to implement specific strategies to minimize
other human-caused disruptions and enhance the regional landscape structure and pat-
terns, particularly considering the simultaneous impact of diverse landscape arrangements
and activities associated with the thriving growth of the honeydew sector.

For instance, in high-altitude western mountainous regions characterized by inten-
sive land development, efforts should reduce socio-economic activities while promoting
environmentally friendly sectors such as sightseeing, eco-agriculture, and recreational
demonstration facilities. Additionally, when expanding the honeydew industry, it is imper-
ative to bolster ecological control and protection initiatives to prevent the exacerbation of
problems such as soil erosion, forest cover reduction, water scarcity, and desertification. The
optimization of regional landscape structures is particularly important because it enhances
ecological security and diminishes the risk of compromising ecosystem functions due to
the combined influences of elevation and human interference.

Enhancing ecological environmental quality requires optimizing activities based on
landscape patterns in areas marked by intense human economic activities, such as the
central plain zone within the area under study. This approach helps mitigate the potentially
adverse effects of the interaction between anthropogenic interference factors and landscape
pattern index factors on regional environmental quality, thereby preventing a decline in
ecological environmental quality. It is essential to strictly adhere to arable land protection
policies, which should be enforced in grain-producing regions to prevent arable land
degradation and promote high-quality green development. During periods of population
growth, urban expansion should adhere to well-defined boundaries between rural and
urban areas. This approach can lead to efficient land use practices, restraining haphazard
expansion and minimizing land resource wastage. Furthermore, the establishment of
ecological corridors, green buffer zones, and ecological parks in and around central cities
can enhance livability and support sustainable urban development.

4.5. Limitations and Prospects

In this study, we use human–land interaction theory and landscape ecology to develop
a comprehensive framework consisting of two distinct approaches and three modes of
operation. Our findings can be used to regulate the quality of the ecological environment
within the Huashan Creek watershed. First, this analysis is conducted at the scale of
township administrative units, where the Huashan Creek watershed could be effectively
managed through two strategies: “change in land-use pattern and improve land-based
ecosystem service function” and “adjust land-use structure and improve land ecosystem
service function”. These strategies are implemented within the overarching framework of
“synergizing regional economic development, protecting the ecological environment, and
precisely alleviating poverty”.

In the context of “coordinated regional economic development, ecological, environ-
mental protection, and precise poverty alleviation”, optimizing ecological environment
quality is achieved through “changing the land use mode to improve the function of land
ecosystem services” and “modifying the land use structure to optimize the allocation
of ecological landscape resources”. This work was facilitated by a regulatory approach
characterized by “precision, differentiation, and diversification”. Conducting compara-
tive assessments across multiple administrative unit scales, specifically focusing on the
Huashan Creek watershed, is crucial for future research. This will help determine the most
suitable administrative unit scale that aligns with the distinctive attributes of the study area,
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facilitating further investigations. Exploring the feasibility of gathering information on spe-
cific drivers of change, especially for assessing long-term ecological quality developments
in the research region, could be a promising approach for forecasting future changes.

It is essential that a more comprehensive range of independent variables is considered
when making decisions, including economic regulation, ecological compensation, zoning
adjustments, and regional monitoring. The impact of employing these elements needs to be
assessed. Therefore, a thorough comprehension of their intricate connections with natural,
socio-economic, land-use, and policy elements and their effects on ecological quality is
needed. Because current ecological quality models may not fully capture the complexity of
the regional ecosystem quality, it is crucial that more suitable and representative indicators
are identified to aid the integration of a broader array of data sources to enhance the
assessment of regional ecological quality [41].

This research provides a useful examination of how, across different areas and scales,
specific drivers of change impact RSEI in the Huashan Creek watershed. The primary ob-
jective of this study is to establish a reliable and effective system for continuously assessing
the ecological quality of a region. By exploring the elements that may influence changes in
the ecological environment and delving deeply into how various elements shape ecological
environmental quality, this research provides a foundation for implementing well-informed
ecological protection and urban development strategies within the study area [85]. Em-
pirical evidence has confirmed the effectiveness of remote sensing ecological indices in
effectively depicting the ecological environment. Ongoing efforts to enhance correlation
indices and understand the connections between these index factors are expanding the
horizons of research [81,86].

5. Conclusions

Based on the environmental equilibrium matrix of the Huashan Creek watershed at
three types and seven scales in 2020, this study constructed a regional environmental index
(RSEI), revealed spatial response characteristics of the RSEI to different scales, and analyzed
the key drivers of the RSEI. The results are as follows:

(1) Global autocorrelation revealed that the size and area information associated with
the RSEI gradually transitioned from a complex-detailed to a more intuitive and
clearer pattern as the scale resolution decreased. The fusion analysis of 240 m unit,
rural, and watershed scales can not only encompass the rich information on RSEI
spatial differences but can also provide data support and a more intuitive scientific
assessment of the impacts of land use and water quality changes;

(2) Local autocorrelation showed that RSEI exhibits relatively apparent spatial aggrega-
tion characteristics at different scales. The RSEI of the Huashan Creek watershed in
2020 was generally moderate. Areas with poor RSEI were concentrated in the built-up
areas and riparian zones of the towns and cities in the central plain area. In contrast,
areas with higher RSEI were concentrated in the western mountains with greater
vegetation cover;

(3) Using PCA, we identified five key factors affecting RSEI: DEM, POP, DisRoad, DisWater,
and PD. Moreover, using GWR and controlling for confounding geographic factors,
we found that human activities had a significant effect on environmental quality.
The population was found to have a significant effect at all three scales. Elevation
was significant at the administrative village level, while the patch landscape index
significantly affected the grid and catchment scales. Complex interactions between
natural features, land use, and socio-economic factors exacerbate the fragmentation
of landscape patches, amplifying their effects on ecosystem quality in a non-linear
manner. These complex interactions highlight the critical role of elevation, population,
proximity to roads, and proximity to water bodies in shaping the ecological integrity
of the region.
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