Efficient 3D Frequency Semi-Airborne Electromagnetic Modeling Based on Domain Decomposition
Abstract
:1. Introduction
2. Methods
2.1. Governing Equations
2.2. Domain Decomposition Method
2.3. Solutions
3. Numerical Experiments
3.1. Accuracy Verification
3.2. Comparison with Finite Element Method
3.3. Numerical Experiments on Landslide Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lutgens, K.L.; Tarbuck, E.J. Foundations of Erath Sciences. Pearson International Edition; Pearson: London, UK, 2008. [Google Scholar]
- Xu, Q.; Zhu, X.; Li, W.; Dong, X.; Dai, K.; Jiang, Y.; Lu, H.; Guo, C. Technical progress of space-air-ground collaborative monitoring of landslide. Acta Geod. Cartogr. Sin. 2022, 51, 1416–1436. [Google Scholar]
- Xu, Q.; Lu, H.; Li, W.; Dong, X.; Guo, C. Types of potential landslide and corresponding identification technologies. Geomat. Inf. Sci. Wuhan Univ. 2022, 47, 377–387. [Google Scholar]
- Kafri, U.; Goldman, M. The use of the time domain electromagnetic method to delineate saline groundwater in granular and carbonate aquifers and to evaluate their porosity. J. Appl. Geophys. 2005, 57, 167–178. [Google Scholar] [CrossRef]
- Streich, R. Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land. Surv. Geophys. 2016, 37, 47–80. [Google Scholar] [CrossRef]
- Xue, G.; Zhang, L.; Hou, D.; Liu, H.; Ding, Y.; Wang, C.; Luo, X. Integrated geological and geophysical investigations for the discovery of deeply buried gold-polymetallic deposits in China. Geol. J. 2020, 55, 1771–1780. [Google Scholar] [CrossRef]
- Zhou, N.; Wei, X.; Zhang, S. Imaging of a shallow magma conduit system based on a high-power frequency-domain controlled-source electromagnetic survey. Geophysics 2023, 88, B47–B54. [Google Scholar] [CrossRef]
- Peng, D.; Xu, Q.; Zhang, X.; Xing, H.; Zhang, S.; Kang, K.; Qi, X.; Ju, Y.; Zhao, K. Hydrological response of loess slopes with reference to widespread landslide events in the Heifangtai terrace, NW China. J. Asian Earth Sci. 2019, 171, 259–276. [Google Scholar] [CrossRef]
- Huang, R.; Xu, Z.; Xu, M. Hazardous effects of underground water and extraordinary water flow-induced geohazards. Earth Environ. 2005, 33, 001–009. [Google Scholar]
- Lin, J.; Xue, G.; Li, X. Technological innovation of semi-airborne electromagnetic detection method. Chin. J. Geophys. 2021, 64, 2995–3004. (In Chinese) [Google Scholar]
- Maria, V.S.; Michael, B.; Christian, N.; Pritam, Y.; Wiebke, M.; Raphael, R.; Annika, S.; Stephan, C.; Maxim, Y.S.; DESMEX Working Group. A novel semiairborne frequency-domain controlled-source electromagnetic system: Three-dimensional inversion of semi-airborne data from the flight experiment over an ancient mining area near Schleiz, Germany. Geophysics 2019, 84, 281–292. [Google Scholar]
- Wu, X.; Xue, G.; Fang, G.; Li, X.; Ji, Y. The Development and applications of the semi-airborne electromagnetic system in China. IEEE Access 2019, 7, 104956–104966. [Google Scholar] [CrossRef]
- Kotowski, P.O.; Becken, M.; Thiede, A.; Schmidt, V.; Schmalzl, J.; Ueding, S.; Klingen, S. Evaluation of a semi-airborne electromagnetic survey based on a multicoper aircraft system. Geosciences 2022, 12, 26. [Google Scholar] [CrossRef]
- Newman, G.; Alumbaugh, D. Frequency-domain modelling of airborne electromagnetic responses using staggered finite differences. Geophys. Prospect. 1995, 43, 1021–1042. [Google Scholar] [CrossRef]
- Commer, M.; Newman, G. A parallel finite-difference approach for 3D transient electromagnetic modeling with galvanic sources. Geophysics 2004, 69, 1192–1202. [Google Scholar] [CrossRef]
- Avdeev, D. Three-dimensional electromagnetic modelling and inversion from theory to application. Surv. Geophys. 2005, 26, 767–799. [Google Scholar] [CrossRef]
- Haber, E.; Ascher, U.M. Fast finite volume simulation of 3D electromagnetic problems with highly discontinuous coefficients. SIAM J. Sci. Comput. 2001, 22, 1943–1961. [Google Scholar] [CrossRef]
- Haber, E.; Ruthotto, L. A multiscale finite volume method for Maxwell’s equations at low frequencies. Geophys. J. Int. 2014, 199, 1268–1277. [Google Scholar] [CrossRef]
- Caudillo-Mata1, L.A.; Haber, E.; Schwarzbach, C. An oversampling technique for the multiscale finite volume method to simulate electromagnetic responses in the frequency domain. Comput. Geosci. 2017, 21, 963–980. [Google Scholar] [CrossRef]
- Farquharson, C.; Miensopust, M. Three-dimensional finite-element modelling of magnetotelluric data with a divergence correction. J. Appl. Geophys. 2011, 75, 699–710. [Google Scholar] [CrossRef]
- Cai, H.; Xiong, B.; Han, M.; Zhdanov, M. 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method. Comput. Geosci. 2014, 73, 164–176. [Google Scholar] [CrossRef]
- Castillo-Reyes, O.; de la Puente, J.; Cela, J. PETGEM: A parallel code for 3D CSEM forward modeling using edge finite elements. Comput. Geosci. 2018, 119, 123–136. [Google Scholar] [CrossRef]
- Smirnova, M.; Juhojuntti, N.; Becken, M.; Smirnov, M.; the DESMEX WG. Exploring Kiruna Iron Ore fields with large-scale, semi-airborne, controlled-source electromagnetics. First Break 2020, 38, 35–40. [Google Scholar] [CrossRef]
- Wang, K.; Luo, W.; Cao, H.; Wang, X.; Lan, X.; Duang, C. 3-D inversion of UAV semi-airborne electromagnetic method in frequency domain. Chin. J. Geophys. 2021, 64, 1759–1773. (In Chinese) [Google Scholar]
- He, Y.; Xue, G.; Chen, W.; Tian, Z. Three-Dimensional Inversion of Semi-Airborne Transient Electromagnetic Data Based on a Particle Swarm Optimization-Gradient Descent Algorithm. Appl. Sci. 2021, 12, 3042. [Google Scholar] [CrossRef]
- Jing, X.; Li, X.; Cao, H.; Zhou, J.; Liu, W. The processing workflow of semi-airborne transient electromagnetic data using geological modeling and three-dimensional numerical simulation—A case history in Yunnan, China. J. Appl. Geophys. 2022, 203, 10467. [Google Scholar] [CrossRef]
- Xue, G.; Li, X.; Yu, S.; Chen, W.; Ji, Y. The Application of Ground-airborne TEM Systems for Underground Cavity Detection in China. J. Environ. Eng. Geophys. 2018, 23, 103–113. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, C.; Qiu, C.; Hui, Z.; Ren, X.; Weng, A. 3-D inversion of transient EM data with topography using unstructured tetrahedral grids. Geophys. J. Int. 2019, 217, 301–318. [Google Scholar] [CrossRef]
- Lu, X.; Farquharson, C. 3D finite-volume time-domain modeling of geophysical electromagnetic data on unstructured grids using potentials. Geophysics 2020, 85, 221–240. [Google Scholar] [CrossRef]
- Ke, Z.; Liu, Y.; Su, Y.; Wang, L.; Zhang, B.; Ren, X.; Rong, Z.; Ma, X. Three-Dimensional Inversion of Multi-Component Semi-Airborne Electromagnetic Data in an Undulating Terrain for Mineral Exploration. Minerals 2023, 13, 230. [Google Scholar] [CrossRef]
- Nazari, S.; Rochlitz, R.; Günther, T. Optimizing Semi-Airborne Electromagnetic Survey Design for Mineral Exploration. Minerals 2023, 13, 796. [Google Scholar] [CrossRef]
- Nédélec, J. Mixed finite elements in R3. Numer. Math. 1980, 35, 315–341. [Google Scholar] [CrossRef]
- Zhang, Y.; Key, K. MARE3DEM: A three-dimensional CSEM inversion based on a parallel adaptive finite element method using unstructured meshes. In SEG Technical Program Expanded Abstracts 2016; SEG Library: Houston, TX, USA, 2016; pp. 1009–1013. [Google Scholar]
- Jahandari, H.; Farquharson, C. 3-D minimum-structure inversion of magnetotelluric data using the finite-element method and tetrahedral grids. Geophys. J. Int. 2017, 211, 1189–1205. [Google Scholar] [CrossRef]
- Han, X.; Ni, J.; Yin, C.; Zhang, B.; Huang, X.; Zhu, J.; Liu, Y.; Ren, X.; Su, Y. 3D airborne EM forward modeling based on finite-element method with goal-oriented adaptive octree mesh. Remote Sens. 2023, 15, 2816. [Google Scholar] [CrossRef]
- Schwarzbach, C.; Borner, R.; Spitzer, K. Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics: A marine CSEM example. Geophys. J. Int. 2011, 187, 63–74. [Google Scholar] [CrossRef]
- Castillo-Reyes, O.; de la Puente, J.; García-Castillo, L.; Cela, J. Parallel 3-D marine controlled-source electromagnetic modelling using high-order tetrahedral Nédélec elements. Geophys. J. Int. 2019, 219, 39–65. [Google Scholar] [CrossRef]
- Castillo-Reyes, O.; Modesto, D.; Queralt, P.; Marcuello, A.; Ledo, J.; Amor-Martin, A.; García-Castillo, L. 3D magnetotelluric modeling using high-order tetrahedral Nédélec elements on massively parallel computing platforms. Comput. Geosci. 2022, 160, 105030. [Google Scholar] [CrossRef]
- Werthmüller, D.; Rochlitz, R.; Castillo-Reyes, O.; Heagy, L. Towards an open-source landscape for 3-D CSEM modelling. Geophys. J. Int. 2021, 227, 644–659. [Google Scholar] [CrossRef]
- Castillo-Reyes, O.; Queralt, P.; Marcuello, A.; Ledo, J. Land CSEM simulations and experimental test using metallic casing in a geothermal exploration context: Vallès basin (NE Spain) case study. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4501813. [Google Scholar] [CrossRef]
- Castillo-Reyes, O.; de la Puente, J.; Cela, J. HPC geophysical electromagnetics: A synthetic VTI model with complex bathymetry. Energies 2022, 15, 1272. [Google Scholar] [CrossRef]
- Streich, R. 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy. Geophysics 2009, 74, 95–105. [Google Scholar] [CrossRef]
- Li, J.; Farquharson, C.; Hu, X. 3D vector finite-element electromagnetic forward modeling for large loop sources using a total-field algorithm and unstructured tetrahedral grids. Geophysics 2017, 82, E1–E16. [Google Scholar] [CrossRef]
- Zhang, M.; Farquharson, C.; Lin, T. Comparison of nodal and edge basis functions for the forward modelling of three-dimensional frequency-domain wire source electromagnetic data using a potentials formulation. Geophys. Prospect. 2022, 70, 828–843. [Google Scholar] [CrossRef]
- Li, R. Robust High Performance Preconditioning Techniques for Solving General Sparse Linear Systems; University of Minnesota: Minneapolis, MN, USA, 2015. [Google Scholar]
- Ren, Z.; Kalscheuer, T.; Greenhalgh, S.; Maurer, H. A goal-oriented adaptive finite-element approach for plane wave 3D electromagnetic modeling. Geophys. J. Int. 2013, 187, 63–74. [Google Scholar]
- Yin, C.; Zhang, B.; Liu, Y.; Cai, J. A goal-oriented adaptive finite-element method for 3D scattered airborne electromagnetic method modeling. Geophysics 2016, 81, 337–346. [Google Scholar] [CrossRef]
- Castillo-Reyes, O.; Amor-Martin, A.; Botella, A.; Anquez, P.; García-Castillo, L. Tailored meshing for parallel 3D electromagnetic modeling using high-order edge elements. J. Comput. Sci. 2022, 63, 101813. [Google Scholar] [CrossRef]
- Farhat, C.; Roux, F.X. A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng. 1991, 32, 1205–1227. [Google Scholar] [CrossRef]
- Farhat, C.; Lesoinne, M.; Letallec, P.; Daniel, R. FETI-DP: A dual–primal unified FETI method-part I: A faster alternative to the two-level FETI method. Int. J. Numer. Methods Eng. 2001, 50, 1523–1544. [Google Scholar] [CrossRef]
- Li, Y.; Jin, J. A vector dual-primal finite element tearing and interconnecting method for solving 3-D large-scale electromagnetic problems. IEEE Trans. Antennas Propag. 2006, 54, 3000–3009. [Google Scholar] [CrossRef]
- Zhang, K.; Jin, M. Parallel FETI-DP for efficient EM analysis of general objects and antenna arrays. In Proceedings of the 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), Turin, Italy, 7–11 September 2015; pp. 313–316. [Google Scholar]
- Ren, Z.; Kalscheuer, T.; Greenhalgh, S.; Maurer, H. A finite-element-based domain-decomposition approach for plane wave 3D electromagnetic modeling. Geophysics 2014, 79, 255–268. [Google Scholar] [CrossRef]
- Hui, Z.; Yin, C.; Zhang, W.; Liu, Y.; Xiong, B. 3D MCSEM modeling based on domain-decomposition finite-element method. J. Appl. Geophys. 2022, 207, 104847. [Google Scholar] [CrossRef]
- Karypis, G.; Kumar, V. A Fast and Highly Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 1999, 20, 359–392. [Google Scholar] [CrossRef]
- Jin, J. The Finite Element Method in Electromagnetics; IEEE Press: Piscataway, NJ, USA, 2014. [Google Scholar]
- Amestoy, P.R.; Guermouche, A.; L’Excellent, J.Y.; Pralet, S. Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 2006, 32, 136–156. [Google Scholar] [CrossRef]
- Saad, Y. Iterative Methods for Sparse Linear System; SIAM: Philadelphia, PA, USA, 2003. [Google Scholar]
Frequencies (Hz) | Number of Iterations | Relative Residual Norm |
---|---|---|
1 | 43 | 0.9 × 10−6 |
10 | 42 | 0.7 × 10−6 |
100 | 42 | 0.8 × 10−6 |
1000 | 41 | 0.6 × 10−6 |
10,000 | 40 | 0.8 × 10−6 |
Method | Number of Unknown | Memory (GB) | Runtime (s) |
---|---|---|---|
FE | 864,130 | 23.27 | 596 |
FE | 2,357,140 | 105.12 | 5506 |
FETI-DP | 864,130 | 18.08 | 508 |
FETI-DP | 2,357,140 | 72.56 | 3012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hui, Z.; Wang, X.; Yin, C.; Liu, Y. Efficient 3D Frequency Semi-Airborne Electromagnetic Modeling Based on Domain Decomposition. Remote Sens. 2023, 15, 5636. https://doi.org/10.3390/rs15245636
Hui Z, Wang X, Yin C, Liu Y. Efficient 3D Frequency Semi-Airborne Electromagnetic Modeling Based on Domain Decomposition. Remote Sensing. 2023; 15(24):5636. https://doi.org/10.3390/rs15245636
Chicago/Turabian StyleHui, Zhejian, Xuben Wang, Changchun Yin, and Yunhe Liu. 2023. "Efficient 3D Frequency Semi-Airborne Electromagnetic Modeling Based on Domain Decomposition" Remote Sensing 15, no. 24: 5636. https://doi.org/10.3390/rs15245636
APA StyleHui, Z., Wang, X., Yin, C., & Liu, Y. (2023). Efficient 3D Frequency Semi-Airborne Electromagnetic Modeling Based on Domain Decomposition. Remote Sensing, 15(24), 5636. https://doi.org/10.3390/rs15245636